Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-20T22:50:31.569Z Has data issue: false hasContentIssue false

4 - Glycolysis

Published online by Cambridge University Press:  05 September 2012

Byung Hong Kim
Affiliation:
Korea Institute of Science and Technology, Seoul
Geoffrey Michael Gadd
Affiliation:
University of Dundee
Get access

Summary

Escherichia coli can grow on a simple medium containing glucose and mineral salts and this bacterium can synthesize all cell constituents using materials provided in this medium. Glucose is metabolized through the Embden–Meyerhof–Parnas (EMP) pathway and hexose monophosphate (HMP) pathway and the metabolic product, pyruvate, is decarboxylated oxidatively to acetyl-CoA to be oxidized through the tricarboxylic acid (TCA) cycle. Twelve intermediates of these pathways are used as carbon skeletons for biosynthesis (Table 4.1). Heterotrophs that utilize organic compounds other than carbohydrates convert their substrates into one or more of these intermediates. For this reason, glucose metabolism through glycolysis and the TCA cycle is called central metabolism.

Eukaryotes metabolize glucose through the EMP pathway to generate ATP, pyruvate and NADH, and the HMP pathway is needed to supply the metabolic intermediates not available from the EMP pathway such as pentose-5-phosphate and erythrose-4-phosphate, and NADPH. Most prokaryotes employ similar mechanisms, but some prokaryotes metabolize glucose through unique pathways known only in prokaryotes, e.g. the Entner–Doudoroff (ED) pathway and phosphoketolase (PK) pathway. Some prokaryotes have genes for the ED pathway in addition to the EMP pathway: genes for these pathways are expressed at the same time in several prokaryotes including a thermophilic bacterium (Thermotoga maritima), a thermophilic archaeon (Thermoproteus tenax) and a halophilic archaeon (Halococcus saccharolyticus). Escherichia coli metabolizes glucose via the EMP pathway, but gluconate is oxidized through the ED pathway. Modified EMP and ED pathways are quite common in archaea.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bruckner, R. & Titgemeyer, F. (2002). Carbon catabolite repression in bacteria: choice of the carbon source and autoregulatory limitation of sugar utilization. FEMS Microbiology Letters 209, 141–148.CrossRefGoogle ScholarPubMed
Plantinga, T. H., Does, C. & Driessen, A. J. M. (2004). Transporter's evolution and carbohydrate metabolic clusters. Trends in Microbiology 12, 4–7.CrossRefGoogle ScholarPubMed
Asanuma, N. & Hino, T. (2006). Presence of NADP+-specific glyceraldehyde-3-phosphate dehydrogenase and CcpA-dependent transcription of its gene in the ruminal bacterium Streptococcus bovis. FEMS Microbiology Letters 257, 17–23.CrossRefGoogle ScholarPubMed
Brunner, N. A., Siebers, B. & Hensel, R. (2001). Role of two different glyceraldehyde-3-phosphate dehydrogenases in controlling the reversible Embden-Meyerhof-Parnas pathway in Thermoproteus tenax: regulation on protein and transcript level. Extremophiles 5, 101–109.CrossRefGoogle ScholarPubMed
Hansen, T. & Schoenheit, P. (2001). Sequence, expression, and characterization of the first archaeal ATP-dependent 6-phosphofructokinase, a non-allosteric enzyme related to the phosphofructokinase-B sugar kinase family, from the hyperthermophilic crenarchaeote Aeropyrum pernix. Archives of Microbiology 177, 62–69.CrossRefGoogle ScholarPubMed
Hansen, T. & Schonheit, P. (2004). ADP-dependent 6-phosphofructokinase, an extremely thermophilic, non-allosteric enzyme from the hyperthermophilic, sulfate-reducing archaeon Archaeoglobus fulgidus strain 7324. Extremophiles 8, 29–35.CrossRefGoogle ScholarPubMed
Hansen, T., Reichstein, B., Schmid, R. & Schonheit, P. (2002). The first archaeal ATP-dependent glucokinase, from the hyperthermophilic crenarchaeon Aeropyrum pernix, represents a monomeric, extremely thermophilic ROK glucokinase with broad hexose specificity. Journal of Bacteriology 184, 5955–5965.CrossRefGoogle ScholarPubMed
Imanaka, H., Yamatsu, A., Fukui, T., Atomi, H. & Imanaka, T. (2006). Phosphoenolpyruvate synthase plays an essential role for glycolysis in the modified Embden-Meyerhof pathway in Thermococcus kodakarensis. Molecular Microbiology 61, 898–909.CrossRefGoogle ScholarPubMed
Kengen, S. W. M., Stams, A. J. M. & Devos, W. M. (1996). Sugar metabolism of hyperthermophiles. FEMS Microbiology Reviews 18, 119–137.CrossRefGoogle Scholar
Kim, J. W. & Dang, C. V. (2005). Multifaceted roles of glycolytic enzymes. Trends in Biochemical Sciences 30, 142–150.CrossRefGoogle ScholarPubMed
Labes, A. & Schonheit, P. (2001). Sugar utilization in the hyperthermophilic, sulfate-reducing archaeon Archaeoglobus fulgidus strain 7324: starch degradation to acetate and CO2 via a modified Embden-Meyerhof pathway and acetyl-CoA synthetase (ADP-forming). Archives of Microbiology 176, 329–338.CrossRefGoogle Scholar
Labes, A. & Schonheit, P. (2003). ADP-dependent glucokinase from the hyperthermophilic sulfate-reducing archaeon Archaeoglobus fulgidus strain 7324. Archives of Microbiology 180, 69–75.CrossRefGoogle ScholarPubMed
Marsh, J. J. & Lebherz, H. G. (1992). Fructose-bisphosphate aldolases: an evolutionary history. Trends in Biochemical Sciences 17, 110–113.CrossRefGoogle Scholar
Nishimasu, H., Fushinobu, S., Shoun, H. & Wakagi, T. (2006). Identification and characterization of an ATP-dependent hexokinase with broad substrate specificity from the hyperthermophilic archaeon Sulfolobus tokodaii. Journal of Bacteriology 188, 2014–2019.CrossRefGoogle ScholarPubMed
Sakuraba, H. & Ohshima, T. (2002). Novel energy metabolism in anaerobic hyperthermophilic archaea: a modified Embden-Meyerhof pathway. Journal of Bioscience and Bioengineering 93, 441–448.CrossRefGoogle ScholarPubMed
Tanaka, S., Lee, S. O., Hamaoka, K., Kato, J., Takiguchi, N., Nakamura, K., Ohtake, H. & Kuroda, A. (2003). Strictly polyphosphate-dependent glucokinase in a polyphosphate-accumulating bacterium, Microlunatus phosphovorus. Journal of Bacteriology 185, 5654–5656.CrossRefGoogle Scholar
Tjaden, B., Plagens, A., Dorr, C., Siebers, B. & Hensel, R. (2006). Phosphoenolpyruvate synthetase and pyruvate, phosphate dikinase of Thermoproteus tenax: key pieces in the puzzle of archaeal carbohydrate metabolism. Molecular Microbiology 60, 287–298.CrossRefGoogle ScholarPubMed
Verhees, C. H., Tuininga, J. E., Kengen, S. W. M., Stams, A. J. M., Oost, J. & Vos, W. M. (2001). ADP-dependent phosphofructokinases in mesophilic and thermophilic methanogenic archaea. Journal of Bacteriology 183, 7145–7153.CrossRefGoogle ScholarPubMed
Villamon, E., Villalba, V., Nogueras, M. M., Tomas, J. M., Gozalbo, D. & Gil, M. L. (2003). Glyceraldehyde-3-phosphate dehydrogenase, a glycolytic enzyme present in the periplasm of Aeromonas hydrophila. Antonie van Leeuwenhoek 84, 31–38.CrossRefGoogle ScholarPubMed
Zakharchuk, L. M., Egorova, M. A., Tsaplina, I. A., Bogdanova, T. I., Krasil'nikova, E. N., Melamud, V. S. & Karavaiko, G. I. (2003). Activity of the enzymes of carbon metabolism in Sulfobacillus sibiricus under various conditions of cultivation. Microbiology-Moscow 72, 553–557.CrossRefGoogle Scholar
Zheng, P., Sun, J., Heuvel, J. & Zeng, A. (2006). Discovery and investigation of a new, second triose phosphate isomerase in Klebsiella pneumoniae. Journal of Biotechnology 125, 462–473.CrossRefGoogle ScholarPubMed
Ferguson, G. P., Totemeyer, S., Maclean, M. J. & Booth, I. R. (1998). Methylglyoxal production in bacteria: suicide or survival. Archives of Microbiology 170, 209–219.CrossRefGoogle ScholarPubMed
Grant, A. W., Steel, G., Waugh, H. & Ellis, E. M. (2003). A novel aldo-keto reductase from Escherichia coli can increase resistance to methylglyoxal toxicity. FEMS Microbiology Letters 218, 93–99.CrossRefGoogle ScholarPubMed
Ko, J., Kim, I., Yoo, S., Min, B., Kim, K. & Park, C. (2005). Conversion of methylglyoxal to acetol by Escherichia coli aldo-keto reductases. Journal of Bacteriology 187, 5782–5789.CrossRefGoogle ScholarPubMed
Liyanage, H., Kashket, S., Young, M. & Kashket, E. R. (2001). Clostridium beijerinckii and Clostridium difficile detoxify methylglyoxal by a novel mechanism involving glycerol dehydrogenase. Applied and Environmental Microbiology 67, 2004–2010.CrossRefGoogle ScholarPubMed
Maiden, M. F. J., Pham, C. & Kashket, S. (2004). Glucose toxicity effect and accumulation of methylglyoxal by the periodontal anaerobe Bacteroides forsythus. Anaerobe 10, 27–32.CrossRefGoogle ScholarPubMed
Weber, J., Kayser, A. & Rinas, U. (2005). Metabolic flux analysis of Escherichia coli in glucose-limited continuous culture. II. Dynamic response to famine and feast, activation of the methylglyoxal pathway and oscillatory behaviour. Microbiology-UK 151, 707–716.CrossRefGoogle ScholarPubMed
Xu, D., Liu, X., Guo, C. & Zhao, J. (2006). Methylglyoxal detoxification by an aldo-keto reductase in the cyanobacterium Synechococcus sp. PCC 7002. Microbiology-UK 152, 2013–2021.CrossRefGoogle ScholarPubMed
Alves, A. M. C. R., Euverink, G. J. W., Santos, H. & Dijkhuizen, L. (2001). Different physiological roles of ATP- and PPi-dependent phosphofructokinase isoenzymes in the methylotrophic actinomycete Amycolatopsis methanolica. Journal of Bacteriology 183, 7231–7240.CrossRefGoogle Scholar
Fillinger, S., Boschi-Muller, S., Azza, S., Dervyn, E., Branlant, G. & Aymerich, S. (2000). Two glyceraldehyde-3-phosphate dehydrogenases with opposite physiological roles in a nonphotosynthetic bacterium. Journal of Biological Chemistry 275, 14031–14037.CrossRefGoogle Scholar
Grochowski, L. L., Xu, H. & White, R. H. (2005). Ribose-5-phosphate biosynthesis in Methanocaldococcus jannaschii occurs in the absence of a pentose-phosphate pathway. Journal of Bacteriology 187, 7382–7389.CrossRefGoogle ScholarPubMed
Pernestig, A. K., Georgellis, D., Romeo, T., Suzuki, K., Tomenius, H., Normark, S. & Melefors, O. (2003). The Escherichia coli BarA-UvrY two-component system is needed for efficient switching between glycolytic and gluconeogenic carbon sources. Journal of Bacteriology 185, 843–853.CrossRefGoogle ScholarPubMed
Tjaden, B., Plagens, A., Dorr, C., Siebers, B. & Hensel, R. (2006). Phosphoenolpyruvate synthetase and pyruvate, phosphate dikinase of Thermoproteus tenax: key pieces in the puzzle of archaeal carbohydrate metabolism. Molecular Microbiology 60, 287–298.CrossRefGoogle ScholarPubMed
Verhees, C. H., Akerboom, J., Schiltz, E., Vos, W. M. & Oost, J. (2002). Molecular and biochemical characterization of a distinct type of fructose-1,6-bisphosphatase from Pyrococcus furiosus. Journal of Bacteriology 184, 3401–3405.CrossRefGoogle ScholarPubMed
Wolfe, A. J. (2005). The acetate switch. Microbiology and Molecular Biology Reviews 69, 12–50.CrossRefGoogle ScholarPubMed
Christensen, J., Christiansen, T., Gombert, A. K., Thykaer, J. & Nielsen, J. (2001). Simple and robust method for estimation of the split between the oxidative pentose phosphate pathway and the Embden-Meyerhof-Parnas pathway in microorganisms. Biotechnology and Bioengineering 74, 517–523.CrossRefGoogle ScholarPubMed
Gibson, J. L. & Tabita, F. R. (1996). The molecular regulation of the reductive pentose phosphate pathway in proteobacteria and cyanobacteria. Archives in Microbiology 166, 141–150.CrossRefGoogle ScholarPubMed
Orita, I., Sato, T., Yurimoto, H., Kato, N., Atomi, H., Imanaka, T. & Sakai, Y. (2006). The ribulose monophosphate pathway substitutes for the missing pentose phosphate pathway in the archaeon Thermococcus kodakaraensis. Journal of Bacteriology 188, 4698–4704.CrossRefGoogle ScholarPubMed
Takayama, S., McGarvey, G. J. & Wong, C. H. (1997). Microbial aldolases and transketolases: new biocatalytic approaches to simple and complex sugars. Annual Review of Microbiology 51, 285–310.CrossRefGoogle ScholarPubMed
Conway, T. (1992). The Entner-Doudoroff pathway: history, physiology and molecular biology. FEMS Microbiology Reviews 103, 1–28.CrossRefGoogle Scholar
Egan, S. E., Fliege, R., Tong, S. X., Shibata, A., Wolf, R. E. & Conway, T. (1992). Molecular characterization of the Entner-Doudoroff pathway in Escherichia coli – sequence analysis and localization of promoters for the edd-eda operon. Journal of Bacteriology 174, 4638–4646.CrossRefGoogle ScholarPubMed
Fuhrer, T., Fischer, E. & Sauer, U. (2005). Experimental identification and quantification of glucose metabolism in seven bacterial species. Journal of Bacteriology 187, 1581–1590.CrossRefGoogle ScholarPubMed
Garnova, E. S. & Krasil'nikova, E. N. (2003). Carbohydrate metabolism of the saccharolytic alkaliphilic anaerobes Halonatronum saccharophilum, Amphibacillus fermentum, and Amphibacillus tropicus. Microbiology-Moscow 72, 558–563.CrossRefGoogle ScholarPubMed
Gunnarsson, N., Mortensen, U. H., Sosio, M. & Nielsen, J. (2004). Identification of the Entner-Doudoroff pathway in an antibiotic-producing actinomycete species. Molecular Microbiology 52, 895–902.CrossRefGoogle Scholar
Hong, S. H., Park, S. J., Moon, S. Y., Park, J. P. & Lee, S. Y. (2003). In silico prediction and validation of the importance of the Entner-Doudoroff pathway in poly(3-hydroxybutyrate) production by metabolically engineered Escherichia coli. Biotechnology and Bioengineering 83, 854–863.CrossRefGoogle ScholarPubMed
Johnsen, U., Selig, M., Xavier, K. B., Santos, H. & Schonheit, P. (2001). Different glycolytic pathways for glucose and fructose in the halophilic archaeon Halococcus saccharolyticus. Archives of Microbiology 175, 52–61.CrossRefGoogle ScholarPubMed
Murray, E. L. & Conway, T. (2005). Multiple regulators control expression of the Entner-Doudoroff aldolase (Eda) of Escherichia coli. Journal of Bacteriology 187, 991–1000.CrossRefGoogle ScholarPubMed
Oren, A. & Mana, L. (2003). Sugar metabolism in the extremely halophilic bacterium Salinibacter ruber. FEMS Microbiology Letters 223, 83–87.CrossRefGoogle ScholarPubMed
Peekhaus, N. & Conway, T. (1998). What's for dinner – Entner-Doudoroff metabolism in Escherichia coli. Journal of Bacteriology 180, 3495–3502.Google ScholarPubMed
Pruss, B. M., Campbell, J. W., Dyk, T. K., Zhu, C., Kogan, Y. & Matsumura, P. (2003). FlhD/FlhC is a regulator of anaerobic respiration and the Entner-Doudoroff pathway through induction of the methyl-accepting chemotaxis protein Aer. Journal of Bacteriology 185, 534–543.CrossRefGoogle ScholarPubMed
Reher, M., Bott, M. & Schonheit, P. (2006). Characterization of glycerate kinase (2-phosphoglycerate forming), a key enzyme of the nonphosphorylative Entner-Doudoroff pathway, from the thermoacidophilic euryarchaeon Picrophilus torridus. FEMS Microbiology Letters 259, 113–119.CrossRefGoogle Scholar
Siebers, B., Tjaden, B., Michalke, K., Dorr, C., Ahmed, H., Zaparty, M., Gordon, P., Sensen, C. W., Zibat, A., Klenk, H.-P., Schuster, S. C. & Hensel, R. (2004). Reconstruction of the central carbohydrate metabolism of Thermoproteus tenax by use of genomic and biochemical data. Journal of Bacteriology 186, 2179–2194.CrossRefGoogle ScholarPubMed
Posthuma, C. C., Bader, R., Engelmann, R., Postma, P. W., Hengstenberg, W. & Pouwels, P. H. (2002). Expression of the xylulose 5-phosphate phosphoketolase gene, xpkA, from Lactobacillus pentosus MD363 is induced by sugars that are fermented via the phosphoketolase pathway and is repressed by glucose mediated by CcpA and the mannose phosphoenolpyruvate phosphotransferase system. Applied and Environmental Microbiology 68, 831–837.CrossRefGoogle Scholar
Richter, H., Hamann, I. & Unden, G. (2003). Use of the mannitol pathway in fructose fermentation of Oenococcus oeni due to limiting redox regeneration capacity of the ethanol pathway. Archives of Microbiology 179, 227–233.CrossRefGoogle ScholarPubMed
Cocaign-Bousquet, M., Even, S., Lindley, N. D. & Loubiere, P. (2002). Anaerobic sugar catabolism in Lactococcus lactis: genetic regulation and enzyme control over pathway flux. Applied Microbiology and Biotechnology 60, 24–32.CrossRefGoogle ScholarPubMed
Vos, W. M., Kengen, S. W., Voorhorst, W. G. & Oost, J. (1998). Sugar utilization and its control in hyperthermophiles. Extremophiles 2, 201–205.CrossRefGoogle ScholarPubMed
Klamt, S. & Stelling, J. (2003). Two approaches for metabolic pathway analysis?Trends in Biotechnology 21, 64–69.CrossRefGoogle ScholarPubMed
Portais, J. C. & Delort, A. M. (2002). Carbohydrate cycling in microorganisms: what can 13C-NMR tell us?FEMS Microbiology Reviews 26, 375–402.Google Scholar
Romano, A. H. & Conway, T. (1996). Evolution of carbohydrate metabolic pathways. Research in Microbiology 147, 448–455.CrossRefGoogle ScholarPubMed
Schilling, C. H., Schuster, S., Palsson, B. O. & Heinrich, R. (1999). Metabolic pathway analysis: basic concepts and scientific applications in the post-genomic era. Biotechnology Progress 15, 296–303.CrossRefGoogle ScholarPubMed
Siebers, B. & Schonheit, P. (2005). Unusual pathways and enzymes of central carbohydrate metabolism in archaea. Current Opinion in Microbiology 8, 695–705.CrossRefGoogle ScholarPubMed
Bruckner, R. & Titgemeyer, F. (2002). Carbon catabolite repression in bacteria: choice of the carbon source and autoregulatory limitation of sugar utilization. FEMS Microbiology Letters 209, 141–148.CrossRefGoogle ScholarPubMed
Plantinga, T. H., Does, C. & Driessen, A. J. M. (2004). Transporter's evolution and carbohydrate metabolic clusters. Trends in Microbiology 12, 4–7.CrossRefGoogle ScholarPubMed
Asanuma, N. & Hino, T. (2006). Presence of NADP+-specific glyceraldehyde-3-phosphate dehydrogenase and CcpA-dependent transcription of its gene in the ruminal bacterium Streptococcus bovis. FEMS Microbiology Letters 257, 17–23.CrossRefGoogle ScholarPubMed
Brunner, N. A., Siebers, B. & Hensel, R. (2001). Role of two different glyceraldehyde-3-phosphate dehydrogenases in controlling the reversible Embden-Meyerhof-Parnas pathway in Thermoproteus tenax: regulation on protein and transcript level. Extremophiles 5, 101–109.CrossRefGoogle ScholarPubMed
Hansen, T. & Schoenheit, P. (2001). Sequence, expression, and characterization of the first archaeal ATP-dependent 6-phosphofructokinase, a non-allosteric enzyme related to the phosphofructokinase-B sugar kinase family, from the hyperthermophilic crenarchaeote Aeropyrum pernix. Archives of Microbiology 177, 62–69.CrossRefGoogle ScholarPubMed
Hansen, T. & Schonheit, P. (2004). ADP-dependent 6-phosphofructokinase, an extremely thermophilic, non-allosteric enzyme from the hyperthermophilic, sulfate-reducing archaeon Archaeoglobus fulgidus strain 7324. Extremophiles 8, 29–35.CrossRefGoogle ScholarPubMed
Hansen, T., Reichstein, B., Schmid, R. & Schonheit, P. (2002). The first archaeal ATP-dependent glucokinase, from the hyperthermophilic crenarchaeon Aeropyrum pernix, represents a monomeric, extremely thermophilic ROK glucokinase with broad hexose specificity. Journal of Bacteriology 184, 5955–5965.CrossRefGoogle ScholarPubMed
Imanaka, H., Yamatsu, A., Fukui, T., Atomi, H. & Imanaka, T. (2006). Phosphoenolpyruvate synthase plays an essential role for glycolysis in the modified Embden-Meyerhof pathway in Thermococcus kodakarensis. Molecular Microbiology 61, 898–909.CrossRefGoogle ScholarPubMed
Kengen, S. W. M., Stams, A. J. M. & Devos, W. M. (1996). Sugar metabolism of hyperthermophiles. FEMS Microbiology Reviews 18, 119–137.CrossRefGoogle Scholar
Kim, J. W. & Dang, C. V. (2005). Multifaceted roles of glycolytic enzymes. Trends in Biochemical Sciences 30, 142–150.CrossRefGoogle ScholarPubMed
Labes, A. & Schonheit, P. (2001). Sugar utilization in the hyperthermophilic, sulfate-reducing archaeon Archaeoglobus fulgidus strain 7324: starch degradation to acetate and CO2 via a modified Embden-Meyerhof pathway and acetyl-CoA synthetase (ADP-forming). Archives of Microbiology 176, 329–338.CrossRefGoogle Scholar
Labes, A. & Schonheit, P. (2003). ADP-dependent glucokinase from the hyperthermophilic sulfate-reducing archaeon Archaeoglobus fulgidus strain 7324. Archives of Microbiology 180, 69–75.CrossRefGoogle ScholarPubMed
Marsh, J. J. & Lebherz, H. G. (1992). Fructose-bisphosphate aldolases: an evolutionary history. Trends in Biochemical Sciences 17, 110–113.CrossRefGoogle Scholar
Nishimasu, H., Fushinobu, S., Shoun, H. & Wakagi, T. (2006). Identification and characterization of an ATP-dependent hexokinase with broad substrate specificity from the hyperthermophilic archaeon Sulfolobus tokodaii. Journal of Bacteriology 188, 2014–2019.CrossRefGoogle ScholarPubMed
Sakuraba, H. & Ohshima, T. (2002). Novel energy metabolism in anaerobic hyperthermophilic archaea: a modified Embden-Meyerhof pathway. Journal of Bioscience and Bioengineering 93, 441–448.CrossRefGoogle ScholarPubMed
Tanaka, S., Lee, S. O., Hamaoka, K., Kato, J., Takiguchi, N., Nakamura, K., Ohtake, H. & Kuroda, A. (2003). Strictly polyphosphate-dependent glucokinase in a polyphosphate-accumulating bacterium, Microlunatus phosphovorus. Journal of Bacteriology 185, 5654–5656.CrossRefGoogle Scholar
Tjaden, B., Plagens, A., Dorr, C., Siebers, B. & Hensel, R. (2006). Phosphoenolpyruvate synthetase and pyruvate, phosphate dikinase of Thermoproteus tenax: key pieces in the puzzle of archaeal carbohydrate metabolism. Molecular Microbiology 60, 287–298.CrossRefGoogle ScholarPubMed
Verhees, C. H., Tuininga, J. E., Kengen, S. W. M., Stams, A. J. M., Oost, J. & Vos, W. M. (2001). ADP-dependent phosphofructokinases in mesophilic and thermophilic methanogenic archaea. Journal of Bacteriology 183, 7145–7153.CrossRefGoogle ScholarPubMed
Villamon, E., Villalba, V., Nogueras, M. M., Tomas, J. M., Gozalbo, D. & Gil, M. L. (2003). Glyceraldehyde-3-phosphate dehydrogenase, a glycolytic enzyme present in the periplasm of Aeromonas hydrophila. Antonie van Leeuwenhoek 84, 31–38.CrossRefGoogle ScholarPubMed
Zakharchuk, L. M., Egorova, M. A., Tsaplina, I. A., Bogdanova, T. I., Krasil'nikova, E. N., Melamud, V. S. & Karavaiko, G. I. (2003). Activity of the enzymes of carbon metabolism in Sulfobacillus sibiricus under various conditions of cultivation. Microbiology-Moscow 72, 553–557.CrossRefGoogle Scholar
Zheng, P., Sun, J., Heuvel, J. & Zeng, A. (2006). Discovery and investigation of a new, second triose phosphate isomerase in Klebsiella pneumoniae. Journal of Biotechnology 125, 462–473.CrossRefGoogle ScholarPubMed
Ferguson, G. P., Totemeyer, S., Maclean, M. J. & Booth, I. R. (1998). Methylglyoxal production in bacteria: suicide or survival. Archives of Microbiology 170, 209–219.CrossRefGoogle ScholarPubMed
Grant, A. W., Steel, G., Waugh, H. & Ellis, E. M. (2003). A novel aldo-keto reductase from Escherichia coli can increase resistance to methylglyoxal toxicity. FEMS Microbiology Letters 218, 93–99.CrossRefGoogle ScholarPubMed
Ko, J., Kim, I., Yoo, S., Min, B., Kim, K. & Park, C. (2005). Conversion of methylglyoxal to acetol by Escherichia coli aldo-keto reductases. Journal of Bacteriology 187, 5782–5789.CrossRefGoogle ScholarPubMed
Liyanage, H., Kashket, S., Young, M. & Kashket, E. R. (2001). Clostridium beijerinckii and Clostridium difficile detoxify methylglyoxal by a novel mechanism involving glycerol dehydrogenase. Applied and Environmental Microbiology 67, 2004–2010.CrossRefGoogle ScholarPubMed
Maiden, M. F. J., Pham, C. & Kashket, S. (2004). Glucose toxicity effect and accumulation of methylglyoxal by the periodontal anaerobe Bacteroides forsythus. Anaerobe 10, 27–32.CrossRefGoogle ScholarPubMed
Weber, J., Kayser, A. & Rinas, U. (2005). Metabolic flux analysis of Escherichia coli in glucose-limited continuous culture. II. Dynamic response to famine and feast, activation of the methylglyoxal pathway and oscillatory behaviour. Microbiology-UK 151, 707–716.CrossRefGoogle ScholarPubMed
Xu, D., Liu, X., Guo, C. & Zhao, J. (2006). Methylglyoxal detoxification by an aldo-keto reductase in the cyanobacterium Synechococcus sp. PCC 7002. Microbiology-UK 152, 2013–2021.CrossRefGoogle ScholarPubMed
Alves, A. M. C. R., Euverink, G. J. W., Santos, H. & Dijkhuizen, L. (2001). Different physiological roles of ATP- and PPi-dependent phosphofructokinase isoenzymes in the methylotrophic actinomycete Amycolatopsis methanolica. Journal of Bacteriology 183, 7231–7240.CrossRefGoogle Scholar
Fillinger, S., Boschi-Muller, S., Azza, S., Dervyn, E., Branlant, G. & Aymerich, S. (2000). Two glyceraldehyde-3-phosphate dehydrogenases with opposite physiological roles in a nonphotosynthetic bacterium. Journal of Biological Chemistry 275, 14031–14037.CrossRefGoogle Scholar
Grochowski, L. L., Xu, H. & White, R. H. (2005). Ribose-5-phosphate biosynthesis in Methanocaldococcus jannaschii occurs in the absence of a pentose-phosphate pathway. Journal of Bacteriology 187, 7382–7389.CrossRefGoogle ScholarPubMed
Pernestig, A. K., Georgellis, D., Romeo, T., Suzuki, K., Tomenius, H., Normark, S. & Melefors, O. (2003). The Escherichia coli BarA-UvrY two-component system is needed for efficient switching between glycolytic and gluconeogenic carbon sources. Journal of Bacteriology 185, 843–853.CrossRefGoogle ScholarPubMed
Tjaden, B., Plagens, A., Dorr, C., Siebers, B. & Hensel, R. (2006). Phosphoenolpyruvate synthetase and pyruvate, phosphate dikinase of Thermoproteus tenax: key pieces in the puzzle of archaeal carbohydrate metabolism. Molecular Microbiology 60, 287–298.CrossRefGoogle ScholarPubMed
Verhees, C. H., Akerboom, J., Schiltz, E., Vos, W. M. & Oost, J. (2002). Molecular and biochemical characterization of a distinct type of fructose-1,6-bisphosphatase from Pyrococcus furiosus. Journal of Bacteriology 184, 3401–3405.CrossRefGoogle ScholarPubMed
Wolfe, A. J. (2005). The acetate switch. Microbiology and Molecular Biology Reviews 69, 12–50.CrossRefGoogle ScholarPubMed
Christensen, J., Christiansen, T., Gombert, A. K., Thykaer, J. & Nielsen, J. (2001). Simple and robust method for estimation of the split between the oxidative pentose phosphate pathway and the Embden-Meyerhof-Parnas pathway in microorganisms. Biotechnology and Bioengineering 74, 517–523.CrossRefGoogle ScholarPubMed
Gibson, J. L. & Tabita, F. R. (1996). The molecular regulation of the reductive pentose phosphate pathway in proteobacteria and cyanobacteria. Archives in Microbiology 166, 141–150.CrossRefGoogle ScholarPubMed
Orita, I., Sato, T., Yurimoto, H., Kato, N., Atomi, H., Imanaka, T. & Sakai, Y. (2006). The ribulose monophosphate pathway substitutes for the missing pentose phosphate pathway in the archaeon Thermococcus kodakaraensis. Journal of Bacteriology 188, 4698–4704.CrossRefGoogle ScholarPubMed
Takayama, S., McGarvey, G. J. & Wong, C. H. (1997). Microbial aldolases and transketolases: new biocatalytic approaches to simple and complex sugars. Annual Review of Microbiology 51, 285–310.CrossRefGoogle ScholarPubMed
Conway, T. (1992). The Entner-Doudoroff pathway: history, physiology and molecular biology. FEMS Microbiology Reviews 103, 1–28.CrossRefGoogle Scholar
Egan, S. E., Fliege, R., Tong, S. X., Shibata, A., Wolf, R. E. & Conway, T. (1992). Molecular characterization of the Entner-Doudoroff pathway in Escherichia coli – sequence analysis and localization of promoters for the edd-eda operon. Journal of Bacteriology 174, 4638–4646.CrossRefGoogle ScholarPubMed
Fuhrer, T., Fischer, E. & Sauer, U. (2005). Experimental identification and quantification of glucose metabolism in seven bacterial species. Journal of Bacteriology 187, 1581–1590.CrossRefGoogle ScholarPubMed
Garnova, E. S. & Krasil'nikova, E. N. (2003). Carbohydrate metabolism of the saccharolytic alkaliphilic anaerobes Halonatronum saccharophilum, Amphibacillus fermentum, and Amphibacillus tropicus. Microbiology-Moscow 72, 558–563.CrossRefGoogle ScholarPubMed
Gunnarsson, N., Mortensen, U. H., Sosio, M. & Nielsen, J. (2004). Identification of the Entner-Doudoroff pathway in an antibiotic-producing actinomycete species. Molecular Microbiology 52, 895–902.CrossRefGoogle Scholar
Hong, S. H., Park, S. J., Moon, S. Y., Park, J. P. & Lee, S. Y. (2003). In silico prediction and validation of the importance of the Entner-Doudoroff pathway in poly(3-hydroxybutyrate) production by metabolically engineered Escherichia coli. Biotechnology and Bioengineering 83, 854–863.CrossRefGoogle ScholarPubMed
Johnsen, U., Selig, M., Xavier, K. B., Santos, H. & Schonheit, P. (2001). Different glycolytic pathways for glucose and fructose in the halophilic archaeon Halococcus saccharolyticus. Archives of Microbiology 175, 52–61.CrossRefGoogle ScholarPubMed
Murray, E. L. & Conway, T. (2005). Multiple regulators control expression of the Entner-Doudoroff aldolase (Eda) of Escherichia coli. Journal of Bacteriology 187, 991–1000.CrossRefGoogle ScholarPubMed
Oren, A. & Mana, L. (2003). Sugar metabolism in the extremely halophilic bacterium Salinibacter ruber. FEMS Microbiology Letters 223, 83–87.CrossRefGoogle ScholarPubMed
Peekhaus, N. & Conway, T. (1998). What's for dinner – Entner-Doudoroff metabolism in Escherichia coli. Journal of Bacteriology 180, 3495–3502.Google ScholarPubMed
Pruss, B. M., Campbell, J. W., Dyk, T. K., Zhu, C., Kogan, Y. & Matsumura, P. (2003). FlhD/FlhC is a regulator of anaerobic respiration and the Entner-Doudoroff pathway through induction of the methyl-accepting chemotaxis protein Aer. Journal of Bacteriology 185, 534–543.CrossRefGoogle ScholarPubMed
Reher, M., Bott, M. & Schonheit, P. (2006). Characterization of glycerate kinase (2-phosphoglycerate forming), a key enzyme of the nonphosphorylative Entner-Doudoroff pathway, from the thermoacidophilic euryarchaeon Picrophilus torridus. FEMS Microbiology Letters 259, 113–119.CrossRefGoogle Scholar
Siebers, B., Tjaden, B., Michalke, K., Dorr, C., Ahmed, H., Zaparty, M., Gordon, P., Sensen, C. W., Zibat, A., Klenk, H.-P., Schuster, S. C. & Hensel, R. (2004). Reconstruction of the central carbohydrate metabolism of Thermoproteus tenax by use of genomic and biochemical data. Journal of Bacteriology 186, 2179–2194.CrossRefGoogle ScholarPubMed
Posthuma, C. C., Bader, R., Engelmann, R., Postma, P. W., Hengstenberg, W. & Pouwels, P. H. (2002). Expression of the xylulose 5-phosphate phosphoketolase gene, xpkA, from Lactobacillus pentosus MD363 is induced by sugars that are fermented via the phosphoketolase pathway and is repressed by glucose mediated by CcpA and the mannose phosphoenolpyruvate phosphotransferase system. Applied and Environmental Microbiology 68, 831–837.CrossRefGoogle Scholar
Richter, H., Hamann, I. & Unden, G. (2003). Use of the mannitol pathway in fructose fermentation of Oenococcus oeni due to limiting redox regeneration capacity of the ethanol pathway. Archives of Microbiology 179, 227–233.CrossRefGoogle ScholarPubMed
Cocaign-Bousquet, M., Even, S., Lindley, N. D. & Loubiere, P. (2002). Anaerobic sugar catabolism in Lactococcus lactis: genetic regulation and enzyme control over pathway flux. Applied Microbiology and Biotechnology 60, 24–32.CrossRefGoogle ScholarPubMed
Vos, W. M., Kengen, S. W., Voorhorst, W. G. & Oost, J. (1998). Sugar utilization and its control in hyperthermophiles. Extremophiles 2, 201–205.CrossRefGoogle ScholarPubMed
Klamt, S. & Stelling, J. (2003). Two approaches for metabolic pathway analysis?Trends in Biotechnology 21, 64–69.CrossRefGoogle ScholarPubMed
Portais, J. C. & Delort, A. M. (2002). Carbohydrate cycling in microorganisms: what can 13C-NMR tell us?FEMS Microbiology Reviews 26, 375–402.Google Scholar
Romano, A. H. & Conway, T. (1996). Evolution of carbohydrate metabolic pathways. Research in Microbiology 147, 448–455.CrossRefGoogle ScholarPubMed
Schilling, C. H., Schuster, S., Palsson, B. O. & Heinrich, R. (1999). Metabolic pathway analysis: basic concepts and scientific applications in the post-genomic era. Biotechnology Progress 15, 296–303.CrossRefGoogle ScholarPubMed
Siebers, B. & Schonheit, P. (2005). Unusual pathways and enzymes of central carbohydrate metabolism in archaea. Current Opinion in Microbiology 8, 695–705.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Glycolysis
  • Byung Hong Kim, Korea Institute of Science and Technology, Seoul, Geoffrey Michael Gadd, University of Dundee
  • Book: Bacterial Physiology and Metabolism
  • Online publication: 05 September 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9780511790461.005
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Glycolysis
  • Byung Hong Kim, Korea Institute of Science and Technology, Seoul, Geoffrey Michael Gadd, University of Dundee
  • Book: Bacterial Physiology and Metabolism
  • Online publication: 05 September 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9780511790461.005
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Glycolysis
  • Byung Hong Kim, Korea Institute of Science and Technology, Seoul, Geoffrey Michael Gadd, University of Dundee
  • Book: Bacterial Physiology and Metabolism
  • Online publication: 05 September 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9780511790461.005
Available formats
×