Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-13T11:58:03.229Z Has data issue: false hasContentIssue false

Bibliography

Published online by Cambridge University Press:  03 November 2017

Mankin Mak
Affiliation:
University of Illinois, Urbana-Champaign
Get access
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bergeron, T. 1928: Uber die dreidimensional verknupfende Wettranalyse I. Geofys. Publikasjoner, 5, No. 6, 1111.Google Scholar
Bergeron, T. 1937: On the physics of fronts. Bull. Amer. Meteor. Soc., 18, 265275.Google Scholar
Bjerknes, V. 1904: Das problem der wettervorhersge, betrachlet vom standpunkte der mechanic und der physic. Meteorol. Zeitschr., 21, 17.Google Scholar
Bjerknes, J, Solberg, H. 1921: Meteorological conditions for the formation of rain. Geofys. Publikasjner, Norske Videnskaps-Akad. Oslo, 2, No. 3, 160.Google Scholar
Bjerknes, V, Hesselberg, Th, Devik, O. 1911: Dynamic Meteorology and Hydrography: Part II – Kinematics. Carnegie Institution of Washington.Google Scholar
Bluestein, HB. 1993: Synoptic-Dynamic Meteorology in Midlatitudes. Volume II. Oxford University Press.Google Scholar
Blumen, W, Wu, R. 1982: An analysis of Ekman boundary layer dynamics incorporating the geostrophic momentum approximation. J. Atmos. Sci., 39, 17741782.Google Scholar
Bretherton, FP. 1966: Critical layer instability in baroclinic flows. Q. J. R. Meteorol. Soc., 92, 325334.CrossRefGoogle Scholar
Burger, AP. 1962: On the non-existence of critical wave lengths in a continuous baroclinic stability problem. J. Atmos. Sci., 19, 3138.2.0.CO;2>CrossRefGoogle Scholar
Buzzi, A. 2017: Comment on “Dynamics of Upper-Level Frontogenesis in Baroclinic Waves.” J. Atmos. Sci., 73, 309312.Google Scholar
Buzzi, A, Nanni, A, Tagliazucca, M. 1977: Mid-tropospheric frontal zones: Numerical experiments with an isentropic coordinate primitive equation model. Arch. Meteor. Geophys. Bioklim., A26, 155178.Google Scholar
Buzzi, A, Trevisan, A, Salustri, S. 1981: Internal frontogenesis: A two-dimensional model in isentropic semi-geostrophic coordinates. Mon. Wea. Rev., 109, 10531060.2.0.CO;2>CrossRefGoogle Scholar
Charney, JG. 1947: The dynamics of long waves in a baroclinic westerly current. J. Meteor., 4, 135163.2.0.CO;2>CrossRefGoogle Scholar
Charney, JG, Eliassen, A. 1964: On the growth of the hurricane depression. J. Atmos. Sci., 21, 6875.Google Scholar
Charney, JG. 1975: Jacob Bjerknes : An appreciation. In Selected Papers of Jacob Aall Bonneview Bjerknes. Wurtele, M., ed. Western Periodical, 1113.Google Scholar
Charney, JG, Stern, M. 1962: On the stability of internal baroclinic jets in a rotating atmosphere. J. Atmos. Sci., 19, 159172.2.0.CO;2>CrossRefGoogle Scholar
Chen, GTJ. 1996: The large-scale features associated with the Meiyu over South China and Taiwan. In From Atmospheric Circulation to Global Change. The Institute of Atmospheric Physics, Chinese Academy of Sciences, ed. China Meteorological Press, 289313.Google Scholar
Cooper, IM, Thorpe, AJ, Bishop, CH. 1992: The role of diffusive effects on potential vorticity in fronts. Q.J.R. Meteorol. Soc., 118, 629647.Google Scholar
Cullen, MJP. 2006: A Mathematical Theory of Large-Scale Atmosphere/Ocean Flow. Imperial College Press.Google Scholar
Cullen, MJP, Purser, RJ. 1984: An extended Lagrangian theory of semi-geostrophic frontogenesis. J. Atmos. Sci., 41, 14771497.Google Scholar
Danielson, EF. 1968: Stratospheric-tropospheric exchange based on radioactivity, ozone and potential vorticity, J. Atm. Sci., 25, 502518.Google Scholar
Davies, HC, Muller, JC. 1988: Detailed description of deformation-induced semi-geostrophic frontogenesis. Q. J. R. Meteorol. Soc., 114, 12011219.Google Scholar
Davies-Jones, R. 1991: The frontgenetical forcing of secondary circulation. Part I: The duality and generalization of the Q vector. J. Atmos. Sci., 48, 497509.Google Scholar
Doswell, CA III, Haugland, MJ. 2007: A comparison of two cold fronts: Effects of the planetary boundary layer on the mesoscale. Electron. J. Severe Storms Meteorol., 2, 112.Google Scholar
Eady, ET. 1949: Long waves and cyclone waves. Tellus, 1, 3352.Google Scholar
Eliassen, A. 1948: The quasi-static equations of motion. Geofys. Publ., Oslo, 17, No. 3, 144.Google Scholar
Eliassen, A. 1962: On the vertical circulation in frontal zones. Geofys. Publ., Oslo, 24, No. 4, 147160.Google Scholar
Emanuel, KA. 1994: Atmospheric Convection. Oxford University Press.Google Scholar
Emanuel, KA, Fantini, M, Thorpe, AJ. 1987: Baroclinic instability in an environment of small stability to slantwise moist convection. Part I: Two-dimensional models. J. Atmos. Sci., 44, 15591573.Google Scholar
Faller, AJ. 1956: A demonstration of fronts and frontal waves in atmospheric models. J. Meteor., 13, 14.Google Scholar
Fedorov, KN. 1984: Characteristics Features of Oceanic Fronts. Springer-Verlag.Google Scholar
Fultz, D. 1952: On the possibility of experimental models of the polar-front wave. J. Meteor., 9, 379384.Google Scholar
Gill, AE. 1982: Atmosphere–Ocean Dynamics. Academic Press.Google Scholar
Green, JSA. 1960: A problem in baroclinic instability. Q. J. R. Meteorol. Soc., 86, 237251.Google Scholar
Green, J. 2004: Atmospheric Dynamics. Cambridge University Press.Google Scholar
Hakim, GJ, Keyser, D. 2001: Canonical frontal circulation patterns in terms of Green’s functions for the Sawyer–Eliassen equation. Q. J. R. Meteorol. Soc., 127, 17951814.Google Scholar
Haltiner, GJ, Martin, FL. 1957: Dynamical and Physical Meteorology. McGraw-Hill.Google Scholar
Heckley, WA, Hoskins, BJ. 1982: Baroclinic waves and frontogenesis in a non-uniform potential vorticity semi-geostrophic model. J. Atmos. Sci., 39, 19992016.Google Scholar
Hines, KM, Mechoso, CR. 1991: Frontogenesis processes in the middle and upper troposphere. Mon. Wea. Rev., 119, 12251241.Google Scholar
Holton, J. 1992: Introduction to Dynamic Meteorology. Academic Press.Google Scholar
Hong, SY, Noh, Y, Dudhia, J. 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 23182341.Google Scholar
Hoskins, BJ. 1972: Non-Boussinesq effects and further development in a model of upper level frontogenesis. Quart. J. R. Met. Soc., 98, 532541.Google Scholar
Hoskins, BJ. 1975: The geostrophic momentum approximation and the semi-geostrophic equations. J. Atmos. Sci., 32, 233242.Google Scholar
Hoskins, BJ. 1976: Baroclinic waves and frontogenesis. Part I. Introduction and Eady waves. Q. J. R. Meteorol. Soc., 102, 103122.Google Scholar
Hoskins, BJ, Bretherton, FP. 1972: Atmospheric frontogenesis models: Mathematical formulation and solutions. J. Atmos. Sci., 29, 1137.Google Scholar
Hoskins, BJ, Draghici, I. 1977: The forcing of ageostrophic motion according to the semi-geostrophic equations and in an isentropic coordinate model. J. Atmos. Sci., 34, 18591867.Google Scholar
Hoskins, BJ, Heckley, WA. 1981: Cold and warm fronts in baroclinic waves. Q. J. R. Meteorol. Soc., 107, 7990.Google Scholar
Hoskins, BJ, James, IN. 2014: Fluid Dynamics of the Midlatitude Atmosphere. Wiley – Blackwell.Google Scholar
Hoskins, BJ, West, NV. 1979: Baroclinic waves and frontogenesis. Part II: Uniform potential vorticity jet flows - cold and warm fronts. J. Atmos. Sci., 36, 16631680.Google Scholar
Jewell, R. 1994: The integrity at work in the Bergen School of meteorology. In The Life Cycles of Extratropical Cyclones. Volume I, Gronas, S., Shapiro, MA, ed. American Meteorological Society, 3237.Google Scholar
Keyser, D, Pecnick, M. 1985a: A two-dimensional equation model of frontogenesis forced by confluence and horizontal shear. J. Atmos. Sci., 42, 12591282.Google Scholar
Keyser, D, Pecnick, M. 1985b: Diagnosis of ageostrophic circulations in a two-dimensional primitive equation model of frontogenesis. J. Atmos. Sci., 42, 12831305.Google Scholar
Keyser, D, Pecnick, M. 1987: The effect of along-front temperature variation in a two-dimensional primitive equation model of surface frontogenesis. J. Atmos. Sci., 44, 577604.Google Scholar
Keyser, D, Shapiro, MA. 1986: A review of the structure and dynamics of upper-level frontal zones. Mon. Wea. Rev., 114, 452499.Google Scholar
Keyser, D, Schimdt, D, Duffy, G. 1989: A technique for representing three-dimensional vertical circulations in baroclinic disturbances. Mon Wea. Rev., 117, 24632494.Google Scholar
Kuo, HL. 1973: Dynamics of quasi-geostrophic flows and instability theory. Adv. Appl. Mech., 13, 247330.Google Scholar
Lackmann, G. 2011: Midlatitude Synoptic Meteorology: Dynamics, Analysis & Forecasting. American Meteorology Society.Google Scholar
Lapeyre, G, Held, IM. 2004: The role of moisture in the dynamics and energetics of turbulent baroclinic eddies. J. Atmos. Sci., 61, 16931710.Google Scholar
Lin, YL. 2008: Mesoscale Dynamics. Cambridge University Press.Google Scholar
Lindzen, RS. 1990: Dynamics in Atmospheric Physics. Cambridge University Press.Google Scholar
Magnusdottir, G, Schubert, WH. 1990: On the generalization of semigeostrophic theory to the β-plane. J. Atmos. Sci., 47, 17141720.Google Scholar
Magnusdottir, G, Schubert, WH. 1991: Semigeostrophic theory on the hemisphere. J. Atmos. Sci., 48, 14491456.Google Scholar
Mak, M. 1994: Cyclogenesis in a conditionally unstable moist baroclinic atmosphere. Tellus, 46A, 1433.Google Scholar
Mak, M. 2011: Atmospheric Dynamics. Cambridge University Press.Google Scholar
Mak, M. 2014: Life cycle of fronts: Intrinsic dynamics in a 3D semi-geostrophic model. Q. J. R. Meteorol. Soc., 140, 22112222.Google Scholar
Mak, M, Bannon, PB. 1984: Frontogenesis in a moist semi-geostrophic model. J. Atmos. Sci., 41, 34853500.Google Scholar
Mak, M, Lu, Y, Deng, Y. 2016: Dynamics of upper-level frontogenesis in baroclinic waves. J. Atmos. Sci., 73, 26992714.Google Scholar
Mak, M, Lu, Y, Deng, Y. 2017: Comments on “dynamics of upper-level frontogenesis in baroclinic waves.” J. Atmos. Sci., 74, 313315.Google Scholar
Mak, M, Lu, Y, Deng, Y. 2018: Two issues concerning surface frontogenesis. J. Atmos. Sci., (in press).Google Scholar
Markowski, P, Richardson, Y. 2010: Mesoscale Meteorology in Midlatitudes. Wiley-Blackwell.Google Scholar
Marshall, J, Plumb, RA. 2007: Atmosphere, Ocean and Climate Dynamics. Elsevier Academic Press.Google Scholar
Martin, JE. 2006: Mid-latitude Atmospheric Dynamics: A First Course. Wiley and Sons.Google Scholar
Martin, JE, Locatelli, JD, Hobbs, PV. 1993: Organization and structure of clouds and precipitation on the Mid-Atlantic Coast of the United States. Part I: The synoptic evolution of a deep tropospheric frontal circulation and attendant cyclogenesis. Month. Wea. Rev., 121, 12991316.Google Scholar
McWilliams, JC. 2006: Fundamentals of Geophysical Fluid Dynamics. Cambridge University Press.Google Scholar
Montgomery, MT, Farrell, BF. 1990: Dry surface frontogenesis arising from interior potential vorticity perturbations in a semigeostrophic model. J. Atmos. Sci., 47, 28372852.Google Scholar
Montgomery, MT, Farrell, BF. 1991: Moist surface frontogenesis associated with interior potential vorticity anomalies in a semigeostrophic model. J. Atmos. Sci., 48, 343367.Google Scholar
Morgan, MC. 1989: Optimal excitation of baroclinic waves. J. Atmos. Sci., 46, 163172.Google Scholar
Mudrick, SE. 1974: A numerical study of frontogenesis. J. Atmos. Sci., 31, 869892.Google Scholar
Nakamura, N. 1994: Nonlinear equilibration of two-dimensional Eady waves: simulations with viscous geostrophic momentum equations. J. Atmos. Sci., 51, 10231035.Google Scholar
Nakamura, N, Held, IM. 1989: Nonlinear equilibration of two-dimensional Eady waves. J. Atmos. Sci., 46, 30553064.Google Scholar
Newton, CW. 1954: Frontogenesis and frontolysis as a three-dimensional process. J. Meteor., 11, 449461.Google Scholar
Newton, CW. 1958: Variations in frontal structure of upper level troughs. Geophysica, 6, 357375.Google Scholar
Newton, CW, Trevisan, A. 1984: Clinogenesis and frontogenesis in set-stream waves. Part II: Channel model numerical experiments. J. Atmos. Sci., 41, 27352755.Google Scholar
Nieman, PJ, Martin Ralph, D, Shapiro, MA. 1998: An observational study of fronts and frontal mergers over the continental United States. Mon. Wea. Rev., 126, 25212553.Google Scholar
Ninomiya, K. 1984: Characteristics of Baiu front as a predominant subtropical front in the summer northern hemisphere. J. Meteor. Soc. Japan, 62, 880893.Google Scholar
O’Gorman, PA. 2011: The effective static stability experienced by eddies in a moist atmosphere. J. Atmos. Sci., 68, 7590.Google Scholar
Orlanski, I. 1968: Instability of frontal zones. J. Atmos. Sci., 25, 178200.Google Scholar
Orlanski, I, Ross, BB. 1977: The circulation associated with a cold front. Part I: Dry case. J. Atmos. Sci., 34, 16191633.Google Scholar
Palmen, E, Newton, CW. 1969: Atmospheric Circulation Systems. Academic Press.Google Scholar
Pedlosky, J. 1987: Geophysical Fluid Dynamics, 2nd edn. Springer-Verlag.Google Scholar
Pettersen, S. 1956: Weather Analysis and Forecasting. Volume I, 2nd edn. McGraw-Hill.Google Scholar
Phillips, NA. 1956: The general circulation of the atmosphere: A numerical experiment. Quart. J. Roy. Meteor. Soc., 82, 123164.CrossRefGoogle Scholar
Plougonven, R, Snyder, C. 2007: Inertia-gravity waves spontaneously generated by jets and fronts. Part I: Different baroclinic life cycles. J. Atmos. Sci., 64, 25022520.Google Scholar
Reed, RJ. 1955: A study of a characteristic type of upper-level frontogenesis. J. Meteor., 12, 226237.Google Scholar
Reed, RJ, Danielson, EF. 1959: Fronts in the vicinity of the tropopause. Arch. Meteor. Geophys. Bioklim., A11, 117.Google Scholar
Reed, RJ, Sander, F. 1953: An investigation of the development of a mid-tropospheric frontal zone and its associated vorticity field. J. Meteor., 10, 338349.Google Scholar
Richardson, LF. 1922: Weather Prediction by Numerical Process. Cambridge University Press, reprinted by Dover in 1965.Google Scholar
Rotunno, R, Bao, JW. 1996: A case study of cyclogenesis using a model hierarchy. Mon. Wea. Rev., 124, 10511066.Google Scholar
Rotunno, R, Skamarock, WC, Snyder, C. 1994: An analysis of frontogenesis in numerical simulations of baroclinic waves. J. Atmos. Sci., 23, 33733398.Google Scholar
Salmon, R. 1985: New equations for nearly geostrophic flow. J. Fluid Mech., 153, 461477.Google Scholar
Salmon, R. 1998: Lectures on Geophysical Fluid Dynamics. Oxford University Press.Google Scholar
Sanders, F. 1955: An investigation of the structure and dynamics of an intense surface frontal zone. J. Meteor., 12, 542552.Google Scholar
Sawyer, JS. 1956: The vertical circulation at meteorological fronts and its relation to frontogenesis. Proc. R. Soc. London, Ser. A., 234, 346362.Google Scholar
Schar, C, Wernli, H. 1993: Structure and evolution of an isolated semi-geostrophic cyclone. Quart. J. Roy. Meteorol.Soc., 119, 5790.Google Scholar
Schubert, WH. 1985: A note on semi-geostrophic theory. J. Atmos. Sci., 42, 17701772.2.0.CO;2>CrossRefGoogle Scholar
Shapiro, MA. 1975: Simulation of upper level frontogenesis with a 20-level isentropic coordinate primitive equation model. Mon. Wea. Rev., 103, 591604.Google Scholar
Shapiro, MA. 1978: Further evidence of the mesoscale and turbulent structure of upper level jet stream-frontal zone system. Mon. Wea. Rev., 106, 11001111.Google Scholar
Shapiro, MA. 1981: Frontogenesis and geostrophically forced secondary circulations in the vicinity of jet stream-frontal zone system. J. Atmos. Sci., 38, 954973.Google Scholar
Shapiro, MA. 1982: Mesoscale Weather Systems of the Central United States. CIRES/NOAA Technical Report. University of Colorado.Google Scholar
Shapiro, MA, Keyser, D. 1990: Fronts, jet streams, and the tropopause. Amer. Meteor. Soc., Extratropical Cyclones: The Erik Palmen Memorial Volume, 167191.Google Scholar
Shapiro, MA, Hample, T, van de Kamp, DW. 1984: Radar wind profiler observations fronts and jet streams. Mon. Wea. Rev., 112, 12631266.Google Scholar
Shutts, GJ. 1989: Planetary semi-geostrophic equations derived from Hamilton’s principle. J. Fluid Mech., 208, 545573.Google Scholar
Sinclair, VA, Keyser, D. 2015: Force balances and dynamical regimes of numerically simulated cold fronts within the boundary layer. Q. J. R. Meteorol. Soc., 141, 21482164.Google Scholar
Skamarock, WC, Klemp, J, Dudhia, J, et al. 2008: A Description of the Advanced Research WRF Version 1. NCAR Technical Note 4751STR. National Center for Atmospheric Research.Google Scholar
Snyder, C, Skamarock, WC, Rotunno, R. 1991: A comparison of primitive-equation and semigeostrophic simulations of baroclinic waves. J. Atmos. Sci., 48, 21792194.Google Scholar
Snyder, C, Skamarock, WC, Rotunno, R. 1993: Frontal dynamics near and following frontal collapse. J. Atmos. Sci., 50, 31943211.Google Scholar
Tan, Z, Zhang, F, Rotunno, R, Snyder, C. 2004: Mesoscale predictability of moist baroclinic waves: Experiments with parameterized convection. J. Atmos. Sci., 61, 17941804.Google Scholar
Thorpe, AJ, Nash, CA. 1984: Convective and boundary layer parameterizations in a diagnostic model of atmospheric fronts. Q. J. R. Meteorol. Soc., 110, 443466.Google Scholar
Trapp, RJ. 2013: Mesoscale-Convective Processes in the Atmosphere. Cambridge University Press.Google Scholar
Trapp, RJ, Diffenbaugh, NS, Brooks, HW. 2007: Changes in severe thunderstorm environment frequency during the 21st century caused by anthropogenically enhanced global radiative forcing. Proc. Natl. Acad. Sci., 104, 1971919723, doi:10.1073/pnas.0705494104.Google Scholar
Trenberth, KE. 1998: Atmospheric moisture residence times and cycling: Implications for rainfall rates and climate change. Climatic Change, 39, 667694.Google Scholar
Uccellini, LW, Johnson, DR. 1979: The coupling of upper and lower tropospheric jet streaks and implications for the development of severe convective storms. Mon. Wea. Rev., 107, 682703.Google Scholar
Uccellini, LW, Keyser, D, Brill, KF, Wash, CH. 1985: The Presidents’ Day cyclone of 18–19 February 1979: Influence of upstream trough amplification and associated tropopause folding on rapid cyclogenesis. Mon. Wea. Rev., 113, 962988.Google Scholar
Vallis, GK. 2006: Atmospheric and Oceanic Fluid Dynamics: Fundamentals and Large Scale Circulation. Cambridge University Press.Google Scholar
von Arx, WS, Bumpus, DF, Richardson, WS. 1955: On the fine structure of the Gulf Stream. Deep-Sea Res., 3, 4665.Google Scholar
Wei, J, Zhang, F. 2014: Mesoscale gravity waves in moist baroclinic jet-front system. J. Atmos. Sci., 71, 929952.Google Scholar
Williams, RT. 1967: Atmospheric frontogenesis: A numerical experiment. J. Atmos. Sci., 24, 627641.Google Scholar
Williams, RT. 1968: A note on quasi-geostrophic frontogenesis. J. Atmos. Sci., 25, 11571159.Google Scholar
Williams, RT, Plotkin, J. 1968: Quasi-geostrophic frontogenesis. J. Atmos. Sci., 25, 201206.Google Scholar
Yudin, MI. 1955: Invariant quantities in large-scale atmospheric processes. Tr. Glav. Geofiz. Observ., 55, 312.Google Scholar
Zhang, F. 2004: Generation of mesoscale gravity waves in the upper-tropospheric jet-front systems. J. Atmos. Sci., 61, 440457.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Bibliography
  • Mankin Mak, University of Illinois, Urbana-Champaign
  • Book: Atmospheric Frontal Dynamics
  • Online publication: 03 November 2017
  • Chapter DOI: https://doi.org/10.1017/CBO9781316459584.010
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Bibliography
  • Mankin Mak, University of Illinois, Urbana-Champaign
  • Book: Atmospheric Frontal Dynamics
  • Online publication: 03 November 2017
  • Chapter DOI: https://doi.org/10.1017/CBO9781316459584.010
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Bibliography
  • Mankin Mak, University of Illinois, Urbana-Champaign
  • Book: Atmospheric Frontal Dynamics
  • Online publication: 03 November 2017
  • Chapter DOI: https://doi.org/10.1017/CBO9781316459584.010
Available formats
×