Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-r5zm4 Total loading time: 0 Render date: 2024-07-03T05:10:20.519Z Has data issue: false hasContentIssue false

9 - Physical Cognition and Tool Use in Birds

Published online by Cambridge University Press:  22 June 2017

Carel ten Cate
Affiliation:
Universiteit Leiden
Susan D. Healy
Affiliation:
University of St Andrews, Scotland
Get access
Type
Chapter
Information
Avian Cognition , pp. 163 - 183
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Albiach-Serrano, A., Bugnyar, T. and Call, J (2012). Apes (Gorilla gorilla, Pan paniscus, P. troglodytes, Pongo abelii) versus Corvids (Corvus corax, C. corone) in a support task: The effect of pattern and functionality. Journal of Comparative Psychology, 126, 355367.CrossRefGoogle Scholar
Albiach-Serrano, A., Call, J. and Barth, J. (2010). Great apes track hidden objects after changes in the objects’ position and in subject's orientation. American Journal of Primatology, 72, 349359.Google Scholar
Alcock, J. (1972). The evolution of the use of tools by feeding animals. Evolution, 26, 464473.CrossRefGoogle ScholarPubMed
Auersperg, A. M. I., Gajdon, G. K. and Huber, L. (2009). Kea (Nestor notabilis) consider spatial relationships between objects in the support problem. Biology Letters, 5, 455458.Google Scholar
Auersperg, A. M. I, Oswald, N., Domansegg, M. and Bugnyar, T. (2015). Combinatory actions during object play in parrots. Animal Behavior and Cognition, 1(4), 470488.Google Scholar
Auersperg, A. M. I., Szabo, B. and Bugnyar, T. (2013). Object permanence in the Goffin's cockatoo (Cacatua goffini). Journal of Comparative Psychology, 128(1), 8898. DOI: 10.1037/a0033272Google Scholar
Auersperg, A. M. I., Szabo, B., von Bayern, A. M. P. and Kacelnik, A. (2012). Spontaneous innovation in tool manufacture and use in a Goffin's cockatoo. Current Biology, 22, R903R904.Google Scholar
Auersperg, A. M. I., von Bayern, A. M. P., Weber, S., et al. (2014). Social transmission of tool use and tool manufacture in Goffin cockatoos (Cacatua goffini). Proceedings of the Royal Society B, 281, 20140972.Google ScholarPubMed
Bailey, I. E., Morgan, K. V., Bertin, M., Meddle, S. L. and Healy, S. D. (2014). Physical cognition: birds learn the structural efficacy of nest material. Proceedings of the Royal Society B, 281, 20133225.Google Scholar
Barth, J. and Call, J. (2006). Tracking the displacement of objects: A series of tasks with great apes (Pan troglodytes, Pan paniscus, Gorilla gorilla, and Pongo pygmaeus) and young children (Homo sapiens). Journal of Experimental Psychology: Animal Behavior Processes, 32, 239252.Google Scholar
Beck, B. B. (1980). Animal tool behavior: the use and manufacture of tools by animals. New York, NY: Garland.Google Scholar
Beck, B. B. (1986). Tools and intelligence. In Animal intelligence: Insights into the animal mind, eds. Hoage, R. J. and Goldman, L. Washington D.C.: Smithsonian Institution Press, pp. 135147.Google Scholar
Beck, S. R., Apperly, I. A., Chappell, J. M., Guthrie, C. and Cutting, N. (2011). Making tools isn't child's play. Cognition, 119, 301306.Google Scholar
Beran, M. J. and Minahan, M. F. (2000). Monitoring spatial transpositions by bonobos (Pan paniscus) and chimpanzees (P. troglodytes). International Journal of Comparative Psychology, 13, 115.CrossRefGoogle Scholar
Bird, C. D. and Emery, N. J. (2009). Insightful problem solving and creative tool modification by captive nontool-using rooks. Proceedings of the National Academy of Sciences of the United States of America, 106, 1037010375.CrossRefGoogle ScholarPubMed
Bluff, L. A., Weir, A. A. S., Rutz, C., Wimpenny, J. H. and Kacelnik, A. (2007). Tool-related cognition in New Caledonian crows. Comparative Cognition & Behavior Reviews, 2, 12.Google Scholar
Bond, A. B., Kamil, A. C. and Balda, R. P. (2007). Serial reversal learning and the evolution of behavioral flexibility in three species of North American corvids (Gymnorhinus cyanocephalus, Nucifraga columbiana, Aphelocoma californica). Journal of Comparative Psychology, 121, 372379.CrossRefGoogle ScholarPubMed
Borgia, G., Pruett-Jones, S. G. and Pruett-Jones, M. A. (1985). The evolution of bower-building and the assessment of male quality. Zeitschrift für Tierpsychologie, 67, 225236.Google Scholar
Brzykcy, S. E. Wasserman, E. A., Nagasaka, Y. and Perez-Acevedo, S. (2014). Validating the virtual string task with the gap test. Animal Cognition, 17(6), 14271431CrossRefGoogle ScholarPubMed
Bugnyar, T., Stowe, M. and Heinrich, B. (2007). The ontogeny of caching in ravens, Corvus corax. Animal Behaviour, 74, 757767.Google Scholar
Byrne, R. W. (1997). The technical intelligence hypothesis: An additional evolutionary stimulus to intelligence. In Machiavellian Intelligence II: Extensions and Evaluations, ed. Whiten, A. Cambridge: Cambridge University Press. pp. 289311.Google Scholar
Call, J. (2003). Spatial rotations and transpositions in orangutans (Pongo pygmaeus) and chimpanzees (Pan troglodytes). Primates, 44, 347357.Google Scholar
Call, J. (2013). Three ingredients for becoming a creative tool user. In Tool use in animals: cognition and ecology, eds. Sanz, C, Call, J and Boesch, C.. Cambridge: Cambridge University Press, pp. 120.Google Scholar
Chappell, J. (2006). Avian cognition: understanding tool use. Current Biology, 16, R244R245.Google Scholar
Clutton-Brock, T. H. and Harvey, P. H. (1980). Primates, brain and ecology. Journal of Zoology, 190, 309323.Google Scholar
Collias, E. C. and Collias, N. E. (1964). The development of nest-building behaviour in a weaverbird. Auk, 81, 4252.Google Scholar
Collias, N. E. and Collias, E. C. (1984). Nest building and bird behaviour. Princeton, NJ: Princeton University Press.Google Scholar
Cutting, N., Apperly, I. A. and Beck, S. R. (2011). Why do children lack the flexibility to innovate tools? Journal of Experimental Child Psychology, 109(4), 497511.CrossRefGoogle ScholarPubMed
de Blois, S. T., Novak, M. A. and Bond, M. (1998). Object permanence in orangutans (Pongo pygmaeus) and squirrel monkeys (Saimiri sciureus). Journal of Comparative Psychology, 112, 137152.Google Scholar
Diamond, J. and Bond, A.-B. (1999). Kea, Bird of paradox: the evolution and behavior of a New Zealand Parrot. Oakland, CA: University of California Press.Google Scholar
Dücker, G. and Rensch, B. (1977). The solution of patterned string problems by birds. Behaviour, 62, 164173.CrossRefGoogle Scholar
Dumas, C. and Wilkie, D. M. (1995). Object permanence in ring doves (Streptopelia risoria). Journal of Comparative Psychology, 109, 142150.Google Scholar
Eibl-Eibesfeldt, I. (1961). Über den Werkzeuggebrauch des Spechtfinken Camarhynchus pallidus (Scalter und Salvin). Zeitschrift für Tierpsychologie, 18, 343346.CrossRefGoogle Scholar
Emery, N. J. (2013). Insight, imagination and invention: tool understanding in a non-tool-using corvid. In Tool use in animals: cognition and ecology, eds. Sanz, C., Call, J and Boesch, C.. Cambridge: Cambridge University Press, pp. 6788.Google Scholar
Emery, N. J. and Clayton, N. S. (2009). Tool use and physical cognition in birds and mammals. Current Opinion in Neurobiology, 19, 2733.Google Scholar
Frith, C. B. and Frith, D. W. (2000). Home range and associated sociobiology and ecology of male golden bowerbirds Prionodura newtoniana (Ptilonorhynchidae). Memoires of the Queensland Museum, 45, 343357.Google Scholar
Funk, M. S. (1996). Development of object permanence in the New Zealand parakeet (Cyanoramphus auriceps). Animal Learning & Behavior, 24, 375383.CrossRefGoogle Scholar
Hall, K. R. L. (1963). Tool-using performances as indicators of behavioural adaptability. Current Anthropology, 4, 479494.Google Scholar
Hansell, M. H. (1987). What's so special about using tools. New Scientist, 8 January, 5556.Google Scholar
Hansell, M. H. (2000). Bird nests and construction behaviour. Cambridge: Cambridge University Press.Google Scholar
Hansell, M. H. and Ruxton, G. D. (2008). Setting tool use within the context of animal construction behaviour. Trends in Ecology & Evolution, 23, 7378.Google Scholar
Healy, S., Walsh, P. and Hansell, M. (2008). Nest building by birds. Current Biology, 18, R271R273.Google Scholar
Heinrich, B. (1995). An experimental investigation of insight in common ravens (Corvus corax). Auk, 112, 9941003.Google Scholar
Heinrich, B. and Bugnyar, T. (2005). Testing problem solving in ravens: string-pulling to reach food. Ethology, 111, 962976.Google Scholar
Heyes, C. (2012). Simple minds: a qualified defence of associative learning. Philosophical Transactions of the Royal Society of London B, 367, 26952703.Google Scholar
Hodos, W. and Campbell, C. B. G. (1869). Scala naturae: Why there is no theory in comparative psychology. Psychological Review, 76, 337350.Google Scholar
Hoffmann, A., Rüttler, V. and Nieder, A. (2011). Ontogeny of object permanence and object tracking in the carrion crow. Corvus corone. Animal Behaviour, 82, 359367.Google Scholar
Holzhaider, J. C., Hunt, G. R., Campbell, V. M. and Gray, R. D. (2008). Do wild New Caledonian crows (Corvus moneduloides) attend to the functional properties of their tools? Animal Cognition, 11(2), 243254.Google Scholar
Hunt, G. R. (1996). Manufacture and use of hook-tools by New Caledonian crows. Nature, 379, 249251.Google Scholar
Hunt, G. R., Gray, R. D. and Taylor, A. H. (2013). Why is tool use rare in animals? In Tool use in animals, eds. Sanz, C., Call, J. and Boesch, C.. Cambridge: Cambridge University Press, 89118.Google Scholar
Jones, T. and Kamil, A. C. (1973). Tool-making and tool-using in the northern blue jay. Science, 180, 10761078.CrossRefGoogle ScholarPubMed
Kenward, B., Weir, A. A. S., Rutz, C. and Kacelnik, A. (2005). Tool manufacture by naive juvenile crows. Nature, 433, 121.Google Scholar
Krasheninnikova, A., Bräger, S. and Wanker, R. (2013). Means-end comprehension in four parrot species: explained by social complexity. Animal Cognition, 16, 755764.Google Scholar
Krasheninnikova, A. and Wanker, R. (2010). String-pulling in spectacled parrotlets (Forpus conspicillatus). Behaviour, 147, 725739.Google Scholar
Liedtke, J., Werdenich, D., Gajdon, G., Huber, L. and Wanker, R. (2010). Big brains are not enough: performance of three parrot species in the trap-tube paradigm. Animal Cognition, 14, 143149.CrossRefGoogle Scholar
Limongelli, L., Boysen, S. T. and Visalberghi, E. (1995). Comprehension of cause-effect relations in a tool-using task by chimpanzees (Pan troglodytes). Journal of Comparative Psychology, 109, 1826.CrossRefGoogle Scholar
Mendes, N. and Huber, L. (2004). Object permanence in common marmosets (Callithrix jacchus). Journal of Comparative Psychology, 118, 103112.Google Scholar
Meulman, E. J. M., Seed, A. M. and Mann, J. (2013). If at first you don't succeed. Studies of ontogeny shed light on the cognitive demands of habitual tool use. Philosophical Transactions of the Royal Society B, 368, 20130050.Google Scholar
Møller, A. P. (2006). Rapid change in nest size of a bird related to change in a secondary sexual character. Behavioral Ecology, 17, 108116.Google Scholar
Mulcahy, N. and Call, J. (2006). How great apes perform on a modified trap-tube task. Animal Cognition, 9, 193199.Google Scholar
Muth, F. and Healy, S. D. (2011). The role of adult experience in nest building in the zebra finch, Taeniopygia guttata. Animal Behaviour, 82, 185189.Google Scholar
Muth, F. and Healy, S. D. (2014). Zebra finches select nest material appropriate for a building task. Animal Behaviour, 90, 237244.Google Scholar
Parker, S. T. and Gibson, K. R. (1977). Object manipulation, tool use and sensorimotor intelligence as feeding adaptations in Cebus monkeys and great apes. Journal of Human Evolution, 6, 623641.CrossRefGoogle Scholar
Parker, S. T. and Gibson, K. R. (1979). A developmental model for the evolution of language and intelligence in early hominids. Behavioral and Brain Sciences, 2, 367407.Google Scholar
Pepperberg, I. M. (2004). Insightful string-pulling in Grey parrots (Psittacus erithacus) is affected by vocal competence. Animal Cognition, 7, 263266.Google Scholar
Pepperberg, I. M. and Funk, M. S. (1990). Object permanence in four species of psittacine birds: an African Grey parrot (Psittacus erithacus), an Illiger mini macaw (Ara maracana), a parakeet (Melopsittacus undulatus), and a cockatiel (Nymphicus hollandicus). Animal Learning & Behavior, 18, 97108.CrossRefGoogle Scholar
Pepperberg, I. M. and Kozak, F. A. (1986). Object permanence in the African gray parrot (Psittacus erithacus). Animal Learning & Behavior, 14, 322330.Google Scholar
Pepperberg, I. M., Willner, M. R. and Gravitz, L. B. (1997). Development of Piagetian object permanence in a grey parrot (Psittacus erithacus). Journal of Comparative Psychology, 111, 6375.Google Scholar
Piaget, J. (1952). The origins of intelligence in children. New York, NY: International Universities Press.Google Scholar
Pollok, B., Prior, H. and Güntürkün, O. (2000). Development of object permanence in food-storing magpies (Pica pica). Journal of Comparative Psychology, 114, 148157.Google Scholar
Povinelli, D. J. (2000). Folk Physics for Apes. Oxford, UK: Oxford University Press.Google Scholar
Regolin, L., Vallortigara, G. and Zanforlin, M. (1995). Object and spatial representations in detour problems by chicks. Animal Behaviour, 49, 195199.Google Scholar
Rutz, C., Klump, B. C., Komarczyk, L., Leighton, R., Wischnewski, S., Sugasawa, S., Morrissey, M. B., James, R., St Clair, J. J. H., Sitzer, R. and Masuda, B. M. (2016). Discovery of species-wide tool use in the Hawaiian crow. Nature, 537, 403407. doi:10.1038/nature19103Google Scholar
Rutz, C., Sugasawa, S., van der Wal, J. E. M., Klump, B. C. and St Clair, J. (2016). Tool bending in New Caledonian crows. Royal Society Open Science, 3, 8, 160439. DOI: 10.1098/rsos.160439Google Scholar
Schuck-Paim, C., Borsari, A. and Ottoni, E. (2009). Means to an end: Neotropical parrots manage to pull strings to meet their goals. Animal Cognition, 12, 287301.Google Scholar
Shumaker, R. W., Walkup, K. R. and Beck, B. (2011). Animal tool behavior: the use and manufacture of tools by animals, (revised and updated edition). Baltimore, Maryland: John's Hopkins University Press.Google Scholar
Seed, A. and Byrne, R. (2010). Animal Tool-Use. Current Biology, 20, R1032R1039.CrossRefGoogle ScholarPubMed
Seed, A. M., Call, J., Emery, N. J. and Clayton, N. S. (2009). Chimpanzees solve the trap problem when the confound of tool-use is removed. Journal of Experimental Psychology: Animal Behavior Processes, 35, 2334.Google Scholar
Seed, A. M., Tebbich, S., Emery, N. J. and Clayton, N. S. (2006). Investigating Physical Cognition in Rooks, Corvus frugilegus. Current Biology, 16, 697701.Google Scholar
Seibt, U. and Wickler, W. (2006). Individuality in problem solving: string pulling in two Carduelis species (Aves: Passeriformes). Ethology, 112, 493502.Google Scholar
Shettleworth, S. J. (1993). Where is the comparison in comparative cognition? Alternative research programs. Psychological Science, 4, 179184.Google Scholar
Shettleworth, S. J. (2009). Cognition, Evolution, and Behavior, 2nd edn. London: Oxford University Press.Google Scholar
Shettleworth, S. J. (2012). Do animals have insight, and what is insight anyway? Canadian Journal of Experimental Psychology, 66(4), 217226.Google Scholar
Silva, F. J., Page, D. M. and Silva, K. M. (2005). Methodological-conceptual problems in the study of chimpanzees' folk physics: How studies with adult humans can help. Learning & Behavior, 33, 4758.Google Scholar
Sol, D., Timmermans, S. and Lefebvre, L. (2002). Behavioural flexibility and invasion success in birds. Animal Behaviour, 63, 495502.Google Scholar
Sophian, C. (1984). Spatial transpositions and the early development of search. Developmental Psychology, 20, 2128.Google Scholar
Taylor, A. H. (2014). Corvid cognition. Wiley Interdisciplinary Reviews: Cognitive Science, 5, 361372.Google Scholar
Taylor, A. H., Hunt, G. R., Medina, F. S. and Gray, R. D. (2009). Do New Caledonian crows solve physical problems through causal reasoning? Proceedings of the Royal Society B, 276, 247254.Google Scholar
Taylor, A. H., Medina, F. S., Holzhaider, J. C., et al. (2010). An investigation into the cognition behind spontaneous string pulling in New Caledonian crows. PLoS ONE, 5, e9345.Google Scholar
Tebbich, S. and Bshary, R. (2004). Cognitive abilities related to tool use in the woodpecker finch, Cactospiza pallida. Animal Behaviour, 67, 689697.Google Scholar
Tebbich, S, Griffin, A. S., Peschl, M. F. and Sterelny, K. (2016). From mechanisms to function: an integrated framework of animal innovation. Philosophical Transactions of the Royal Society B, 371, 20150195. http://dx.doi.org/10.1098/rstb.2015.0195Google Scholar
Tebbich, S., Seed, A. M., Emery, N. J. and Clayton, N. S. (2007). Non-tool-using rooks, Corvus frugilegus, solve the trap-tube problem. Animal Cognition, 10, 225231.Google Scholar
Tebbich, S., Sterelny, K. and Teschke, I. (2010). The tale of the finch: adaptive radiation and behavioural flexibility. Philosophical Transactions of the Royal Society B, 365, 10991109.Google Scholar
Tebbich, S., Taborsky, M., Fessl, B. and Blomqvist, D. (2001). Do woodpecker finches acquire tool-use by social learning? Proceedings of the Royal Society B, 268, 21892193.CrossRefGoogle ScholarPubMed
Tebbich, S. and Teschke, I. (2012). Why do woodpecker finches use tools? In Tool use in Animals: Cognition and Ecology, eds. Sanz, C., Call, J. and Boesch, C.. Cambridge: Cambridge University Press, 134157.Google Scholar
Teschke, I., Cartmill, E., Stankewitz, S. and Tebbich, S. (2011). Sometimes tool-use is not the key: no evidence for cognitive adaptive specializations in tool-using woodpecker finches. Animal Behaviour, 82, 945956.CrossRefGoogle Scholar
Teschke, I., Wascher, C. A. F., Scriba, M. F., et al. (2013). Did tool-use evolve with enhanced physical cognitive abilities? Philosophical Transactions of the Royal Society B, 368, 20120418.Google Scholar
Tomasello, M. and Call, J. (1997). Primate cognition. New York, NY: Oxford University Press.Google Scholar
Vince, M. A. (1961). String-pulling in birds: III. The successful response in greenfinches and canaries. Behaviour, 17, 103129.Google Scholar
Visalberghi, E. and Limongelli, L. (1994). Lack of comprehension of cause-effect relations in tool-using capuchin monkeys (Cebus apella). Journal of Comparative Psychology, 108, 1522.Google Scholar
Walsh, P. T., Hansell, M., Borello, W. D. and Healy, S. D. (2011). Individuality in nest building: Do Southern Masked weaver (Ploceus velatus) males vary in their nest-building behaviour? Behavioural Processes, 88, 16.Google Scholar
Webster, S. J. and Lefebvre, L. (2001). Problem solving and neophobia in a columbiform-passeriform assemblage in Barbados. Animal Behaviour, 62, 2332.Google Scholar
Weir, A. A. S., Chappell, J. and Kacelnik, A. (2002). Shaping of hooks in New Caledonian crows. Science, 297, 981.Google Scholar
Weir, A. and Kacelnik, A. (2006). A New Caledonian crow (Corvus moneduloides) creatively re-designs tools by bending or unbending aluminium strips. Animal Cognition, 9, 317334.Google Scholar
Werdenich, D. and Huber, L. (2006). A case of quick problem solving in birds: string pulling in keas, Nestor notabilis. Animal Behaviour, 71, 855863.Google Scholar
Wynne, C. D. L. (2007). What are animals? Why anthropomorphism is still not a scientific approach to behaviour. Comparative Cognition & Behavior Reviews, 2, 125135.Google Scholar
Zucca, P., Milos, N. and Vallortigara, G. (2007). Piagetian object permanence and its development in Eurasian jays (Garrulus glandarius). Animal Cognition, 10, 243258.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×