Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2025-01-03T15:00:01.301Z Has data issue: false hasContentIssue false

8 - Host-mediated invasion: the Salmonella Typhimurium trigger

from Part III - Host cell signaling by bacteria

Published online by Cambridge University Press:  12 August 2009

Brit Winnen
Affiliation:
Institute of Microbiology, ETH Zurich, Zurich, Switzerland
Wolf-Dietrich Hardt
Affiliation:
Institute of Microbiology, ETH Zurich, Zurich, Switzerland
Beth A. McCormick
Affiliation:
Harvard University, Massachusetts
Get access

Summary

INTRODUCTION

The epithelial layer of mucosal surfaces in the gastrointestinal tract is a busy surface for communication between the host and both commensal and pathogenic bacteria. In the case of invasive pathogens, the epithelium represents the major barrier that has to be overcome. Important virulence determinants include those mediating adhesion to and invasion of the epithelium. Different strategies are used to induce the uptake of invasive bacteria (Figure 8.1). For example, Yersinia spp. and Listeria monocytogenes express adhesins that bind tightly to host cell-surface proteins. This binding interaction initiates invasion by triggering signaling pathways normally involved in the regulation of cell adhesion. This invasion mechanism has been termed “zipper” because the host cell membrane is wrapped tightly around the bacteria (Mengaud et al., 1996). For more details on the zipper mechanism; see Alonso and Garcia-del Portillo (2004). More recently, a variant of this mechanism, termed the “tandem β-zipper,” has been identified. As an example of this entry mechanism, pathogenic bacteria like Staphylococcus aureus express surface proteins that bind to human fibronectin. This fibronectin coat facilitates binding to host cell-surface receptors and mediates invasion (Figure 8.1b) (Schwarz-Linek et al., 2004). A third strategy, termed “trigger mechanism,” is employed by Salmonella and Shigella spp. This involves specialized protein-transport systems called type III secretion systems (TTSS) to inject virulence factors (effector proteins) directly into the cytosol of the host cells. The translocated effector proteins trigger host signaling cascades that mediate a variety of responses, including pathogen uptake (Hueck, 1998).

Type
Chapter
Information
Bacterial-Epithelial Cell Cross-Talk
Molecular Mechanisms in Pathogenesis
, pp. 213 - 243
Publisher: Cambridge University Press
Print publication year: 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adam, T., Arpin, M., Prevost, M. C., Gounon, P., and Sansonetti, P. J. (1995). Cytoskeletal rearrangements and the functional role of T-plastin during entry of Shigella flexneri into HeLa cells. J. Cell Biol. 129, 367–381.CrossRefGoogle ScholarPubMed
Aepfelbacher, M., Trasak, C., Wilharm, G., et al. (2003). Characterization of YopT effects on Rho GTPases in Yersinia enterocolitica-infected cells. J Biol Chem. 278, 33 217–33 223.CrossRefGoogle ScholarPubMed
Allaoui, A., Menard, R., Sansonetti, P. J., and Parsot, C. (1993). Characterization of the Shigella flexneri ipgD and ipgF genes, which are located in the proximal part of the mxi locus. Infect. Immun. 61, 1707–1714.Google ScholarPubMed
Alonso, A. and Garcia-del Portillo, F. (2004). Hijacking of eukaryotic functions by intracellular bacterial pathogens. Int. Microbiol. 7, 181–191.Google ScholarPubMed
Alrutz, M. A., Srivastava, A., Wong, K. W., et al. (2001). Efficient uptake of Yersinia pseudotuberculosis via integrin receptors involves a Rac1-Arp 2/3 pathway that bypasses N-WASP function. Mol. Microbiol. 42, 689–703.CrossRefGoogle ScholarPubMed
Autenrieth, I. B. and Firsching, R. (1996). Penetration of M cells and destruction of Peyer's patches by Yersinia enterocolitica: an ultrastructural and histological study. J. Med. Microbiol. 44, 285–294.CrossRefGoogle ScholarPubMed
Bakshi, C. S., Singh, V. P., Wood, M. W., et al. (2000). Identification of SopE2, a Salmonella secreted protein which is highly homologous to SopE and involved in bacterial invasion of epithelial cells. J. Bacteriol. 182, 2341–2344.CrossRefGoogle ScholarPubMed
Black, D. S. and Bliska, J. B. (1997). Identification of p130C as a substrate of Yersinia YopH (Yop 51), a bacterial protein tyrosine phosphatasc that translocates into mammalian cells targets focal adhesions. EMBO J. 16, 2730–2744.CrossRefGoogle Scholar
Bliska, J. B., Guan, K. L., Dixon, J. E., and Falkow, S. (1991). Tyrosine phosphate hydrolysis of host proteins by an essential Yersinia virulence determinant. Proc. Natl. Acad. Sci. U. S. A. 88, 1187–1191.CrossRefGoogle ScholarPubMed
Bourdet-Sicard, R., Rudiger, M., Jockusch, B. M., et al. (1999). Binding of the Shigella protein IpaA to vinculin induces F-actin depolymerization. EMBO J. 18, 5853–5862.CrossRefGoogle ScholarPubMed
Bourdet-Sicard, R., Egile, C., Sansonetti, P. J., and Tran Van Nhieu, G. (2000). Diversion of cytoskeletal processes by Shigella during invasion of epithelial cells. Microbes Infect. 2, 813–819.CrossRefGoogle ScholarPubMed
Bowen, D., Rocheleau, T. A., Blackburn, M., et al. (1998). Insecticidal toxins from the bacterium Photorhabdus luminescens. Science 280, 2129–2132.CrossRefGoogle ScholarPubMed
Boyd, E. F. and Hartl, D. L. (1998). Salmonella virulence plasmid: modular acquisition of the spv virulence region by an F-plasmid in Salmonella enterica subspecies I and insertion into the chromosome of subspecies II, IIIa, IV and VII isolates. Genetics 149, 1183–1190.Google ScholarPubMed
Browne, S. H., Lesnick, M. L., and Guiney, D. G. (2002). Genetic requirements for salmonella-induced cytopathology in human monocyte-derived macrophages. Infect. Immun. 70, 7126–7135.CrossRefGoogle ScholarPubMed
Brumell, J. H. and Grinstein, S. (2004). Salmonella redirects phagosomal maturation. Curr. Opin Microbiol. 7, 78–84.CrossRefGoogle ScholarPubMed
Brussow, H., Canchaya, C., and Hardt, W. D. (2004). Phages and the evolution of bacterial pathogens: from genomic rearrangements to lysogenic conversion. Microbiol. Mol. Biol. Rev. 68, 560–602.CrossRefGoogle ScholarPubMed
Buchwald, G., Friebel, A., Galan, J. E., et al. (2002). Structural basis for the reversible activation of a Rho protein by the bacterial toxin SopE. EMBO J. 21, 3286–3295.CrossRefGoogle ScholarPubMed
Chang, J., Chen, J., and Zhou, D. (2005). Delineation and characterization of the actin nucleation and effector translocation activities of Salmonella SipC. Mol. Microbiol. 55, 1379–1389.CrossRefGoogle ScholarPubMed
Chen, C. Y., Eckmann, L., Libby, S. J., et al. (1996). Expression of Salmonella typhimurium rpoS and rpoS-dependent genes in the intracellular environment of eukaryotic cells. Infect. Immun. 64, 4739–4743.Google ScholarPubMed
Chen, H., Bernstein, B. W., and Bamburg, J. R. (2000). Regulating actin-filament dynamics in vivo. Trends Biochem. Sci. 25, 19–23.CrossRefGoogle ScholarPubMed
Chen, L. M., Hobbie, S., and Galan, J. E. (1996). Requirement of CDC42 for Salmonella-induced cytoskeletal and nuclear responses. Science 274, 2115–2118.CrossRefGoogle ScholarPubMed
Clark, M. A., Hirst, B. H., and Jepson, M. A. (1998). M-cell surface beta1 integrin expression and invasin-mediated targeting of Yersinia pseudotuberculosis to mouse Peyer's patch M cells. Infect. Immun. 66, 1237–1243.Google ScholarPubMed
Clerc, P. L., Ryter, A., Mounier, J., and Sansonetti, P. J. (1987). Plasmid-mediated early killing of eucaryotic cells by Shigella flexneri as studied by infection of J774 macrophages. Infect. Immun. 55, 521–527.Google ScholarPubMed
Collazo, C. M., and Galan, J. E. (1997). The invasion-associated type III system of Salmonella typhimurium directs the translocation of Sip proteins into the host cell. Mol. Microbiol. 24, 747–756.CrossRefGoogle ScholarPubMed
Comerci, D. J., Martinez-Lorenzo, M. J., Sieira, R., Gorvel, J. P., and Ugalde, R. A. (2001). Essential role of the VirB machinery in the maturation of the Brucella abortus-containing vacuole. Cell Microbiol. 3, 159–168.CrossRefGoogle ScholarPubMed
Cossart, P. (2000). Actin-based motility of pathogens: the Arp2/3 complex is a central player. Cell Microbiol. 2, 195–205.CrossRefGoogle ScholarPubMed
Cossart, P. and Sansonetti, P. J. (2004). Bacterial invasion: the paradigms of enteroinvasive pathogens. Science 304, 242–248.CrossRefGoogle ScholarPubMed
Criss, A. K. and Casanova, J. E. (2003). Coordinate regulation of Salmonella enterica serovar Typhimurium invasion of epithelial cells by the Arp2/3 complex and Rho GTPases. Infect. Immun. 71, 2885–2891.CrossRefGoogle ScholarPubMed
Dehio, C., Prevost, M. C., and Sansonetti, P. J. (1995). Invasion of epithelial cells by Shigella flexneri induces tyrosine phosphorylation of cortactin by a pp60c-src-mediated signalling pathway. EMBO J. 14, 2471–2482.Google ScholarPubMed
Delrue, R. M., Martinez-Lorenzo, M., Lestrate, P., et al. (2001). Identification of Brucella spp. genes involved in intracellular trafficking. Cell Microbiol. 3, 487–497.CrossRefGoogle ScholarPubMed
Dukuzumuremyi, J. M., Rosqvist, R., Hallberg, B., et al. (2000). The Yersinia protein kinase A is a host factor inducible RhoA/Rac-binding virulence factor. J. Biol. Chem. 275, 35 281–35 290.CrossRefGoogle ScholarPubMed
Dumenil, G., Olivo, J. C., Pellegrini, S., et al. (1998). Interferon alpha inhibits a Src-mediated pathway necessary for Shigella-induced cytoskeletal rearrangements in epithelial cells. J. Cell Biol. 143, 1003–1012.CrossRefGoogle ScholarPubMed
Dumenil, G., Sansonetti, P., and Tran Van Nhieu, G. (2000). Src tyrosine kinase activity down-regulates Rho-dependent responses during Shigella entry into epithelial cells and stress fibre formation. J. Cell Sci. 113 (Pt 1), 71–80.Google Scholar
Etienne-Manneville, S. and Hall, A. (2002). Rho GTPases in cell biology. Nature 420, 629–635.CrossRefGoogle ScholarPubMed
Fierer, J., Hatlen, L., Lin, J. P., et al. (1990). Successful treatment using gentamicin liposomes of Salmonella dublin infections in mice. Antimicrob. Agents Chemother. 34, 343–348.CrossRefGoogle ScholarPubMed
Fierer, J., Krause, M., Tauxe, R., and Guiney, D. (1992). Salmonella typhimurium bacteremia: association with the virulence plasmid. J. Infect. Dis. 166, 639–642.CrossRefGoogle ScholarPubMed
Finlay, B. B., Ruschkowski, S., and Dedhar, S. (1991). Cytoskeletal rearrangements accompanying salmonella entry into epithelial cells. J. Cell Sci. 99 (Pt 2), 283–296.Google ScholarPubMed
Francis, C. L., Ryan, T. A., Jones, B. D., Smith, S. J., and Falkow, S. (1993). Ruffles induced by Salmonella and other stimuli direct macropinocytosis of bacteria. Nature 364, 639–642.CrossRefGoogle Scholar
Friebel, A., Ilchmann, H., Aelpfelbacher, M., et al. (2001). SopE and SopE2 from Salmonella typhimurium activate different sets of RhoGTPases of the host cell. J. Biol. Chem. 276, 34 035–34 040.CrossRefGoogle ScholarPubMed
Fu, Y. and Galan, J. E. (1999). A Salmonella protein antagonizes Rac-1 and Cdc42 to mediate host-cell recovery after bacterial invasion. Nature 401, 293–297.CrossRefGoogle ScholarPubMed
Galan, J. E. (2001). Salmonella interactions with host cells: type III secretion at work. Annu. Rev. Cell Dev. Biol. 17, 53–86.CrossRefGoogle ScholarPubMed
Galyov, E. E., Hakansson, S., Forsberg, A., and Wolf-Watz, H. (1993). A secreted protein kinase of Yersinia pseudotuberculosis is an indispensable virulence determinant. Nature 361, 730–732.CrossRefGoogle ScholarPubMed
Garcia-del Portillo, F. and Finlay, B. B. (1994). Salmonella invasion of nonphagocytic cells induces formation of macropinosomes in the host cell. Infect. Immun. 62, 4641–4645.Google ScholarPubMed
Garcia-del Portillo, F., Zwick, M. B., Leung, K. Y., and Finlay, B. B. (1993a). Salmonella induces the formation of filamentous structures containing lysosomal membrane glycoproteins in epithelial cells. Proc. Natl. Acad. Sci. U.S.A. 90, 10 544–10 548.CrossRefGoogle Scholar
Garcia-del Portillo, F., Zwick, M. B., Leung, K. Y., and Finlay, B. B. (1993a). Intracellular replication of Salmonella within epithelial cells is associated with filamentous structures containing lysosomal membrane glycoproteins. Infect. Agents Dis. 2, 227–231.Google Scholar
Garner, M. J., Hayward, R. D., and Koronakis, V. (2002). The Salmonella pathogenicity island 1 secretion system directs cellular cholesterol redistribution during mammalian cell entry and intracellular trafficking. Cell Microbiol. 4, 153–165.CrossRefGoogle ScholarPubMed
Ginocchio, C., Pace, J., and Galan, J. E. (1992). Identification and molecular characterization of a Salmonella typhimurium gene involved in triggering the internalization of salmonellae into cultured epithelial cells. Proc. Natl. Acad. Sci. U. S. A. 89, 5976–5980.CrossRefGoogle ScholarPubMed
Goldberg, M. B. (2001). Actin-based motility of intracellular microbial pathogens. Microbiol. Mol. Biol. Rev. 65, 595–626.CrossRefGoogle ScholarPubMed
Gouin, E., Welch, M. D., and Cossart, P. (2005). Actin-based motility of intracellular pathogens. Curr. Opin. Microbiol. 8, 35–45.CrossRefGoogle ScholarPubMed
Guan, K. L. and Dixon, J. E. (1990). Protein tyrosine phosphatase activity of an essential virulence determinant in Yersinia. Science 249, 553–556.CrossRefGoogle ScholarPubMed
Guiney, D. G. and Lesnick, M. (2005). Targeting of the actin cytoskeleton during infection by Salmonella strains. Clin. Immunol. 114, 248–255.CrossRefGoogle ScholarPubMed
Guiney, D. G., Libby, S., Fang, F. C., Krause, M., and Fierer, J. (1995). Growth-phase regulation of plasmid virulence genes in Salmonella. Trends Microbiol. 3, 275–279.CrossRefGoogle ScholarPubMed
Gulig, P. A. and Doyle, T. J. (1993). The Salmonella typhimurium virulence plasmid increases the growth rate of salmonellae in mice. Infect. Immun. 61, 504–511.Google ScholarPubMed
Gulig, P. A., Doyle, T. J., Hughes, J. A., and Matsui, H. (1998). Analysis of host cells associated with the Spv-mediated increased intracellular growth rate of Salmonella typhimurium in mice. Infect. Immun. 66, 2471–2485.Google ScholarPubMed
Hall, A. (1998). Rho GTPases and the actin cytoskeleton. Science 279, 509–514.CrossRefGoogle ScholarPubMed
Hamid, N., Gustavsson, A., Andersson, K., et al. (1999). YopH dephosphorylates Cas and Fyn-binding protein in macrophages. Microb. Pathog. 27, 231–242.CrossRefGoogle ScholarPubMed
Hapfelmeier, S., Ehrbar, K., Stecher, B., Barthel, M., Kremer, M., and Hardt, W. D. (2004). Role of the Salmonella pathogenicity island 1 effector proteins SipA, SopB, SopE, and SopE2 in Salmonella enterica subspecies 1 Serovar Typhimurium colitis in streptomycin-pretreated mice. Infect. Immun. 72, 795–809.CrossRefGoogle ScholarPubMed
Hardt, W. D., Chen, L. M., Schuebel, K. E., Bustelo, X. R., and Galan, J. E. (1998). S. typhimurium encodes an activator of Rho GTPases that induces membrane ruffling and nuclear responses in host cells. Cell 93, 815–826.CrossRefGoogle ScholarPubMed
Hayward, R. D. and Koronakis, V. (1999). Direct nucleation and bundling of actin by the SipC protein of invasiveSalmonella.EMBO J. 18, 4926–4934.Google ScholarPubMed
Hayward, R. D. and Koronakis, V. (2002). Direct modulation of the host cell cytoskeleton by Salmonella actin-binding proteins. Trends Cell Biol. 12, 15–20.CrossRefGoogle ScholarPubMed
Hayward, R. D., Cain, R. J., McGhie, E. J., et al. (2005). Cholesterol binding by the bacterial type III translocon is essential for virulence effector delivery into mammalian cells. Mol. Microbiol. 56, 590–603.CrossRefGoogle ScholarPubMed
Heesemann, J., Gaede, K., and Autenrieth, I. B. (1993). Experimental Yersinia enterocolitica infection in rodents: a model for human yersiniosis. APMIS 101, 417–429.CrossRefGoogle ScholarPubMed
Hernandez, L. D., Hueffer, K., Wenk, M. R., and Galan, J. E. (2004). Salmonella modulates vesicular traffic by altering phosphoinositide metabolism. Science 304, 1805–1807.CrossRefGoogle ScholarPubMed
Higgs, H. N. and Pollard, T. D. (2001). Regulation of actin filament network formation through ARP2/3 complex: activation by a diverse array of proteins. Annu. Rev. Biochem. 70, 649–676.CrossRefGoogle ScholarPubMed
Hilbi, H., Moss, J. E., Hersh, D., et al. (1998). Shigella-induced apoptosis is dependent on caspase-1 which binds to IpaB. J. Biol. Chem. 273, 32 895–32 900.CrossRefGoogle ScholarPubMed
Hobbie, S., Chen, L. M., Davis, R. J., and Galan, J. E. (1997). Involvement of mitogen-activated protein kinase pathways in the nuclear responses and cytokine production induced by Salmonella typhimurium in cultured intestinal epithelial cells. J. Immunol. 159, 5550–5559.Google ScholarPubMed
Holden, D. W. (2002). Trafficking of the Salmonella vacuole in macrophages. Traffic 3, 161–169.CrossRefGoogle ScholarPubMed
Horwitz, M. A. (1983). The Legionnaires' disease bacterium (Legionella pneumophila) inhibits phagosome-lysosome fusion in human monocytes. J. Exp. Med. 158, 2108–2126.CrossRefGoogle ScholarPubMed
Hueck, C. J. (1998). Type III protein secretion systems in bacterial pathogens of animals and plants. Microbiol. Mol. Biol. Rev. 62, 379–433.Google ScholarPubMed
Hurley, B. P. and McCormick, B. A. (2003). Translating tissue culture results into animal models: the case of Salmonella typhimurium. Trends Microbiol. 11, 562–569.CrossRefGoogle ScholarPubMed
Iriarte, M. and Cornelis, G. R. (1998). YopT, a new Yersinia Yop effector protein, affects the cytoskeleton of host cells. Mol. Microbiol. 29, 915–929.CrossRefGoogle ScholarPubMed
Jepson, M. A., Collares-Buzato, C. B., Clark, M. A., Hirst, B. H., and Simmons, N. L. (1995). Rapid disruption of epithelial barrier function by Salmonella typhimurium is associated with structural modification of intercellular junctions. Infect. Immun. 63, 356–359.Google ScholarPubMed
Jepson, M. A., Kenny, B., and Leard, A. D. (2001). Role of sipA in the early stages of Salmonella typhimurium entry into epithelial cells. Cell Microbiol. 3, 417–426.CrossRefGoogle ScholarPubMed
Jockusch, B. M., Bubeck, P., Giehl, K., et al. (1995). The molecular architecture of focal adhesions. Annu. Rev. Cell Dev. Biol. 11, 379–416.CrossRefGoogle ScholarPubMed
Joshi, A. D., Sturgill-Koszycki, S., and Swanson, M. S. (2001). Evidence that Dot-dependent and -independent factors isolate the Legionella pneumophila phagosome from the endocytic network in mouse macrophages. Cell Microbiol. 3, 99–114.CrossRefGoogle ScholarPubMed
Juris, S. J., Rudolph, A. E., Huddler, D., Orth, K., and Dixon, J. E. (2000). A distinctive role for the Yersinia protein kinase: actin binding, kinase activation, and cytoskeleton disruption. Proc. Natl. Acad. Sci. U. S. A. 97, 9431–9436.CrossRefGoogle ScholarPubMed
Kaniga, K., Tucker, S., Trollinger, D., and Galan, J. E. (1995). Homologs of the Shigella IpaB and IpaC invasins are required for Salmonella typhimurium entry into cultured epithelial cells. J. Bacteriol. 177, 3965–3971.CrossRefGoogle ScholarPubMed
Kaniga, K., Uralil, J., Bliska, J. B., and Galan, J. E. (1996). A secreted protein tyrosine phosphatase with modular effector domains in the bacterial pathogen Salmonella typhimurium. Mol. Microbiol. 21, 633–641.CrossRefGoogle ScholarPubMed
Kespichayawattana, W., Rattanachetkul, S., Wanun, T., Utaisincharoen, P., and Sirisinha, S. (2000). Burkholderia pseudomallei induces cell fusion and actin-associated membrane protrusion: a possible mechanism for cell-to-cell spreading. Infect. Immun. 68, 5377–5384.CrossRefGoogle ScholarPubMed
Knodler, L. A., Finlay, B. B., and Steele-Mortimer, O. (2005). The Salmonella effector protein SopB protects epithelial cells from apoptosis by sustained activation of Akt. J. Biol. Chem. 280, 9058–9064.CrossRefGoogle ScholarPubMed
Kubori, T. and Galan, J. E. (2003). Temporal regulation of salmonella virulence effector function by proteasome-dependent protein degradation. Cell 115, 333–342.CrossRefGoogle ScholarPubMed
Kueltzo, L. A., Osiecki, J., Barker, J., et al. (2003). Structure–function analysis of invasion plasmid antigen C (IpaC) from Shigella flexneri. J. Biol. Chem. 278, 2792–2798.CrossRefGoogle ScholarPubMed
Kurita, A., Gotoh, H., Eguchi, M., et al. (2003). Intracellular expression of the Salmonella plasmid virulence protein, SpvB, causes apoptotic cell death in eukaryotic cells. Microb. Pathog. 35, 43–48.CrossRefGoogle ScholarPubMed
Lafont, F., Tran Van Nhieu, G., Hanada, K., Sansonetti, P., and Goot, F. G. (2002). Initial steps of Shigella infection depend on the cholesterol/sphingolipid raft-mediated CD44-IpaB interaction. EMBO J. 21, 4449–4457.CrossRefGoogle ScholarPubMed
Lawrence, J. G. (2005). Horizontal and vertical gene transfer: the life history of pathogens. Contrib. Microbiol. 12, 255–271.CrossRefGoogle ScholarPubMed
Lesnick, M. L., Reiner, N. E., Fierer, J., and Guiney, D. G. (2001). The Salmonella spvB virulence gene encodes an enzyme that ADP-ribosylates actin and destabilizes the cytoskeleton of eukaryotic cells. Mol. Microbiol. 39, 1464–1470.CrossRefGoogle ScholarPubMed
Libby, S. J., Lesnick, M., Hasegawa, P., Weidenhammer, E., and Guiney, D. G. (2000). The Salmonella virulence plasmid spv genes are required for cytopathology in human monocyte-derived macrophages. Cell Microbiol. 2, 49–58.CrossRefGoogle ScholarPubMed
Lilic, M., Galkin, V. E., Orlova, A., et al. (2003). Salmonella SipA polymerizes actin by stapling filaments with nonglobular protein arms. Science 301, 1918–1921.CrossRefGoogle ScholarPubMed
Machesky, L. M., Mullins, R. D., Higgs, H. N., et al. (1999). Scar, a WASp-related protein, activates nucleation of actin filaments by the Arp2/3 complex. Proc. Natl. Acad. Sci. U. S. A. 96, 3739–3744.CrossRefGoogle ScholarPubMed
Marcus, S. L., Wenk, M. R., Steele-Mortimer, O., and Finlay, B. B. (2001). A synaptojanin-homologous region of Salmonella typhimurium SigD is essential for inositol phosphatase activity and Akt activation. FEBS Lett. 494, 201–207.CrossRefGoogle ScholarPubMed
Marra, A. and Isberg, R. R. (1997). Invasin-dependent and invasin-independent pathways for translocation of Yersinia pseudotuberculosis across the Peyer's patch intestinal epithelium. Infect. Immun. 65, 3412–3421.Google ScholarPubMed
McCormick, B. A., Colgan, S. P., Delp-Archer, C., Miller, S. I., and Madara, J. L. (1993). Salmonella typhimurium attachment to human intestinal epithelial monolayers: transcellular signalling to subepithelial neutrophils. J. Cell Biol. 123, 895–907.CrossRefGoogle ScholarPubMed
McGhie, E. J., Hayward, R. D., and Koronakis, V. (2001). Cooperation between actin-binding proteins of invasive Salmonella: SipA potentiates SipC nucleation and bundling of actin. EMBO J. 20, 2131–2139.CrossRefGoogle ScholarPubMed
McGhie, E. J., Hayward, R. D., and Koronakis, V. (2004). Control of actin turnover by a salmonella invasion protein. Mol. Cell. 13, 497–510.CrossRefGoogle ScholarPubMed
Menard, R., Sansonetti, P. J., and Parsot, C. (1993). Nonpolar mutagenesis of the ipa genes defines IpaB, IpaC, and IpaD as effectors of Shigella flexneri entry into epithelial cells. J. Bacteriol. 175, 5899–5906.CrossRefGoogle ScholarPubMed
Mengaud, J., Ohayon, H., Gounon, P., Mege, R. M., and Cossart, P. (1996). E-cadherin is the receptor for internalin, a surface protein required for entry of L. monocytogenes into epithelial cells. Cell 84, 923–932.CrossRefGoogle ScholarPubMed
Mirold, S., Ehrbar, K., Weissmüller, A., et al. (2001). Salmonella host cell invasion emerged by acquisition of a mosaic of separate genetic elements, including Salmonella pathogenicity island 1 (SPI1), SPI5, and sopE2. J. Bacteriol. 183, 2348–2358.CrossRefGoogle Scholar
Molendijk, A. J., Ruperti, B., and Palme, K. (2004). Small GTPases in vesicle trafficking. Curr. Opin. Plant Biol. 7, 694–700.CrossRefGoogle ScholarPubMed
Mounier, J., Vasselon, T., Hellio, R., Lesourd, M., and Sansonetti, P. J. (1992). Shigella flexneri enters human colonic Caco-2 epithelial cells through the basolateral pole. Infect. Immun. 60, 237–248.Google ScholarPubMed
Mounier, J., Laurent, V., Hall, A., et al. (1999). Rho family GTPases control entry of Shigella flexneri into epithelial cells but not intracellular motility. J. Cell Sci. 112 (Pt 13), 2069–2080.Google Scholar
Murli, S., Watson, R. O., and Galan, J. E. (2001). Role of tyrosine kinases and the tyrosine phosphatase SptP in the interaction of Salmonella with host cells. Cell Microbiol. 3, 795–810.CrossRefGoogle ScholarPubMed
Nagai, H., Kagan, J. C., Zhu, X., Kahn, R. A., and Roy, C. R. (2002). A bacterial guanine nucleotide exchange factor activates ARF on Legionella phagosomes. Science 295, 679–682.CrossRefGoogle ScholarPubMed
Navarro, L., Alto, N. M., and Dixon, J. E. (2005). Functions of the Yersinia effector proteins in inhibiting host immune responses. Curr. Opin. Microbiol. 8, 21–27.CrossRefGoogle ScholarPubMed
Neutra, M. R., Frey, A., and Kraehenbuhl, J. P. (1996). Epithelial M cells: gateways for mucosal infection and immunization. Cell 86, 345–348.CrossRefGoogle ScholarPubMed
Neutra, M. R., Mantis, N. J., Frey, A., and Giannasca, P. J. (1999). The composition and function of M cell apical membranes: implications for microbial pathogenesis. Semin. Immunol. 11, 171–181.CrossRefGoogle ScholarPubMed
Nhieu, G. T., and Sansonetti, P. J. (1999). Mechanism of Shigella entry into epithelial cells. Curr. Opin. Microbiol. 2, 51–55.CrossRefGoogle ScholarPubMed
Niebuhr, K., Giuriato, S., Pedron, T., et al. (2002). Conversion of PtdIns(4,5)P(2) into PtdIns(5)P by the S. flexneri effector IpgD reorganizes host cell morphology. EMBO J. 21, 5069–5078.CrossRefGoogle Scholar
Nobes, C. D., and Hall, A. (1995). Rho, rac, and cdc42 GTPases regulate the assembly of multimolecular focal complexes associated with actin stress fibers, lamellipodia, and filopodia. Cell 81, 53–62.CrossRefGoogle ScholarPubMed
Norris, F. A., Wilson, M. P., Wallis, T. S., Galyov, E. E., and Majerus, P. W. (1998). SopB, a protein required for virulence of Salmonella dublin, is an inositol phosphate phosphatase. Proc. Natl. Acad. Sci. U. S. A. 95, 14 057–14 059.CrossRefGoogle ScholarPubMed
Osiecki, J. C., Barker, J., Picking, W. L., et al. (2001). IpaC from Shigella and SipC from Salmonella possess similar biochemical properties but are functionally distinct. Mol. Microbiol. 42, 469–481.CrossRefGoogle ScholarPubMed
Otto, H., Tezcan-Merdol, D., Girisch, R., et al. (2000). The spvB gene-product of the Salmonella enterica virulence plasmid is a mono(ADP-ribosyl)transferase. Mol. Microbiol. 37, 1106–1115.CrossRefGoogle ScholarPubMed
Persson, C., Carballeira, N., Wolf-Watz, H., and Fallman, M. (1997). The PTPase YopH inhibits uptake of Yersinia, tyrosine phosphorylation of p130Cas and FAK, and the associated accumulation of these proteins in peripheral focal adhesions. EMBO J. 16, 2307–2318.CrossRefGoogle ScholarPubMed
Picking, W. L., Coye, L., Osiecki, J. C., et al. (2001). Identification of functional regions within invasion plasmid antigen C (IpaC) of Shigella flexneri. Mol. Microbiol. 39, 100–111.CrossRefGoogle ScholarPubMed
Prehoda, K. E., Scott, J. A., Mullins, R. D., and Lim, W. A. (2000). Integration of multiple signals through cooperative regulation of the N-WASP-Arp2/3 complex. Science 290, 801–806.CrossRefGoogle ScholarPubMed
Rescigno, M., Urbano, M., Valzasina, B., et al. (2001). Dendritic cells express tight junction proteins and penetrate gut epithelial monolayers to sample bacteria. Nat. Immunol. 2, 361–367.CrossRefGoogle ScholarPubMed
Rosqvist, R., Forsberg, A., Rimpilainen, M., Bergman, T., and Wolf-Watz, H. (1990). The cytotoxic protein YopE of Yersinia obstructs the primary host defence. Mol. Microbiol. 4, 657–667.CrossRefGoogle ScholarPubMed
Sakaguchi, T., Kohler, H., Gu, X., McCormick, B. A., and Reinecker, H. C. (2002). Shigella flexneri regulates tight junction-associated proteins in human intestinal epithelial cells. Cell Microbiol. 4, 367–381.CrossRefGoogle ScholarPubMed
Sasakawa, C., Adler, B., Tobe, T., et al. (1989). Functional organization and nucleotide sequence of virulence region-2 on the large virulence plasmid in Shigella flexneri 2a. Mol. Microbiol. 3, 1191–1201.CrossRefGoogle ScholarPubMed
Scherer, C. A., Cooper, E., and Miller, S. I. (2000). The Salmonella type III secretion translocon protein SspC is inserted into the epithelial cell plasma membrane upon infection. Mol. Microbiol. 37, 1133–1145.CrossRefGoogle ScholarPubMed
Schlumberger, M. C., Friebel, A., Buchwald, G., et al. (2003). Amino acids of the bacterial toxin SopE involved in G-nucleotide exchange on Cdc42. J. Biol. Chem. 278, 27 149–27 159.CrossRefGoogle ScholarPubMed
Schwarz-Linek, U., Hook, M., and Potts, J. R. (2004). The molecular basis of fibronectin-mediated bacterial adherence to host cells. Mol. Microbiol. 52, 631–641.CrossRefGoogle ScholarPubMed
Sechi, A. S. and Wehland, J. (2004). ENA/VASP proteins: multifunctional regulators of actin cytoskeleton dynamics. Front. Biosci. 9, 1294–1310.CrossRefGoogle ScholarPubMed
Shao, F., Merritt, P. M., Bao, Z., Innes, R. W., and Dixon, J. E. (2002). A Yersinia effector and a Pseudomonas avirulence protein define a family of cysteine proteases functioning in bacterial pathogenesis. Cell 109, 575–588.CrossRefGoogle Scholar
Shao, F., Vacratsis, P. O., Bao, Z., et al. (2003). Biochemical characterization of the Yersinia YopT protease: cleavage site and recognition elements in Rho GTPases. Proc. Natl. Acad. Sci. U. S. A. 100, 904–909.CrossRefGoogle ScholarPubMed
Skoudy, A., Mounier, J., Aruffo, A., et al. (2000). CD44 binds to the Shigella IpaB protein and participates in bacterial invasion of epithelial cells. Cell Microbiol. 2, 19–33.CrossRefGoogle ScholarPubMed
Stamm, L. M., Morisaki, J. H., Gao, L. Y., et al. (2003). Mycobacterium marinum escapes from phagosomes and is propelled by actin-based motility. J. Exp. Med. 198, 1361–1368.CrossRefGoogle ScholarPubMed
Stebbins, C. E. and Galan, J. E. (2000). Modulation of host signaling by a bacterial mimic: structure of the Salmonella effector SptP bound to Rac1. Mol. Cell. 6, 1449–1460.CrossRefGoogle ScholarPubMed
Stebbins, C. E. and Galan, J. E. (2001). Structural mimicry in bacterial virulence. Nature 412, 701–705.CrossRefGoogle ScholarPubMed
Steele-Mortimer, O., Meresse, S., Gorvel, J. P., Toh, B. H., and Finlay, B. B. (1999). Biogenesis of Salmonella typhimurium-containing vacuoles in epithelial cells involves interactions with the early endocytic pathway. Cell Microbiol. 1, 33–49.CrossRefGoogle ScholarPubMed
Steele-Mortimer, O., Brumell, J. H., Knodler, L. A., Meresse, S., Lopez, A., and Finlay, B. B. (2002). The invasion-associated type III secretion system of Salmonella enterica serovar Typhimurium is necessary for intracellular proliferation and vacuole biogenesis in epithelial cells. Cell Microbiol. 4, 43–54.CrossRefGoogle ScholarPubMed
Stender, S., Friebel, A., Linder, S., et al. (2000). Identification of SopE2 from Salmonella typhimurium, a conserved guanine nucleotide exchange factor for Cdc42 of the host cell. Mol. Microbiol. 36, 1206–1221.CrossRefGoogle ScholarPubMed
Suetsugu, S., Miki, H., and Takenawa, T. (2002). Spatial and temporal regulation of actin polymerization for cytoskeleton formation through Arp2/3 complex and WASP/WAVE proteins. Cell. Motil. Cytoskeleton 51, 113–122.CrossRefGoogle ScholarPubMed
Takenawa, T. and Miki, H. (2001). WASP and WAVE family proteins: key molecules for rapid rearrangement of cortical actin filaments and cell movement. J. Cell Sci. 114, 1801–1809.Google ScholarPubMed
Terebiznik, M. R., Vieira, O. V., Marcus, S. L., et al. (2002). Elimination of host cell PtdIns(4,5)P(2) by bacterial SigD promotes membrane fission during invasion by Salmonella. Nat. Cell Biol. 4, 766–773.CrossRefGoogle ScholarPubMed
Tezcan-Merdol, D., Nyman, T., Lindberg, U., et al. (2001). Actin is ADP-ribosylated by the Salmonella enterica virulence-associated protein SpvB. Mol. Microbiol. 39, 606–619.CrossRefGoogle ScholarPubMed
Tran Van Nhieu, G., Ben-Ze'ev, A., and Sansonetti, P. J. (1997). Modulation of bacterial entry into epithelial cells by association between vinculin and the Shigella IpaA invasin. EMBO J. 16, 2717–2729.CrossRefGoogle ScholarPubMed
Tran Van Nhieu, G., Caron, E., Hall, A., and Sansonetti, P. J. (1999). IpaC induces actin polymerization and filopodia formation during Shigella entry into epithelial cells. EMBO J. 18, 3249–3262.CrossRefGoogle ScholarPubMed
Uchiya, K., Tobe, T., Komatsu, K., et al. (1995). Identification of a novel virulence gene, virA, on the large plasmid of Shigella, involved in invasion and intercellular spreading. Mol. Microbiol. 17, 241–250.CrossRefGoogle ScholarPubMed
Unsworth, K. E., Way, M., McNiven, M., Machesky, L., and Holden, D. W. (2004). Analysis of the mechanisms of Salmonella-induced actin assembly during invasion of host cells and intracellular replication. Cell Microbiol. 6, 1041–1055.CrossRefGoogle ScholarPubMed
Goot, F. G., Tran van Nhieu, G., Allaoui, A., Sansonetti, P., and Lafont, F. (2004). Rafts can trigger contact-mediated secretion of bacterial effectors via a lipid-based mechanism. J. Biol. Chem. 279, 47 792–47 798.CrossRefGoogle Scholar
Pawel-Rammingen, U., Telepnev, M. V., Schmidt, G., et al. (2000). GAP activity of the Yersinia YopE cytotoxin specifically targets the Rho pathway: a mechanism for disruption of actin microfilament structure. Mol. Microbiol. 36, 737–748.CrossRefGoogle Scholar
Wallis, T. S. and Galyov, E. E. (2000). Molecular basis of Salmonella-induced enteritis. Mol. Microbiol. 36, 997–1005.CrossRefGoogle ScholarPubMed
Welch, M. D., DePace, A. H., Verma, S., Iwamatsu, A., and Mitchison, T. J. (1997). The human Arp2/3 complex is composed of evolutionarily conserved subunits and is localized to cellular regions of dynamic actin filament assembly. J. Cell Biol. 138, 375–384.CrossRefGoogle ScholarPubMed
Winder, S. J. and Ayscough, K. R. (2005). Actin-binding proteins. J. Cell Sci. 118, 651–654.CrossRefGoogle ScholarPubMed
Wong, K. W. and Isberg, R. R. (2005). Emerging views on integrin signaling via Rac1 during invasin-promoted bacterial uptake. Curr. Opin. Microbiol. 8, 4–9.CrossRefGoogle ScholarPubMed
Wood, M. W., Rosqvist, R., Mullan, P. B., Edwards, M. H., and Galyov, E. E. (1996). SopE, a secreted protein of Salmonella dublin, is translocated into the target eukaryotic cell via a sip-dependent mechanism and promotes bacterial entry. Mol. Microbiol. 22, 327–338.CrossRefGoogle Scholar
Yoshida, S., Katayama, E., Kuwae, A., et al. (2002). Shigella deliver an effector protein to trigger host microtubule destabilization, which promotes Rac1 activity and efficient bacterial internalization. EMBO J. 21, 2923–2935.CrossRefGoogle ScholarPubMed
Zhang, S., Santos, R. L., Tsolis, R. M., et al. (2002). The Salmonella enterica Serotype Typhimurium effector proteins SipA, SopA, SopB, SopD, and SopE2 act in concert to induce diarrhea in calves. Infect. Immun. 70, 3843–3855.CrossRefGoogle ScholarPubMed
Zhou, D., Mooseker, M. S., and Galan, J. E. (1999a). Role of the S. typhimurium actin-binding protein SipA in bacterial internalization. Science 283, 2092–2095.CrossRefGoogle Scholar
Zhou, D., Mooseker, M. S., and Galan, J. E. (1999b). An invasion-associated Salmonella protein modulates the actin-bundling activity of plastin. Proc. Natl. Acad. Sci. U. S. A. 96, 10 176–10 181.CrossRefGoogle Scholar
Zhou, D., Chen, L. M., Hernandez, L., Shears, S. B., and Galan, J. E. (2001). A Salmonella inositol polyphosphatase acts in conjunction with other bacterial effectors to promote host cell actin cytoskeleton rearrangements and bacterial internalization. Mol. Microbiol. 39, 248–260.CrossRefGoogle ScholarPubMed
Zigmond, S. H. (2004). Formin-induced nucleation of actin filaments. Curr. Opin. Cell Biol. 16, 99–105.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×