Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-04T22:41:17.991Z Has data issue: false hasContentIssue false

8 - Bacterial superantigens and immune evasion

from Part III - Evasion of cellular immunity

Published online by Cambridge University Press:  13 August 2009

John Fraser
Affiliation:
School of Biological Sciences, Department of Molecular Medicine, University of Auckland, Private Bag, 92019 Auckland, New Zealand
Vickery Arcus
Affiliation:
School of Biological Sciences, University of Auckland, Private Bag, 92019 Auckland, New Zealand
Thomas Proft
Affiliation:
School of Biological Sciences, Department of Molecular Medicine, University of Auckland, Private Bag, 92019 Auckland, New Zealand
Brian Henderson
Affiliation:
University College London
Petra C. F. Oyston
Affiliation:
Defence Science and Technology Laboratory, Salisbury
Get access

Summary

INTRODUCTION

Vertebrates and microbes live together in a precarious balancing act. Staphylococcus aureus and Streptococcus pyogenes are Gram-positive commensal bacteria that inhabit the human skin, nose, and upper respiratory tract (Wannamaker and Schlievert 1988) and for the most part live an unremarkable, symbiotic existence with humans. Both organisms produce superantigens (SAGs) Table 8.1 that simultaneously bind to the T-cell Receptor (TcR) and the major histocompatibility class II (MHC-II) antigens – two molecules central to host immunity – bringing them together to cause profound T-cell activation (Schlievert, 1993; Marrack and Kappler, 1990; Kotzin et al., 1993; Fleischer, 1994; Acha Orbea and MacDonald, 1995). Any T cell bearing a reactive TcR β-chain becomes a target for a SAG and with only sixty-five TcR β-chain genes resident in the human genome (Rowen et al., 1996), any individual SAG stimulates at least 1–2% of peripheral T cells and often more than this. Superantigen activation produces toxic levels of the pro-inflammatory cytokines Interleukin (IL)-1β, tumour necrosis factor (TNF)-α, and interleukin-2 (IL-2) (see Chapter 10 for more details on cytokines), which can lead to the potentially lethal condition known as toxic shock. SAGs are not limited to S. aureus and S. pyogenes. Versions of SAGs have also been found in a number of other organisms and all cross-link TcR and MHC class II to overstimulate T-lymphocytes

Although a great deal is known about the structure and mode of action of the bacterial SAGs, little is known about how they act to enhance the survival of bacteria and how they might disrupt the host immune responses to other antigens.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Acha, Orbea H. and MacDonald, H. R. (1995). Superantigens of mouse mammary tumor virus. Annual Review of Immunology 13, 459–486CrossRefGoogle Scholar
Arcus, V., Proft, T., Sigrell, J. A., Baker, H. M., Fraser, J. D., and Baker, E. N. (2000). Conservation and variation in superantigen structure and activity highlighted by 3-dimensional structures of two new superantigens from Streptococcus pyogenes. Journal of Molecular Biology 299, 157–168CrossRefGoogle Scholar
Betley, M. J., Lofdahl, S., Kreiswirth, B. N., Bergdoll, M. S., and Novick, P. (1984). Staphylococcal enterotoxin A gene is associated with a variable genetic element. Proceedings of the National Academy of Sciences USA 81, 5179–5183CrossRefGoogle ScholarPubMed
Bette, M., Schafer, M. K., Rooijen, N., Weihe, E., and Fleischer, B. (1993). Distribution and kinetics of superantigen-induced cytokine gene expression in mouse spleen. Journal of Experimental Medicine 178, 1531–1539CrossRefGoogle ScholarPubMed
Bonfoco, E., Stuart, P. M., Brunner, T., Lin, T., Griffith, T. S., Gao, Y., Nakajima, H., Henkart, P. A., Ferguson, T. A., and Green, D. R. (1998). Inducible nonlymphoid expression of Fas ligand is responsible for superantigen-induced peripheral deletion of T cells. Immunity 9, 711–720CrossRefGoogle ScholarPubMed
Brocke, S., Veromaa, T., Weissman, I. L., Gijbels, K., and Steinman, L. (1994). Infection and multiple sclerosis: a possible role for superantigens?Trends in Microbiology 2, 250–254CrossRefGoogle ScholarPubMed
Bromley, S. K., Burack, W. R., Johnson, K. G., Somersalo, K., Sims, T. N., Sumen, C., Davis, M. M., Shaw, A. S., Allen, P. M., and Dustin, M. L. (2001). The immunological synapse. Annual Review of Immunology 19, 375–396CrossRefGoogle ScholarPubMed
Cole, B. C. and Atkin, C. L. (1991). The Mycoplasma arthritidis T-cell mitogen, MAM: a model superantigen. Immunology Today 12, 271–276CrossRefGoogle ScholarPubMed
Dalwadi, H., Wei, B., Kronenberg, M., Sutton, C. L., and Braun, J. (2001). The Crohn's disease-associated bacterial protein I2 is a novel enteric T cell superantigen. Immunity 15, 149–158CrossRefGoogle ScholarPubMed
Davis, M. M., Boniface, J. J., Reich, Z., Lyons, D., Hampl, J., Arden, B., and Chien, Y. H. (1998). Ligand recognition by alpha-beta T cell receptors. Annual Review of Immunology 16, 523–544CrossRefGoogle ScholarPubMed
Dobrescu, D., Ursea, B., Pope, M., Asch, A. S., and Posnett, D. N. (1995). Enhanced HIV-1 replication in V beta 12 T cells due to human cytomegalovirus in monocytes: evidence for a putative herpesvirus superantigen. Cell 82, 753–763CrossRefGoogle Scholar
Ferretti, J. J., McShan, W. M., Ajdic, D., Savic, D. J., Savic, G., Lyon, K., Primeaux, C., Sezate, S., Suvorov, A. N., Kenton, S., Lai, H. S., Lin, S. P., Qian, Y. D., Jia, H. G., Najar, F. Z., Ren, Q., Zhu, H., Song, L., White, J., Yuan, X. L., Clifton, S. W., Roe, B. A., and McLaughlin, R. (2001). Complete genome sequence of an M1 strain of Streptococcus pyogenes. Proceedings of the National Academy of Sciences USA 98, 4658–4663CrossRefGoogle ScholarPubMed
Festenstein, H. and Kimura, S. (1988). The Mls system: past and present. Journal of Immunogenetics 15, 183–196CrossRefGoogle ScholarPubMed
Fields, B. A., Malchiodi, E. L., Li, H., Ysern, X., Stauffacher, C. V., Schlievert, P. M., Karjalainen, K., and Mariuzza, R. A. (1996). Crystal structure of a T-cell receptor beta-chain complexed with a superantigen. Nature 384, 188–192CrossRefGoogle ScholarPubMed
Fleischer, B. (1994). Superantigens. Apmis 102, 3–12CrossRefGoogle ScholarPubMed
Fleischer, B. and Schrezenmeier, H. (1988). T cell stimulation by staphylococcal enterotoxins. Clonally variable response and requirement for major histocompatibility complex class II molecules on accessory or target cells. Journal of Experimental Medicine 167, 1697–1707CrossRefGoogle ScholarPubMed
Fraser, J. D. (1989). High-affinity binding of staphylococcal enterotoxins A and B to HLA-DR. Nature 339, 221–223CrossRefGoogle Scholar
Fraser, J. D., Arcus, V., Kong, P., Baker, E. N., and Proft, T. P. (2000). Superantigens – powerful modifiers of the immune system. Molecular Medicine Today 6, 125–135CrossRefGoogle ScholarPubMed
Gerlach, D., Reichardt, W., Fleischer, B., and Schmidt, K. H. (1994). Separation of mitogenic and pyrogenic activities from so-called erythrogenic toxin type B (Streptococcal proteinase). International Journal of Medical Microbiology, Virology, Parasitology, and Infectious Diseases 280, 507–514Google Scholar
Goshorn, S. C. and Schlievert, P. M. (1989). Bacteriophage association of streptococcal pyrogenic exotoxin type C. Journal of Bacteriology 171, 3068–3073CrossRefGoogle ScholarPubMed
Grigg, M. E., McMahon, C. W., Morkowski, S., Rudensky, A. Y., and Pullen, A. M. (1998). Mtv-1 superantigen trafficks independently of major histocompatibility complex class II directly to the B-cell surface by the exocytic pathway. Journal of Virology 72, 2577–2588Google ScholarPubMed
Hakansson, M., Petersson, K., Nilsson, H., Forsberg, G., Bjork, P., Antonsson, P., and Svensson, L. A. (2000). The crystal structure of staphylococcal enterotoxin H: Implications for binding properties to MHC class II and TcR molecules. Journal of Molecular Biology 302, 527–537CrossRefGoogle ScholarPubMed
Harris, T. O., Grossman, D., Kappler, J. W., Marrack, P., Rich, R. R., and Betley, M. J. (1993). Lack of complete correlation between emetic and T-cell stimulatory activities of staphylococcal enterotoxins. Infection and Immunity 61, 3175–3183Google ScholarPubMed
Hodtsev, A. S., Choi, Y., Spanopoulou, E., and Posnett, D. N. (1998). Mycoplasma superantigen is a CDR3-dependent ligand for the T cell antigen receptor. Journal of Experimental Medicine 187, 319–327CrossRefGoogle ScholarPubMed
Hoebe, C. J., Wagenvoort, J. H., and Schellekens, J. F. (2000). An outbreak of scarlet fever, impetigo and pharyngitis caused by the same Streptococcus pyogenes type T4M4 in a primary school. Nederlands Tijdschrift voor Geneeskunde 144, 2148–2152Google Scholar
Hudson, K. R., Robinson, H., and Fraser, J. D. (1993). Two adjacent residues in staphylococcal enterotoxins A and E determine T cell receptor V beta specificity. Journal of Experimental Medicine 177, 175–184CrossRefGoogle Scholar
Hudson, K. R., Tiedemann, R. E., Urban, R. G., Lowe, S. C., Strominger, J. L., and Fraser, J. D. (1995). Staphylococcal enterotoxin A has two cooperative binding sites on major histocompatibility complex class II. Journal of Experimental Medicine 182, 711–720CrossRefGoogle ScholarPubMed
Ito, Y., Abe, J., Yoshino, K., Takeda, T., and Kohsaka, T. (1995). Sequence analysis of the gene for a novel superantigen produced by Yersinia pseudotuberculosis and expression of the recombinant protein. Journal of Immunology 154, 5896–5906Google ScholarPubMed
Jardetzky, T. S., Brown, J. H., Gorga, J. C., Stern, L. J., Urban, R. G., Chi, Y. I., Stauffacher, C., Strominger, J. L., and Wiley, D. C. (1994). Three-dimensional structure of a human class II histocompatibility molecule complexed with superantigen. Nature 368, 711–718CrossRefGoogle ScholarPubMed
Jones, K. F., Whitehead, S. S., Cunningham, M. W., and Fischetti, V. A. (2000). Reactivity of rheumatic fever and scarlet fever patients' sera with group A streptococcal M protein, cardiac myosin, and cardiac tropomyosin: a retrospective study. Infection and Immunity 68, 7132–7136CrossRefGoogle Scholar
Kim, J., Urban, R., Strominger, J. L., and Wiley, D. (1994). Toxic shock syndrome toxin-1 complexed with a major histocompatibility molecule HLA-DR1. Science 266, 1870–1874CrossRefGoogle ScholarPubMed
Knudtson, K. L., Manohar, M., Joyner, D. E., Ahmed, E. A., and Cole, B. C. (1997). Expression of the superantigen Mycoplasma arthritidis mitogen in Escherichia coli and characterization of the recombinant protein. Infection and Immunity 65, 4965–4971Google ScholarPubMed
Kokan, N. P. and Bergdoll, M. S. (1987). Detection of low-enterotoxin-producing Staphylococcus aureus strains. Applied and Environmental Microbiology 53, 2675–2676Google ScholarPubMed
Konishi, N., Baba, K., Abe, J., Maruko, T., Waki, K., Takeda, N., and Tanaka, M. (1997). A case of Kawasaki's disease with coronary aneurysms documenting Yersinia pseudotuberculosis infection. Acta Paediatrics 86, 661–664CrossRefGoogle ScholarPubMed
Kotzin, B. L., Leung, D. Y., Kappler, J., and Marrack, P. (1993). Superantigens and their potential role in human disease. Advances in Immunology 54, 99–166CrossRefGoogle ScholarPubMed
Kuroda, M., Ohta, T., Uchiyama, I., Baba, T., Yuzawa, H., Kobayashi, I., Cui, L. Z., Oguchi, A., Aoki, K., Nagai, Y., Lian, J. Q., Ito, T., Kanamori, M., Matsumaru, H., Maruyama, A., Murakami, H., Hosoyama, A., Mizutani Ui, Y., Takahashi, N. K., Sawano, T., Inoue, R., Kaito, C., Sekimizu, K., Hirakawa, H., Kuhara, S., Hiramatsu, K. et al. (2001). Whole genome sequencing of methicillin-resistant Staphylococcus aureus. Lancet 357, 1225–1240CrossRefGoogle Scholar
Leder, L., Llera, A., Lavoie, P. M., Lebedeva, M. I., Li, H., Sekaly, R. P., Bohach, G. A., Gahr, P. J., Schlievert, P. M., Karjalainen, K., and Mariuzza, R. A. (1998). A mutational analysis of the binding of staphylococcal enterotoxins B and C3 to the T cell receptor beta chain and major histocompatibility complex class II. Journal of Experimental Medicine 187, 823–833CrossRefGoogle Scholar
Leung, D. Y., Meissner, H. C., Fulton, D. R., Murray, D. L., Kotzin, B. L., and Schlievert, P. M. (1993). Toxic shock syndrome toxin-secreting Staphylococcus aureus in Kawasaki syndrome. Lancet 342, 1385–1388CrossRefGoogle ScholarPubMed
Leung, D. Y., Meissner, C., Fulton, D., and Schlievert, P. M. (1995). The potential role of bacterial superantigens in the pathogenesis of Kawasaki syndrome. Journal of Clinical Immunology 15, 11S–17SCrossRefGoogle ScholarPubMed
Li, P. L., Tiedemann, R. E., Moffat, S. L., and Fraser, J. D. (1997). The superantigen streptococcal pyrogenic exotoxin C (SPE-C) exhibits a novel mode of action. Journal of Experimental Medicine 186, 375–383CrossRefGoogle ScholarPubMed
Li, H., Llera, A., Tsuchiya, D., Leder, L., Ysern, X., Schlievert, P. M., Karjalainen, K., and Mariuzza, R. A. (1998). Three-dimensional structure of the complex between a T cell receptor beta chain and the superantigen staphylococcal enterotoxin B. Immunity 9, 807–816CrossRefGoogle Scholar
Li, H. M., Llera, A., Malchiodi, E. L., and Mariuzza, R. A. (1999). The structural basis of T cell activation by superantigens. Annual Review of Immunology 17, 435–466CrossRefGoogle ScholarPubMed
Li, Y. L., Li, H. M., Dimasi, N., McCormick, J. K., Martin, R., Schuck, P., Schlievert, P. M., and Mariuzza, R. A. (2001). Crystal structure of a superantigen bound to the high-affinity, zinc-dependent site on MHC class II. Immunity 14, 93–103CrossRefGoogle ScholarPubMed
Marrack, P. and Kappler, J. (1990). The Staphylococcal enterotoxins and their relatives. Science 248, 705–711CrossRefGoogle ScholarPubMed
Marrack, P., Blackman, M., Kushnir, E., and Kappler, J. (1990). The toxicity of staphylococcal enterotoxin B in mice is mediated by T cells. Journal of Experimental Medicine 171, 455–464CrossRefGoogle ScholarPubMed
Mehindate, K., Thibodeau, J., Dohlsten, M., Kalland, T., Sekaly, R. P., and Mourad, W. (1995). Cross-linking of major histocompatibility complex class II molecules by staphylococcal enterotoxin A superantigen is a requirement for inflammatory cytokine gene expression. Journal of Experimental Medicine 182, 1573–1577CrossRefGoogle ScholarPubMed
Monks, C. R., Freiberg, B. A., Kupfer, H., Sciaky, N., and Kupfer, A. (1998). Three-dimensional segregation of supramolecular activation clusters in T cells. Nature 395, 82–86CrossRefGoogle Scholar
Musser, J. M., Schlievert, P. M., Chow, A. W., Ewan, P., Kreiswirth, B. N., Rosdahl, V. T., Naidu, A. S., Witte, W., and Selander, R. K. (1990). A single clone of Staphylococcus aureus causes the majority of cases of toxic shock syndrome. Proceedings of the National Academy of Sciences USA 87, 225–229CrossRefGoogle ScholarPubMed
Paliard, X., West, S. G., Lafferty, J. A., Clements, J. R., Kappler, J. W., Marrack, P., and Kotzin, B. L. (1991). Evidence for the effects of a superantigen in rheumatoid arthritis. Science 253, 325–329CrossRefGoogle ScholarPubMed
Papageorgiou, A. C., Acharya, K. R., Shapiro, R., Passalacqua, E. F., Brehm, R. D., and Tranter, H. S. (1995). Crystal structure of the superantigen enterotoxin C2 from Staphylococcus aureus reveals a zinc-binding site. Structure 3, 769–779CrossRefGoogle ScholarPubMed
Petersson, K., Hakansson, M., Nilsson, H., Forsberg, G., Svensson, L. A., Liljas, A., and Walse, B. (2001). Crystal structure of a superantigen bound to MHC class II displays zinc and peptide dependence. European Molecular Biology Organisation Journal 20, 3306–3312CrossRefGoogle ScholarPubMed
Prasad, G. S., Earhart, C. A., Murray, D. L., Novick, R. P., Schlievert, P. M., and Ohlendorf, D. H. (1993). Structure of toxic shock syndrome toxin 1. Biochemistry 32, 13,761–13,766CrossRefGoogle ScholarPubMed
Proft, T. and Fraser, J. D. (1998). Superantigens: just like peptides only different. Journal of Experimental Medicine 187, 819–821CrossRefGoogle ScholarPubMed
Proft, T., Moffatt, S. L., Berkahn, C. J., and Fraser, J. D. (1999). Identification and characterization of novel superantigens from Streptococcus pyogenes. Journal of Experimental Medicine 189, 89–102CrossRefGoogle ScholarPubMed
Proft, T., Moffatt, S. L., Weller, K. D., Paterson, A., Martin, D., and Fraser, J. D. (2000). The streptococcal superantigen SMEZ exhibits wide allelic variation, mosaic structure, and significant antigenic variation. Journal of Experimental Medicine 191, 1765–1776CrossRefGoogle ScholarPubMed
Racke, M., Quigley, L., Cannella, B., Raine, C. S., McFarlin, D. E., and Scott, D. E. (1994). Superantigen modulation of experimental allergic encephalomyelitis: activation of anergy determines outcome. Journal of Immunology 152, 2051–2059Google ScholarPubMed
Reiser, R. F., Jacobson, J. A., Kasworm, E. M., and Bergdoll, M. S. (1988). Staphylococcal enterotoxin antibodies in pediatric patients from Utah. Journal of Infectious Diseases 158, 1105–1108CrossRefGoogle ScholarPubMed
Roussel, A., Anderson, B. F., Baker, H. M., Fraser, J. D., and Baker, E. N. (1997). Crystal structure of the streptococcal superantigen SPE-C: dimerization and zinc binding suggest a novel mode of interaction with MHC class II molecules. Nature Structural Biology 4, 635–643CrossRefGoogle ScholarPubMed
Rowen, L., Koop, B. F., and Hood, L. (1996). The complete 685 kilobase DNA sequence of the human beta T cell receptor locus. Science 272, 1755–1762CrossRefGoogle ScholarPubMed
Schad, E. M., Zaitseva, I., Zaitsev, V. N., Dohlsten, M., Kalland, T., Schlievert, P. M., Ohlendorf, D. H., and Svensson, L. A. (1995). Crystal structure of the superantigen staphylococcal enterotoxin type A. European Molecular Biology Organisation Journal 14, 3292–3301Google ScholarPubMed
Schlievert, P. M. (1993). Role of superantigens in human disease. Journal of Infectious Diseases 167, 997–1002CrossRefGoogle ScholarPubMed
Seth, A., Stern, L. J., Ottenhoff, T. H., Engel, I., Owen, M. J., Lamb, J. R., Klausner, R. D., and Wiley, D. C. (1994). Binary and ternary complexes between T-cell receptor, class II MHC and superantigen in vitro. Nature 369, 324–327CrossRefGoogle ScholarPubMed
Sutkowski, N., Palkama, T., Ciurli, C., Sekaly, R.-P., Thorley-Lawson, D. A., and Huber, B. (1996). An Epstein-Barr virus-associated superantigen. Journal of Experimental Medicine 184, 971–980CrossRefGoogle ScholarPubMed
Swaminathan, S., Furey, W., Pletcher, J., and Sax, M. (1992). Crystal structure of Staphylococcal enterotoxin B, a superantigen. Nature 359, 801–806CrossRefGoogle ScholarPubMed
Swaminathan, S., Furey, W., Pletcher, J., and Sax, M. (1995). Residues defining V beta specificity in staphylococcal enterotoxins. Nature Structural Biology 2, 680CrossRefGoogle ScholarPubMed
Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F., and Higgins, D. G. (1997). The ClustalX windows interface: Flexible strategies for multiple sequence alignment aided by quality anlysis tools. Nucleic Acids Research 24, 4876–4882CrossRefGoogle Scholar
Tiedemann, R. E., Urban, R. J., Strominger, J. L., and Fraser, J. D. (1995). Isolation of HLA-DR1.(staphylococcal enterotoxin A)2 trimers in solution. Proceedings of the National Academy of Sciences USA 92, 12,156–12,159CrossRefGoogle ScholarPubMed
Tiedemann, R. E. and Fraser, J. D. (1996). Cross-linking of MHC class II molecules by staphylococcal enterotoxin A is essential for antigen-presenting cell and T cell activation. Journal of Immunology 157, 3958–3966Google ScholarPubMed
Todd, J. and Tishant, D. (1978). Toxic Shock syndrome associated with phage-group-1 Staphylococci. Lancet 2, 1116–1118CrossRefGoogle Scholar
Unnikrishnan, M., Altman, D., Proft, T., Wahid, F., Cohen, J., Fraser, J. D., and Sriskandan, S. (2002). The bacterial superantigen SMEZ is the major immunoreactive agent of Streptococcus pyogenes, submitted
Valitutti, S., Muller, S., Cella, M., Padovan, E., and Lanzavecchia, A. (1995). Serial triggering of many T-cell receptors by a few peptide-MHC complexes. Nature 375, 148–151CrossRefGoogle ScholarPubMed
Vergeront, J. M., Stolz, S. J., Crass, B. A., Nelson, D. B., Davis, J. P., and Bergdoll, M. S. (1983). Prevalence of serum antibody to staphylococcal enterotoxin F among Wisconsin residents: implication for toxic shock syndrome. Journal of Infectious Diseases 142, 692–698CrossRefGoogle Scholar
Wannamaker, L. W. and Schlievert, P. M. (1988). Exotoxins of group A Streptococci. In Bacterial toxins. ed. C. M. Hardegree and A. T. Tu. pp. 267–295. New York: Marcel Dekker
Weeks, C. R. and Ferretti, J. J. (1986). Nucleotide sequence of the type A Streptococcal exotoxin (Erythrogenic toxin) gene from Streptococcus pyrogenes Bacteriophage T12. Infection and Immunity 52, 144–150Google Scholar
Williams, R. J., Ward, J. M., Henderson, B., Poole, S., O'Hara, B. P., Wilson, M., and Nair, S. P. (2000). Identification of a novel gene cluster encoding staphylococcal exotoxin-like proteins: Characterization of the prototypic gene and its protein product, SET1. Infection and Immunity 68, 4407–4415CrossRefGoogle ScholarPubMed
Winslow, G. M., Scherer, M. T., Kappler, J. W., and Marrack, P. (1992). Detection and biochemical characterization of the mouse mammary tumor virus 7 superantigen (Mls-1a). Cell 71, 719–730CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Bacterial superantigens and immune evasion
    • By John Fraser, School of Biological Sciences, Department of Molecular Medicine, University of Auckland, Private Bag, 92019 Auckland, New Zealand, Vickery Arcus, School of Biological Sciences, University of Auckland, Private Bag, 92019 Auckland, New Zealand, Ted Baker, Thomas Proft, School of Biological Sciences, Department of Molecular Medicine, University of Auckland, Private Bag, 92019 Auckland, New Zealand
  • Edited by Brian Henderson, University College London, Petra C. F. Oyston, Defence Science and Technology Laboratory, Salisbury
  • Book: Bacterial Evasion of Host Immune Responses
  • Online publication: 13 August 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511546266.009
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Bacterial superantigens and immune evasion
    • By John Fraser, School of Biological Sciences, Department of Molecular Medicine, University of Auckland, Private Bag, 92019 Auckland, New Zealand, Vickery Arcus, School of Biological Sciences, University of Auckland, Private Bag, 92019 Auckland, New Zealand, Ted Baker, Thomas Proft, School of Biological Sciences, Department of Molecular Medicine, University of Auckland, Private Bag, 92019 Auckland, New Zealand
  • Edited by Brian Henderson, University College London, Petra C. F. Oyston, Defence Science and Technology Laboratory, Salisbury
  • Book: Bacterial Evasion of Host Immune Responses
  • Online publication: 13 August 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511546266.009
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Bacterial superantigens and immune evasion
    • By John Fraser, School of Biological Sciences, Department of Molecular Medicine, University of Auckland, Private Bag, 92019 Auckland, New Zealand, Vickery Arcus, School of Biological Sciences, University of Auckland, Private Bag, 92019 Auckland, New Zealand, Ted Baker, Thomas Proft, School of Biological Sciences, Department of Molecular Medicine, University of Auckland, Private Bag, 92019 Auckland, New Zealand
  • Edited by Brian Henderson, University College London, Petra C. F. Oyston, Defence Science and Technology Laboratory, Salisbury
  • Book: Bacterial Evasion of Host Immune Responses
  • Online publication: 13 August 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511546266.009
Available formats
×