Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-16T20:17:05.995Z Has data issue: false hasContentIssue false

5 - Conditional Heteroskedasticity

Published online by Cambridge University Press:  23 November 2009

Helmut Lütkepohl
Affiliation:
European University Institute, Florence
Markus Krätzig
Affiliation:
Humboldt-Universität zu Berlin
Get access

Summary

Stylized Facts of Empirical Price Processes

Price processes observed at speculative markets such as foreign exchanges or stock, bond, or commodity markets have been attracting a huge interest in the academic world for decades. A particular time series model that has been proven to approximate empirical (log) price processes quite accurately is the random walk model [Fama (1965)]. According to this model the best forecast of a future price is today's price and, thus, the latter summarizes efficiently the (publicly) available information for prediction. Although the concept of weak market efficiency may also cover some degree of predictability of future price changes [Campbell, Lo & MacKinlay (1997)], there is a wide consensus that (log) speculative prices are nonstationary and, more precisely, show dynamic properties in line with processes that are integrated of order one.

Given nonstationarity of actual price processes, the statistical analysis mostly concentrates on speculative returns. Changes of log speculative prices (compounded returns) are typically not, or at most weakly, autocorrelated [Campbell et al. (1997)]. Measured at some higher frequency, daily price variations, for example, exhibit positive autocorrelation. Periods of higher and smaller price variations alternate; empirical volatilities tend to cluster. The latter property is easily found in the empirical autocorrelation function of squared returns. Thus, although price processes are hardly predictable, the variance of the forecast error is time dependent and can be estimated by means of observed past variations. As a consequence of volatility clustering, it turns out that the unconditional distribution of empirical returns is at odds with the hypothesis of normally distributed price changes that had been put forth by Bachelier (1900) and was powerfully rejected by Fama (1965).

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×