Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-m8s7h Total loading time: 0 Render date: 2024-07-17T21:17:33.560Z Has data issue: false hasContentIssue false

11 - Opacity and radiative forces

Published online by Cambridge University Press:  05 June 2012

Anil K. Pradhan
Affiliation:
Ohio State University
Sultana N. Nahar
Affiliation:
Ohio State University
Get access

Summary

An elaborate radiative transfer treatment (Chapter 9) is necessary for stellar atmospheres through which radiation escapes the star. But that, in a manner of speaking, is only the visible ‘skin’ of the star, with the remainder of the body opaque to the observer. Radiation transport throughout most of the star is therefore fundamentally different from that through the stellar atmosphere. Since radiation is essentially trapped locally, quite different methods need to be employed to determine the opacity in the interior of the star. However, since there is net outward propagation of radiation from the interior to the surface, it must depend on the variation of temperature and pressure with radius, as in Fig. 10.5.

Perhaps nowhere else is the application of large-scale quantum mechanics to astronomy more valuable than in the computation of astrophysical opacities. Whereas the primary problem to be solved is radiation transport in stellar models, the opacities and atomic parameters needed to calculate them are applicable to a wide variety of problems. One interesting example is that of abundances of elements in stars, including the Sun. Observationally, the composition of the star is inferred from spectral measurements of the atmospheres of stars, i.e. surface abundances, because most of the interior of the star is not amenable to direct observation. However, radiative forces acting on certain elements may affect surface abundances that may be considered abnormal in some stars.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×