Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-01T21:25:31.624Z Has data issue: false hasContentIssue false

Chapter 21 - Austral amphibians – Gondwanan relicts in peril

Published online by Cambridge University Press:  05 November 2014

Jean-Marc Hero
Affiliation:
Griffith University,
J. Dale Roberts
Affiliation:
University of Western Australia
Conrad J. Hoskin
Affiliation:
James Cook University
Katrin Lowe
Affiliation:
Griffith University
Edward J. Narayan
Affiliation:
Griffith University
Phillip J. Bishop
Affiliation:
University of Otago
Adam Stow
Affiliation:
Macquarie University, Sydney
Norman Maclean
Affiliation:
University of Southampton
Gregory I. Holwell
Affiliation:
University of Auckland
Get access

Summary

Summary

Over 30% of Australasian amphibians are currently threatened with extinction. While habitat loss, introduced species and disease have been identified as major threats, the impacts of climate change are understudied. Threatened frogs fall into distinct biogeographical and ecological groupings that can be linked to specific threats (e.g. mountain- top endemics and climate change; stream-dwelling wet forest frogs and disease; and small island endemics and feral pests). The impacts of gradual climate change over millions of years has isolated specific species into climatic refugia (resulting in restricted geographic ranges), which combined with the ecological traits of these species (e.g. small clutch-size) dramatically increases extinction risk. Australasian frogs demonstrate intrinsic links between biogeographic history, species ecology and conservation status. The solutions to most threats are clear at a broad level, stop land clearing, reduce CO2 emissions and control feral animals; however, declines linked to the disease chytridiomycosis are not easily resolved. Chytridiomycosis is not a universal threat and understanding the causes of variation in impact is critically important. While the threats of land clearing, disease and introduced species are regional and/or species specific, the impacts of climate change must be examined carefully as all species are likely to affected. Here we cover these issues for Australasian frogs, presenting regional examples that highlight threats and avenues for future research and management.

Phylogenetic and biogeographic history

Over 30% of amphibian species are threatened with extinction globally making them the most threatened of the vertebrate groups (Wake and Vredenburg 2008). There are multiple threats to Austral frogs: e.g. disease – critically chytrid fungus for species with more aquatic lifestyles; small clutch size and limited range associated with higher decline or extinction risk; introduced species (Gambusia and trout in Australia, Gillespie and Hero, 1999; Murray et al., 2011; Rattus in New Zealand, Thurley and Bell, 1994; and mongoose in the Pacific Islands, Pernetta and Watling, 1979) and less specific threats, identified in both Austral and global analyses of amphibian declines: e.g. climate change (Hero et al., 2006, 2008; Hof et al., 2011) and habitat loss and fragmentation (Hero et al., 2008). These factors pose serious threats in many other regions of the world (Stuart, 2008) and their impacts vary among species and genera, depending on their current distribution and habitat use (Table 21.1).

Type
Chapter
Information
Austral Ark
The State of Wildlife in Australia and New Zealand
, pp. 440 - 466
Publisher: Cambridge University Press
Print publication year: 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allison, A. (1996). Zoogeography of amphibians and reptiles of New Guinea and the Pacific region. In: The Origin and Evolution of Pacific Island Biotas, New Guinea to Eastern Polynesia, (Eds.) Keast, A. and Miller, S. E.SPB Academic Publishing, Amsterdam.Google Scholar
Allison, A. (2009). Patterns of geographical distribution: animals. In: Oceans and Aquatic Ecosystems, (Ed.) Wolanskiay, E., Vol. 2, pp. 358. Encyclopedia of Life Support Systems (EOLSS).
Bamford, M. J., Roberts, J. D. (2003). The impact of fire on frogs and reptiles in south-western Australia. In: Fire in Ecosystems of South-West Western Australia: Impacts and Management, (Eds.) Abbott, I. and Burrows, N.Backhuys Publishers: Leiden, The Netherlands, pp. 349–361.Google Scholar
Bell, B. D. (1994). A review of the status of New Zealand Leiopelma species (Anura: Leiopelmatidae), including a summary of demographic studies in Coromandel and on Maud Island. New Zealand Journal of Zoology, 21, 341–349.CrossRefGoogle Scholar
Bell, B. D., Carver, S., Mitchell, N. J., Pledger, S. (2004). The recent decline of a New Zealand endemic: how and why did populations of Archey’s frog Leiopelma archeyi crash over 1996–2001?Biological Conservation, 120, 189–199.CrossRefGoogle Scholar
Bell, R. C., MacKenzie, J. B., Hickerson, M. J. et al. (2012). Comparative multi-locus phylogeography confirms multiple vicariance events in co-distributed rainforest frogs. Proceedings of the Royal Society of London B, 279, 991–999.CrossRefGoogle ScholarPubMed
Berger, L., Speare, R., Daszak, P. et al. (1998). Chytridiomycosis causes amphibian mortality associated with population declines in the rainforest of Australia and Central America. Proceedings of the National Academy of Sciences, 95, 9031–9036.CrossRefGoogle Scholar
Bishop, P. J., Daglish, L. A., Haigh, A. J. M. et al. (2013). Native frog (Leiopelma species) recovery plan, 2013–2018. DOC, Threatened Species Recovery Plan (in press).
Blaustein, A. R., Gervasi, S. S., Johnson, P. T. J. et al. (2012). Ecophysiology meets conservation: understanding the role of disease in amphibian population declines. PhilosophicalTransactions of the Royal Society of London B, 367, 1596–1688.Google Scholar
Brown, R. M., Foufopoulos, J., Richards, S. J. (2006). New species of Platymantis (Amphibia; Anura; Ranidae) from New Britain and redescription of the poorly known Platymantis nexipus. Copeia, 4, 674–695.CrossRefGoogle Scholar
Burbidge, A. H., Rolfe, J. K., McKenzie, N. L., Roberts, J. D. (2004). Biogeographic patterns in small ground-dwelling vertebrates of the Western Australian wheatbelt. In: A Biodiversity Survey of the Western Australian Agricultural Zone, (eds.) Keighery, G. J., Halse, S. A., Harvey, M. S. and McKenzie, N. L., pp. 139–202. Records of the Western Australian Museum Supplement No. 67, Western Australian Museum, Kewdale, Western Australia.Google Scholar
Byrne, M., Steane, D. A.Joseph, L. et al. (2011). Decline of a biome: evolution, contraction, fragmentation, extinction and invasion of the Australian mesic zone biota. Journal of Biogeography, 38, 1635–1656.CrossRefGoogle Scholar
Coaldrake, J. E. (1961). The ecosystem of coastal lowlands (‘wallum’) of southern Queensland. CSIRO Bulletin, Melbourne, 283, 1–138.Google Scholar
Corn, P. S. (2005). Climate change and amphibians. Animal Biodiversity and Conservation, 28, 59–67.Google Scholar
Couper, P. J., Hoskin, C. J. (2008). Litho-refugia: the importance of rock landscapes for the long-term persistence of Australian rainforest fauna. Australian Zoologist, 34, 554–60.CrossRefGoogle Scholar
Cullen, L. E., Grierson, P. F. (2009). Multi-decadal scale variability in autumn-winter rainfall in south-western Australia since 1655 AD as reconstructed from tree rings of Callitris columellaris. Climate Dynamics, 33, 433–444.CrossRefGoogle Scholar
Czechura, G. V., Ingram, G. J. (1990). Taudactylus diurnus and the case of the disappearing frogs. Memoirs of the Queensland Museu, 29, 361–365.Google Scholar
EDGE website (2013). . Accessed 15 June 2013.
Edwards, D., Roberts, J. D. (2011). Genetic diversity and biogeographic history inform future conservation management strategies for the rare Sunset Frog (Spicospina flammocaerulea). Australian Journal of Zoology, 59, 63–72.CrossRefGoogle Scholar
Edwards, D., Roberts, J. D., Keogh, S. J. (2007). Impact of Plio-Pleistocene arid cycling on the population history of a southwestern Australian frog. Molecular Ecology, 16, 2782–2796.CrossRefGoogle ScholarPubMed
Farrer, R. A., Weinert, L. A., Bielby, J. et al. (2011). Multiple emergences of genetically diverse amphibian-infecting chytrids include a globalized hyper-virulent recombinant lineage. Proceedings of the National Academy of Sciences, 108, 18 732–18 736.CrossRefGoogle Scholar
Fisher, M. C., Garner, T. W. J., Walker, S. F. (2009). Global emergence of Batrachochytrium dendrobatidis and amphibian chytridiomycosis in space, time and host. Annual Review of Microbiology, 63, 291–310.CrossRefGoogle Scholar
Fouquet, A., Ficetola, G. F., Haigh, A., Gemmell, N. (2010). Using ecological niche modelling to infer past, present and future environmental suitability for Leiopelma hochstetteri, an endangered New Zealand native frog. Biological Conservation, 143, 1375–1384.CrossRefGoogle Scholar
Frost, D. R., Donnellan, S. C., Raxworthy, C. et al. (2006). The amphibian tree of life. Bulletin of the American Museum of Natural History, 297, 1–370.CrossRefGoogle Scholar
Gascon, C., Collins, J. P., Church, D. R. et al. (2013). Scaling a global plan into national strategies for amphibian conservation. Alytes, (in press).
Gillespie, G. (2001). The role of introduced trout in the decline of the spotted tree frog (Litoria spenceri) in south-eastern Australia. Biological Conservation, 100, 187–198.CrossRefGoogle Scholar
Gillespie, G., Hero, J. M. (1999). Potential impacts of introduced fish and fish translocations on Australian amphibians. In: Declines and Disappearances of Australian Frogs, Campbell, A. (ed.). Canberra: Environment Australia. Pages 131–144.Google Scholar
Griffith, S. J., Bale, C., Adam, P. (2008). Environmental correlates on coastal heath and allied vegetation. Australian Journal of Botany, 56, 512–526.CrossRefGoogle Scholar
Griffith, S. J., Bale, C., Adam, P., Wilson, R. (2003). Wallum and related vegetation on the NSW North Coast: description and phytosociological analysis. Cunninghamia, 8, 202–252.Google Scholar
Hauselberger, K. F., Alford, R. A. (2012). Prevalence of Batrachochytrium dendrobatidis infection is extremely low in direct-developing Australian microhylids. Diseases of Aquatic Organisms, 100, 191–200.CrossRefGoogle ScholarPubMed
Hazell, D., Hero, J.-M., Lindenmayer, D., Cunningham, R. (2004). A comparison of constructed and natural habitat for frog conservation in an Australian agricultural landscape. Biological Conservation, 119, 61–71.CrossRefGoogle Scholar
Hennessy, K. J., Lucas, C., Nicholls, N. et al. (2005). Climate Change Impacts on Fire-Weather in South-East Australia. Melbourne, Australia: CSIRO Marine and Atmospheric Research.Google Scholar
Hennessy, K. J., Fitzharris, B., Bates, B. C. et al. (2007). Australia and New Zealand. In: Climate Change 2007: Impacts, Adaptation and Vulnerability, (Eds.) Parry, M. L., Canziani, O. F., Palutikof, J. P. et al. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, UK: Cambridge University Press.Google Scholar
Hero, J.-M., Morrison, C. (2004). Frog declines in Australia: global implications. The Herpetological Journal, 14, 175–186.Google Scholar
Hero, J.-M., Morrison, C. (2012). Life history correlates of extinction risk in amphibians, Chapter 10. In: Amphibian Biology, Vol. 10, Conservation and Decline of Amphibians: Ecological Aspects, Effect of Humans, and Management, (Eds.) Heatwole, H. and Wilkinson, J. W.. Surrey Beatty and Sons, NSW, pp. 3567–3576.Google Scholar
Hero, J.-M., Shoo, L. (2003). Conservation of amphibians in the Old World tropics: defining unique problems associated with regional fauna, Chapter 6. In: Amphibian Conservation, (Ed.) Semlitsch, R. D.. Smithsonian Institution Press, Washington, D.C., pp. 70–84.Google Scholar
Hero, J.-M., Williams, S. E., Magnusson, W. E. (2005). Ecological traits of declining amphibians in upland areas of eastern Australia. Journal of Zoology London, 267, 221–232.CrossRefGoogle Scholar
Hero, J.-M., Morrison, C., Gillespie, G. et al. (2006). Overview of the conservation status of Australian Frogs. Pacific Conservation Biology, 12, 313–320.CrossRefGoogle Scholar
Hero, J.-M., Richards, S., Alford, R. A. et al. (2008). Amphibians of the Australasian Realm. Chapter 6, in Threatened Amphibians of the World. Lynx Ediciones, pp. 65–70.Google Scholar
Hero, J.-M., Morrison, C., Chanson, J. et al. (2012). Phylogenetic correlates of extinction risk in amphibians, Chapter 8. In: Amphibian Biology, Vol. 10, Conservation and Decline of Amphibians: Ecological Aspects, Effect of Humans, and Management, (Eds.) Heatwole, H. and Wilkinson, J. W.. Surrey Beatty and Sons, NSW, pp. 3539–3551.Google Scholar
Hines, H., Mahony, M., Mcdonald, K. (1999). An assessment of frog declines in wet subtropical Australia. In: Decline and Disappearances of Australian Frogs, (Ed.) Campbell, A.Environment Australia.Google Scholar
Hines, H. B., Meyer, E. A. (2011). The frog fauna of Bribie Island: an annotated list and comparison with other Queensland dune islands. Proceedings of the Royal Society of Queensland, 117, 261–274.Google Scholar
Hof, C., Araújo, M. B., Jetz, W., Rahbek, K. (2011). Additive threats from pathogens, climate and land-use change for global amphibian diversity. Nature, 480, 516–519.CrossRefGoogle ScholarPubMed
Hoffmann, M., Hilton-Taylor, C., Angulo, A. et al. (2010). The impact of conservation on the status of the world’s vertebrates. Science, 330, 1503–1509.CrossRefGoogle ScholarPubMed
Hollis, G. J. (2004). Ecology and Conservation Biology of the Baw Baw frog Philoria frosti (Anura: Myobatrachidae): Distribution, Abundance, Autoecology and Demography. PhD Thesis, Department of Zoology, University of Melbourne.
Hoskin, C. J. (2004). Australian microhylid frogs (Cophixalus and Austrochaperina): phylogeny, taxonomy, calls, distributions and breeding biology. Australian Journal of Zoology, 52, 237–269.CrossRefGoogle Scholar
Hoskin, C. J. (2007). Description, biology and conservation of a new species of Australian tree frog (Amphibia: Anura: Hylidae: Litoria) and an assessment of the remaining populations of Litoria genimaculata Horst, 1883: systematic and conservation implications of an unusual speciation event. Biological Journal of the Linnean Society, 91, 549–563.CrossRefGoogle Scholar
Hoskin, C. J. (2008). A key to the microhylid frogs of Australia, and new distributional data. Memoirs of the Queensland Museum, 53, 233–247.Google Scholar
Hoskin, C. J. (2012). Two new frog species (Microhylidae: Cophixalus) from the Australian Wet Tropics region, and redescription of Cophixalus ornatus. Zootaxa, 3271, 1–16.Google Scholar
Hoskin, C. J., Aland, K. (2011). Two new frog species (Microhylidae: Cophixalus) from boulder habitats on Cape York Peninsula, north-east Australia. Zootaxa, 3027, 39–51.Google Scholar
Hoskin, C. J., Higgie, M. (2005). Minimum calling altitude of Cophixalus frogs on Thornton Peak, northeastern Queensland. Memoirs of the Queensland Museum, 51, 572.Google Scholar
Hoskin, C. J., Hero, J.-M. (2008). Rainforest Frogs of the Wet Tropics, North-East Australia. Griffith University, Gold Coast, 96 pages.Google Scholar
Ingram, G. J., Corben, C. J. (1975). The frog fauna of North Stradbroke Island, with comments on the ‘acid’ frogs of the wallum. Proceedings of the Royal Society of Queensland, 86, 49–54.Google Scholar
Ingram, G. J., Mcdonald, K. R. (1993). An update on the declines of Queensland’s frogs. In: Herpetology in Australia: A Diverse Discipline, (Eds.) Lunney, D. and Ayers, D.Mosman, NSW: Royal Zoological Society of New South Wales.Google Scholar
IUCN (2012). IUCN Red List of Threatened Species. Version 2012.2. . Downloaded on 12 June 2013.
Janicke, J., Roberts, J. D. (2010). Litoria cyclorhyncha (Spotted Thighed Frog). Saline water. Herpetological Review, 41, 199–200.Google Scholar
Kikkawa, J., Ingram, G. J., Dwyer, P. D. (1979). The vertebrate fauna of Australian heathlands: an evolutionary perspective. In: Ecosystems of the World 9A. Heathlands and Related Shrublands, (ed.) Specht, R. L.Amsterdam: Elsevier Scientific Publishing Company.Google Scholar
Kilpatrick, A. M., Briggs, C. J., Daszak, P. (2010). The ecology and impact of chytridiomycosis: an emerging disease of amphibians. Trends in Ecology and Evolution, 25, 109–118.CrossRefGoogle ScholarPubMed
Knowles, R., Mahony, M.Armstrong, J. et al. (2004). Systematics of Sphagnum Frogs of the genus Philoria (Anura: Myobatrachidae) in eastern Australia, with the description of two new species. Records of the Australian Museum, 56, 57–74.CrossRefGoogle Scholar
Komak, S., Crossland, M. R. (2000). An assessment of the introduced mosquitofish (Gambusia affinis holbrooki) as a predator of eggs, hatchlings and tadpoles of native and non-native anurans. Wildlife Research, 27, 185–189.CrossRefGoogle Scholar
Kriger, K. M., Hero, J.-M. (2006). Survivorship in wild frogs infected with chytridiomycosis. EcoHealth, 3, 171–177.CrossRefGoogle Scholar
Kriger, K. M., Hero, J.-M. (2007a). The chytrid fungus Batrachochytrium dendrobatidis is non-randomly distributed across amphibian breeding habitats. Diversity and Distributions, 13, 781–788.CrossRefGoogle Scholar
Kriger, K. M., Hero, J.-M. (2007b). Large-scale seasonal fluctuations in the prevalence and severity of chytridiomycosis. Journal of Zoology, London, 271, 352–359.Google Scholar
Kriger, K. M., Hero, J.-M. (2008). Altitudinal distribution of chytrid (Batrachochytrium dendrobatidis) infection in 2 subtropical Australian frogs. Austral Ecology, 33, 1022–1032.CrossRefGoogle Scholar
Kriger, K. M., Pereoglou, F., Hero, J.-M. (2007). Latitudinal variation in the prevalence and severity of chytrid (Batrachochytrium dendrobatidis) infection in Eastern Australia. Conservation Biology, 21, 1280–1290.CrossRefGoogle Scholar
Kuruyawa, J., Osborne, T., Thomas, N. et al. (2004). Distribution, abundance and conservation status of the Fijian Ground Frog (Platymantis vitianus). Unpublished Technical Report for the BP Conservation Programme, 16 pages.
Lewis, B. D., Goldingay, R. L. (2005). Population monitoring of the vulnerable wallum sedge frog (Litoria olongburensis) in north-eastern New South Wales. Australian Journal of Zoology, 53, 185–194.CrossRefGoogle Scholar
Li, Y., Coheb, J. M., Rohr, J. R. (2013). Review and synthesis of the effects of climate change on amphibians. Integrative Zoology, 8, 145–161.CrossRefGoogle ScholarPubMed
Liu, X., Rohr, J. R., Li, Y. (2013). Climate, vegetation, introduced hosts and trade shape a global wildlife pandemic. Proceedings of the Royal Society of London B, 280, 20122506.Google ScholarPubMed
Lowe, K., Castley, J. G., Hero, J.-M. (2013). Acid frogs can stand the heat: amphibian resilience to wildfire in coastal wetlands of eastern Australia. International Journal of Wildland Fire. .CrossRefGoogle Scholar
MacNally, R., Horrocks, G., Lada, H. et al. (2009). Distribution of anuran amphibians in massively altered landscapes in south-eastern Australia: effects of climate change in an aridifying region. Global Ecology and Biogeography, 18, 575–585.CrossRefGoogle Scholar
MacNally, R., Nerenberg, S., Thomson, J. R., Lada, H., Clarke, R. H. (2013). Do frogs bounce, and if so, by how much? Responses to the ‘Big Wet’ following the ‘Big Dry’ in south-eastern Australia. Global Ecology and Biogeography available on-line, .Google Scholar
Maxson, L. R. (1992). Tempo and pattern in anuran speciation and phylogeny: an albumin perspective. Herpetology: Current Research on the Biology of Amphibians and Reptiles, pp. 41–57.Google Scholar
McKinney, M. L., Lockwood, J. L. (1999). Biotic homogenization: a few winners replacing many losers in the next mass extinction. Trends in Ecology and Evolution, 14, 450–453.CrossRefGoogle ScholarPubMed
Mendelson, J. R., Lips, K. R.Gagliardo, R. W. et al. (2006). Biodiversity – confronting amphibian declines and extinctions. Science, 313, 5783.CrossRefGoogle ScholarPubMed
Meyer, E., Hero, J. M., Shoo, L., Lewis, B. (2006). National Recovery Plan for the Wallum Sedgefrog and other Wallum-dependent Frog Species. Report to Department of the Environment and Water Resources, Canberra: Queensland Parks and Wildlife Service, Brisbane.
Morgan, M., Keogh, S., Roberts, J. D. (2007). Molecular phylogenetic dating supports an ancient endemic speciation model in Australia’s biodiversity hotspot. Molecular Phylogenetics and Evolution, 44, 371–385.CrossRefGoogle ScholarPubMed
Moritz, C., Agudo, R. (2013). The future of species under climate change: resilience or decline?Science, 341, 504–508.CrossRefGoogle ScholarPubMed
Morrison, C. (2003). A Field Guide to the Herpetofauna of Fiji. Institute of Applied Sciences, University of the South Pacific.Google Scholar
Morrison, C., Hero, J.-M. (2012). Geographic correlates of extinction risk in amphibians, Chapter 9. In Amphibian Biology, Vol. 10, Conservation and Decline of Amphibians: Ecological Aspects, Effect of Humans, and Management, (Eds.) Heatwole, H. and Wilkinson, J. W.. Surrey Beatty and Sons, NSW, pp. 3552–3556.Google Scholar
Murray, K. A., Rosauer, D., McCallum, H., Skerrat, L. F. (2011). Integrating species traits with extrinsic threats: closing the gap between predicting and preventing species declines. Proceedings of the Royal Society of London, B, 278, 1515–1523.CrossRefGoogle ScholarPubMed
Murray, K. A., Skerratt, L. F., Garland, S., Kriticos, D., McCallum, H. (2013). Whether the weather drives patterns of endemic amphibian chytridiomycosis: a pathogen proliferation approach. PLoS ONE, 8, e61061.CrossRefGoogle ScholarPubMed
Muths, E., Hero, J.-M. (2010). Amphibian declines: promising directions in understanding the role of disease. Animal Conservation, 13, 33–35.CrossRefGoogle Scholar
Narayan, E., Hero, J.-M., Christi, K., Morley, C. (2011). Early developmental biology of Platymantis vitiana including supportive evidence of structural specialization unique to the ceratobatrachidae. Journal of Zoology, London, 284, 68–75.CrossRefGoogle Scholar
Narayan, E., Cockrem, J. F., Hero, J.-M. (2013). Sight of a predator induces a corticosterone stress response and generates fear in an amphibian. PLoS One, 8, e73564.CrossRefGoogle Scholar
Newman, D. (1996). Native Frog (Leiopelma spp.) Recovery Plan. Threatened Species Recovery Plan No. 18, Department of Conservation, Wellington. 35 p.Google Scholar
Ohmer, M. E., Herbert, S. M., Speare, R., Bishop, P. J. (2013). Experimental exposure indicates the amphibian chytrid pathogen poses low risk to New Zealand’s threatened endemic frogs. Animal Conservation, 16, 422–429.CrossRefGoogle Scholar
Oza, A. U., Lovett, K. E., Williams, S. E., Moritz, C. (2012). Recent speciation and limited phylogeographic structure in Mixophyes frogs from the Australian Wet Tropics. Molecular Phylogenetics and Evolution, 62, 407–413.CrossRefGoogle ScholarPubMed
Parmesan, C., Singer, M. C. (2008). Amphibian extinctions: disease not the whole story. Proceedings of the National Academy of Sciences, 105, 17 436–17 441.Google Scholar
Parris, K. M. (2006). Urban amphibian assemblages as metacommunities. Journal of Animal Ecology, 75, 757–764.CrossRefGoogle ScholarPubMed
Parris, K. M., Lindenmayer, D. B. (2004). Evidence that creation of a Pinus radiata plantation in south-eastern Australia has reduced habitat for frogs. Acta Oecologica-International Journal of Ecology, 25, 93–101.CrossRefGoogle Scholar
Pernetta, J. C., Watling, D. (1979). The introduced and native terrestrial vertebrates of Fiji. Pacific Science, 32, 223–244.Google Scholar
Pounds, J. A., Bustamante, M. R., Coloma, L. A. et al. (2006). Widespread amphibian extinctions from epidemic disease driven by global warming. Nature, 439, 161–167.CrossRefGoogle ScholarPubMed
Puschendorf, R., Carnaval, A. C., VanDerWal, J. et al. (2009). Distribution models for the amphibian Chytrid Batrachochytrium dendrobatidis in Costa Rica: proposing climatic refuges as a conservation tool. Diversity and Distributions, 15, 401–408.CrossRefGoogle Scholar
Puschendorf, R., Hoskin, C. J., Cashins, S. D. et al. (2011). Environmental refuge from disease-driven amphibian extinction. Conservation Biology, 25, 956–964.CrossRefGoogle ScholarPubMed
Pyron, R. A., Wiens, J. J. (2011). A large-scale phylogeny of Amphibia including over 2800 species, and a revised classification of extant frogs, salamanders, and caecilians. Molecular Phylogenetics and Evolution, 61, 543–583.CrossRefGoogle Scholar
Raffel, T. R., Romansic, J. M., Halstead, N. T. et al. (2013). Disease and thermal acclimation in a more variable and unpredictable climate. Nature Climate Change, 3, 146–151.CrossRefGoogle Scholar
Read, K., Keogh, J. S., Scott, I. A. W., Roberts, J. D., Doughty, P. (2001). Molecular phylogeny of the Australian frog genera Crinia and Geocrinia and allied taxa (Anura: Myobatrachidae). Molecular Phylogenetics and Evolution, 21, 294–308.CrossRefGoogle Scholar
Reading, C. J. (2007). Linking global warming to amphibian declines through its effects on female body condition and survivorship. Oecologia, 151, 125–131.CrossRefGoogle ScholarPubMed
Richards, S. J., McDonald, K. R., Alford, R. A. (1993). Declines in populations in Australia’s endemic tropical rainforest frogs. Pacific Conservation Biology, 1, 66–77.CrossRefGoogle Scholar
Riley, K., Berry, O. F., Roberts, J. D. (2013). Do global models predicting environmental suitability for the amphibian fungus, Batrachochytrium dendrobatidis, have local value to conservation managers?Journal of Applied Ecology, 50, 713–720CrossRefGoogle Scholar
Roberts, J. D. (1993). Hybridisation between the western and northern call races of the Limnodynastes tasmaniensis complex (Anura: Myobatrachidae) on the Murray River in South Australia. Australian Journal of Zoology, 41, 101–122.CrossRefGoogle Scholar
Roberts, J. D., Conroy, S., Williams, K. (1999). Conservation status of frogs in Western Australia. In: Declines and Disappearances of Australian Frogs, (ed.) Campbell, A.. Environment Australia, Canberra, pp. 177–184.Google Scholar
Rohr, J. R., Palmer, B. D. (2013). Climate change, multiple stressors, and the decline of ectotherms. Conservation Biology, 4, 741–751.CrossRefGoogle Scholar
Rohr, J. R., Raffel, T. R. (2010). Linking global climate and temperature variability to widespread amphibian declines putatively caused by disease. Proceedings of the National Academy of Sciences, 107, 8269–8274.CrossRefGoogle Scholar
Rohr, J. R., Raffel, T. R., Romansic, J. M., McCallum, H., Hudson, P. J. (2008). Evaluating the links between climate, disease spread, and amphibian declines. Proceedings of the National Academy of Sciences, 105, 17 436–17 441.CrossRefGoogle ScholarPubMed
Rohr, J. R., Halstead, N. T., Raffel, T. R. (2011). Modelling the future distribution of the amphibian chytrid fungus: the influence of climate and human-associated factors. Journal of Applied Ecology, 48, 174–176.CrossRefGoogle Scholar
Rowley, J. L., Alford, R. A. (2013). Hot bodies protect amphibians against chytrid infection in nature. Scientific Reports, 3, 1515CrossRefGoogle ScholarPubMed
Ryan, P. (1988). Fiji’s Natural Heritage. South-Western Publishing Limited, Auckland, New Zealand, pp. 11, 113.Google Scholar
Schloegel, L., Hero, J.-M., Berger, L. et al. (2006). The decline of the sharp-snouted day frog (Taudactylus acutirostris): the first documented case of extinction by infection in a free-ranging wildlife species?Ecohealth, 3, 35–40.CrossRefGoogle Scholar
Seton, M., Müller, R. D., Zahirovic, S. et al. (2012). Global continental and ocean basin reconstructions since 200 Ma. Earth-Science Reviews, 113, 212–270.CrossRefGoogle Scholar
Shaw, S. D., Bishop, P. J., Berger, L. et al. (2010). Experimental infection of self-cured Leiopelma archeyi with the amphibian chytrid, Batrachochytrium dendrobatidis. Diseases of Aquatic Organisms, 92, 159–163.CrossRefGoogle Scholar
Shaw, S. D., Skerratt, L. F., Haigh, A. et al. (2013). The distribution and host range of Batrachochytrium dendrobatidis in New Zealand spanning surveys from 1930–2010. New Zealand Journal of Ecology (in press).
Shoo, L. P., Williams, Y. (2004). Altitudinal distribution and abundance of microhylid frogs (Cophixalus and Austrochaperina) of north-eastern Australia: baseline data for detecting biological responses to future climate change. Australian Journal of Zoology, 52, 667–676.CrossRefGoogle Scholar
Shoo, L. P., Williams, S., Hero, J.-M. (2005). Decoupling of trends in distribution area and population size of species with climate change. Global Change Biology, 11, 1469–1476.CrossRefGoogle Scholar
Shoo, L. P., Storlie, C., Williams, Y. M., Williams, S. E. (2009). Potential for mountaintop boulder fields to buffer species against extreme heat stress under climate change. International Journal of Biometeorology, 54, 475–478.CrossRefGoogle Scholar
Shoo, L. P., Olson, D. H., McMenamin, S. K. et al. (2011). Engineering a future for amphibians under climate change. Journal of Applied Ecology, 48, 487–492.CrossRefGoogle Scholar
Shuker, J. D., Hero, J. M. (2012). Perch substrate use by the threatened wallum sedge frog (Litoria olongburensis) in wetland habitats of mainland eastern Australia. Australian Journal of Zoology, 60, 219–224.CrossRefGoogle Scholar
Simpkins, C., Shuker, J. D., Lollback, G. W., Castley, J. G., Hero, J.-M. (2013). Environmental variables associated with the distribution and occupancy of habitat specialist tadpoles in naturally acidic, oligotrophic waterbodies. Austral Ecology (in press).
Skerratt, L. F., Berger, L., Speare, R., Cashins, S. et al. (2007). Spread of chytridiomycosis has caused the rapid global decline and extinction of frogs. EcoHealth, 4, 125–134.CrossRefGoogle Scholar
Smith, M. J., Schreiber, E. S. G.Scroggie, M. P. et al. (2007). Associations between anuran tadpoles and salinity in a landscape mosaic of wetlands impacted by secondary salinization. Freshwater Biology, 52, 75–84.CrossRefGoogle Scholar
Specht, R. L. (1981). Conservation: Australian heathlands. In Ecosystems of the World 9B, (Ed.) Specht, R. L. Heathlands and related shrublands: Analytical studies. Amsterdam: Elsevier.Google Scholar
Stuart, S. N. (2008). Threatened Amphibians of the World. Lynx Edicions, 758 pages.
Thomas, N., Morrison, C., Winder, L., Morley, C. (2011). Spatial distribution and habitat preferences of co-occurring vertebrate species: case study of an endangered frog and an introduced toad in Fiji. Pacific Conservation Biology, 17, 68–77.CrossRefGoogle Scholar
Thurley, T., Bell, B. D. (1994). Habitat distribution and predation on a western population of terrestrial Leiopelma (Anura: Leiopelmatidae) in the northern King Country, New Zealand. New Zealand Journal of Zoology, 27, 431–436.CrossRefGoogle Scholar
Thurley, T., Haigh, A. (2008). Hochstetter’s Frog Amphibian Chytrid Fungus Survey Report. Waikato Conservancy, Department of Conservation (unpublished).
Tucker, C. M., Cadotte, M. W. (2013). Unifying measures of biodiversity: understanding when richness and phylogenetic diversity should be congruent. Diversity and Distributions, 19, 1472–4642.CrossRefGoogle Scholar
Van Sluys, M., Hero, J.-M. (2010). How does chytrid infection vary among habitats? The case of Litoria wilcoxii (Anura, Hylidae) in SE Queensland, Australia. EcoHealth, 6, 576–583.CrossRefGoogle Scholar
Veron, G., Patou, M.-L., Simberloff, D., McLenachan, P. A., Morley, C. (2010). The Indian brown mongoose, yet another invader in Fiji. Biological Invasions, 12, 1947–1951.CrossRefGoogle Scholar
Wake, D. B., Vredenburg, V. T. (2008). Are we in the midst of the sixth mass extinction? A view from the world of amphibians. Proceedings of the National Academy of Sciences, 105, 11 466–11 473.CrossRefGoogle ScholarPubMed
Wassens, S, Walcott, A., Wilson, A., Freire, R. (2013). Frog breeding in rain-fed wetlands after a period of severe drought: implications for predicting the impacts of climate change. Hydrobiologia, 708, 69–80.CrossRefGoogle Scholar
Westgate, M. J., Driscoll, D. A., Lindenmayer, D. B. (2012). Can the intermediate disturbance hypothesis and information on species traits predict anuran responses to fire?Oikos, 121, 1516–1524.CrossRefGoogle Scholar
Williams, A. A., Karoly, D. J.Tapper, N. (2001). The sensitivity of Australian fire danger to climate change. Climatic Change, 49, 171–191.CrossRefGoogle Scholar
Williams, S. E., Bolitho, E. E., Fox, S. (2003). Climate change in Australian tropical rainforests: an impending environmental catastrophe. Proceedings of the Royal Society of London B, 270, 1887–1892.CrossRefGoogle ScholarPubMed
Williams, S. E., Shoo, L. P., Isaac, J. L. et al. (2008). Towards an integrated framework for assessing the vulnerability of species to climate change. PLoS Biology, 6, 2621–2626.CrossRefGoogle ScholarPubMed
Zippel, K., Johnson, K., Gagliardo, R. et al. (2011). The Amphibian Ark: a global community for ex situ conservation of amphibians. Herpetological Conservation and Biology, 6, 340–352.Google Scholar
Zweifel, R. G. (1985). Australian frogs of the family Microhylidae. Bulletin of the American Museum of Natural History, 182, 265–388.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×