Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-14T04:39:56.475Z Has data issue: false hasContentIssue false

2 - Population dynamics of ectoparasites of terrestrial hosts

from Part I - Nonequilibrium and Equilibrium in Populations and Metapopulations

Published online by Cambridge University Press:  05 March 2013

Klaus Rohde
Affiliation:
University of New England, Australia
Get access

Summary

Introduction

The main unit of ecological interest is not an individual organism but rather an assemblage of individuals belonging to the same species and coexisting in time and space. Contrary to most free-living species, spatial distribution of parasites is not continuous but consists of a set of more or less uniform inhabited patches represented by the host organisms, while the environment between these patches is decidedly unfavorable and strongly affects the probability of those parasites with free-living stages completing their life cycle and thus persisting. Thus, spatial distribution of an ensemble of conspecific ectoparasites is heterogeneous and fragmented among (a) host individuals, (b) host species within a location, and (c) locations. In this chapter, we will consider the lowest hierarchical level of this fragmentation, namely ectoparasite infrapopulations, i.e., assemblages of conspecific parasites infesting an individual host. We will focus on several common taxa of arthropod ectoparasites of mammalian hosts. We will start with variation in patterns of parasite abundance among parasite species as well as among host species, gender and age cohorts. Then, we will discuss relationships between abundance and distribution of ectoparasites. Finally, we will focus on host-related and environment-related factors affecting ectoparasite abundance and distribution. We will demonstrate that ectoparasite populations are affected by intrinsic and extrinsic factors whose actions promote equilibrium and nonequilibrium conditions, respectively.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, P. C., & Kok, O. B. (2003). Ectoparasites of springhares in the Northern Cape Province, South Africa. South African Journal of Wildlife Research, 33, 23–32.Google Scholar
Anderson, R. M., & Gordon, D. M. (1982). Processes influencing the distribution of parasite numbers within host populations with special emphasis on parasite-induced host mortality. Parasitology, 85, 373–398.CrossRefGoogle Scholar
Anderson, R. M., & May, R. M. (1978). Regulation and stability of host-parasite population interactions. I. Regulatory processes. Journal of Animal Ecology, 47, 219–247.CrossRefGoogle Scholar
Anderson, R. M., & May, R. M. (1985). Helminth infection of humans: mathematical models, population dynamics and control. Advances in Parasitology, 24, 1–101.CrossRefGoogle ScholarPubMed
Anderson, R. M., Gordon, D. M., Crawley, M. J., & Hassell, M. P. (1982). Variability in the abundance of animal and plant species. Nature, 296, 245–248.CrossRefGoogle Scholar
Arneberg, P., Skorping, A., & Read, A. F. (1997). Is population density a species character? Comparative analyses of the nematode parasites of mammals. Oikos, 80, 289–300.CrossRefGoogle Scholar
Arneberg, P., Skorping, A., Grenfell, B., & Read, A. F. (1998). Host densities as determinants of abundance in parasite communities. Proceedings of the Royal Society of London B, 265, 1283–1289.CrossRefGoogle Scholar
Blackburn, T. M., & Gaston, K. J. (2001). Linking patterns in macroecology. Journal of Animal Ecology, 70, 338–352.CrossRefGoogle Scholar
Botelho, J. R., & Linardi, P. M. (1996). Interrelações entre ectoparasitos e roedores em ambientes silvestre e urbano de Belo Horizonte, Minas Gerais, Brasil. Revista Brasileira de Entomologia, 40, 425–430.Google Scholar
Brown, J. H. (1984). On the relationship between abundance and distribution of species. The American Naturalist, 124, 255–279.CrossRefGoogle Scholar
Bursten, S. N., Kimsey, R. B., & Owings, D. H. (1997). Ranging of male Oropsylla montana fleas via male California ground squirrel (Spermophilus beecheyi) juveniles. Journal of Parasitology, 83, 804–809.CrossRefGoogle ScholarPubMed
Daniels, T. J., Fish, D., & Schwartz, I. (1993). Reduced abundance of Ixodes scapularis (Acari, Ixodidae) and Lyme disease risk by deer exclusion. Journal of Medical Entomology, 30, 1043–1049CrossRefGoogle ScholarPubMed
Dick, C. W., Gannon, M. R., Little, W. E., & Patrick, M. J. (2003). Ectoparasite associations of bats from central Pennsylvania. Journal of Medical Entomology, 40, 813–819.CrossRefGoogle ScholarPubMed
Estrada-Peña, A. (2009). Diluting the dilution effect: a spatial Lyme model provides evidence for the importance of habitat fragmentation with regard to the risk of infection. Geospatial Health, 3, 143–155.CrossRefGoogle ScholarPubMed
Fieberg, J., & Ellner, S. P. (2000). When is it meaningful to estimate an extinction probability? Ecology, 81, 2040–2047.CrossRefGoogle Scholar
Galaktionov, K. V. (1996). Life cycles and distribution of seabird helminths in Arctic and subArctic regions. Bulletin of the Scandinavian Society for Parasitology, 6, 31–49.Google Scholar
Gallivan, G. J., & Horak, I. G. (1997). Body size and habitat as determinants of tick infestations of wild ungulates in South Africa. South African Journal of Wildlife Research, 27, 63–70.Google Scholar
Gaston, K. J. (2003). The Structure and Dynamics of Geographic Ranges. Oxford: Oxford University Press.Google Scholar
Gaston, K. J., Blackburn, T. M., & Lawton, J. H. (1997). Interspecific abundance-range size relationships: an appraisal of mechanisms. Journal of Animal Ecology, 66, 579–601.CrossRefGoogle Scholar
Gliwicz, J. (1992). Patterns of dispersal in non-cyclic populations of small rodents. In Stenseth, N. C. & Lidicker, W. Z. (Eds.), Animal Dispersal: Small Mammals as a Model (pp. 147–159). London: Chapman and Hall.CrossRefGoogle Scholar
Goater, C. P., & Ward, P. I. (1992). Negative effects of Rhabdias bufonis (Nematoda) on the growth and survival of toads (Bufo bufo). Oecologia, 89, 161–165.CrossRefGoogle Scholar
Grenfell, B. T. (1992). Parasitism and the dynamics of ungulate grazing systems. The American Naturalist, 139, 907–929.CrossRefGoogle Scholar
Grenfell, B. T., & Dobson, A. P. (Eds.) (1995). Ecology of Infectious Diseases in Natural Populations. Cambridge: Cambridge University Press.CrossRef
Haitlinger, R. (1973). The parasitological investigation of small mammals of the Góry Sowie (Middle Sudetes). I. Siphonaptera (Insecta). Polskie Pismo Entomologiczne, 43, 499–519.Google Scholar
Harper, G. H., Marchant, A., & Boddington, D. G. (1992). The ecology of the hen flea Ceratophyllus gallinae and the moorhen flea Dasypsyllus gallinulae in nestboxes. Journal of Animal Ecology, 61, 317–327.CrossRefGoogle Scholar
Haukisalmi, V., & Henttonen, H. (1990). The impact of climatic factors and host density on the long-term population dynamics of vole helminths. Oecologia, 83, 309–315.CrossRefGoogle ScholarPubMed
Hawlena, H., Abramsky, Z., & Krasnov, B. R. (2005). Age-biased parasitism and density-dependent distribution of fleas (Siphonaptera) on a desert rodent. Oecologia, 146, 200–208.CrossRefGoogle Scholar
Holt, R. D., Dobson, A. P., Begon, M., Bowers, R. G., & Schauber, E. M. (2003). Parasite establishment in host communities. Ecology Letters, 6, 837–842.CrossRefGoogle Scholar
Hudson, P. J., & Dobson, A. P. (1995). Macroparasites: observed patterns. In Grenfell, B. T. & Dobson, A. P. (Eds.), Ecology of Infectious Diseases in Natural Populations (pp. 144–176). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Hughes, T. P., Baird, A. H., Dinsdale, E. A., et al. (2000). Supply-side ecology works both ways: the link between benthic adults, fecundity, and larval recruits. Ecology, 81, 2241–2249.CrossRefGoogle Scholar
Johnson, P. T.Thieltges, D. W. (2010). Diversity, decoys and the dilution effect: how ecological communities affect disease risk. Journal of Experimental Biology, 213, 961–970.CrossRefGoogle ScholarPubMed
Kanuch, P., Kristin, A., & Kristofik, J. (2005). Phenology, diet, and ectoparasites of Leisler’s bat (Nyctalus leisleri) in the western Carpathians (Slovakia). Acta Chiropterologica, 7, 249–257.CrossRefGoogle Scholar
Klein, S. L., & Nelson, R. J. (1998). Adaptive immune responses are linked to the mating system of arvicoline rodents. The American Naturalist, 151, 59–67.CrossRefGoogle ScholarPubMed
Korallo-Vinarskaya, N. P., Krasnov, B. R., Vinarski, M. V., et al. (2009). Stability in abundance and niche breadth of gamasid mites across environmental conditions, parasite identity and host pools. Evolutionary Ecology, 23, 329–345.CrossRefGoogle Scholar
Krasnov, B. R. (2008). Functional and Evolutionary Ecology of Fleas. A Model for Ecological Parasitology. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Krasnov, B. R., Khokhlova, I. S., & Shenbrot, G. I. (2002). The effect of host density on ectoparasite distribution: an example with a desert rodent parasitized by fleas. Ecology, 83, 164–175.CrossRefGoogle Scholar
Krasnov, B. R., Stanko, M., Miklisova, D., & Morand, S. (2005a). Distribution of fleas (Siphonaptera) among small mammals: mean abundance predicts prevalence via simple epidemiological model. International Journal for Parasitology, 35, 1097–1101.CrossRefGoogle ScholarPubMed
Krasnov, B. R., Morand, S., Khokhlova, I. S., Shenbrot, G. I., & Hawlena, H. (2005b). Abundance and distribution of fleas on desert rodents: linking Taylor’s power law to ecological specialization and epidemiology. Parasitology, 131, 825–837.CrossRefGoogle ScholarPubMed
Krasnov, B. R., Morand, S., Hawlena, H., Khokhlova, I. S., & Shenbrot, G. I. (2005c). Sex-biased parasitism, seasonality and sexual size dimorphism in desert rodents. Oecologia, 146, 209–217.CrossRefGoogle ScholarPubMed
Krasnov, B. R., Shenbrot, G. I.Khokhlova, I. S., & Poulin, R. (2006a). Is abundance a species attribute of haematophagous ectoparasites? Oecologia, 150, 132–140.CrossRefGoogle ScholarPubMed
Krasnov, B. R., Stanko, M., & Morand, S. (2006b). Age-dependent flea (Siphonaptera) parasitism in rodents: a host’s life history matters. Journal of Parasitology, 92, 242–248.CrossRefGoogle ScholarPubMed
Krasnov, B. R., Stanko, M., & Morand, S. (2007). Host community structure and infestation by ixodid ticks: repeatability, dilution effect and ecological specialization. Oecologia, 154, 185–194.CrossRefGoogle ScholarPubMed
Krasnov, B. R., Korallo-Vinarskaya, N. P., Vinarski, M. V., et al. (2008). Searching for general patterns in parasite ecology: host identity vs. environmental influence on gamasid mite assemblages in small mammals. Parasitology, 135, 229–242.CrossRefGoogle Scholar
Krasnov, B. R., Korallo-Vinarskaya, N. P., Vinarski, M. V., & Lareschi, M. (2010). Prediction of prevalence from mean abundance via a simple epidemiological model in mesostigmate mites from two geographic regions. Parasitology, 137, 1227–1237.CrossRefGoogle Scholar
Lang, J. D. (1996). Factors affecting the seasonal abundance of ground squirrel and wood rat fleas (Siphonaptera) in San Diego County, California. Journal of Medical Entomology, 33, 790–804.CrossRefGoogle Scholar
Launay, H. (1989). Ecological factors acting on the distribution and the population dynamics of Xenopsylla cunicularis Smit, 1957 (Insecta: Siphonaptera) a flea parasitic on the European rabbit, Oryctolagus cuniculus (L.). Vie et Milieu, 39, 111–120.Google Scholar
Lee, C. Y., Alexander, P. S., Yang, V. V. C., & Yu, J. Y. L. (2001). Seasonal reproductive activity of male formosan wood mice (Apodemus semotus): relationships to androgen levels. Journal of Mammalogy, 82, 700–708.2.0.CO;2>CrossRefGoogle Scholar
Lopez-Sepulcre, A., & Kokko, H. (2005). Territorial defense, territory size, and population regulation. The American Naturalist, 166, 317–329.CrossRefGoogle ScholarPubMed
Marshall, A. G. (1981). The Ecology of Ectoparasitic Insects. London: Academic Press.Google Scholar
Matthee, S., & Krasnov, B. R. (2009). Searching for mechanisms of generality in the patterns of parasite abundance and distribution: ectoparasites of a South African rodent, Rhabdomys pumilio. International Journal for Parasitology, 39, 781–788.CrossRefGoogle Scholar
Matthee, S., McGeoch, M. A., & Krasnov, B. R. (2010). Gender-biased ectoparasite infections: species-specific variation and the extent of male-biased parasitism. Parasitology, 137, 651–660.CrossRefGoogle Scholar
May, R. M., & Anderson, R. M. (1978). Regulation and stability of host-parasite population interactions. II. Destabilizing processes. Journal of Animal Ecology, 47, 455–461.CrossRefGoogle Scholar
Metzger, M. E., & Rust, M. K. (1997). Effect of temperature on cat flea (Siphonaptera: Pulicidae) development and overwintering. Journal of Medical Entomology, 34, 173–178.CrossRefGoogle ScholarPubMed
Møller, A. P., & de Lope, F. (1999). Senescence in a short-lived migratory bird: age-dependent morphology, migration, reproduction and parasitism. Journal of Animal Ecology, 68, 163–171.CrossRefGoogle Scholar
Mooring, M. S., Benjamin, J. E., Harte, C. R., & Herzog, N. B. (2000). Testing the interspecific body size principle in ungulates: the smaller they come, the harder they groom. Animal Behaviour, 60, 35–45.CrossRefGoogle ScholarPubMed
Morand, S., Göuy De Bellocq, J., Stanko, M., & Miklisova, D. (2004). Is sex-biased ectoparasitism related to sexual size dimorphism in small mammals of Central Europe? Parasitology, 129, 505–510.CrossRefGoogle ScholarPubMed
Morand, S., & Guégan, J.-F. (2000). Distribution and abundance of parasite nematodes: ecological specialization, phylogenetic constraints or simply epidemiology? Oikos, 88, 563–573.CrossRefGoogle Scholar
Morand, S., & Krasnov, B. R. (2008). Why apply ecological laws to epidemiology? Trends in Parasitology, 24, 304–309.CrossRefGoogle ScholarPubMed
Morand, S., Pointier, J.-P., Borel, G., & Theron, A. (1993). Pairing probability of schistosomes related to their distribution among the host population. Ecology, 74, 2444–2449.CrossRefGoogle Scholar
Newton, I. (1998). Population Limitation in Birds. London: Academic Press.Google Scholar
Norman, R., Bowers, R. G., Begon, M., & Hudson, P. J. (1999). Persistence of tick-borne virus in the presence of multiple host species: tick reservoirs and parasite mediated competition. Journal of Theoretical Biology, 200, 111–118.CrossRefGoogle ScholarPubMed
Ostfeld, R., & Keesing, F. (2000). The function of biodiversity in the ecology of vector-borne zoonotic diseases. Canadian Journal of Zoology, 78, 2061–2078.CrossRefGoogle Scholar
Perkins, S. E., Cattadori, I. M., Tagliapietra, V., Rizzoli, A., & Hudson, P. J. (2003). Evidence for functional groups in disease transmission, International Journal for Parasitology, 33, 909–917.CrossRefGoogle Scholar
Perkins, S. E., Cattadori, A., Tagliapietra, V., Rizzoli, A., & Hudson, P. J. (2006). Localized deer absence leads to loss of the dilution effect and tick amplification. Ecology, 87, 1981–1986.CrossRefGoogle Scholar
Poulin, R. (1993). The disparity between observed and uniform distibutions: a new look at parasite aggregation. International Journal for Parasitology, 23, 937–944.CrossRefGoogle Scholar
Poulin, R. (1996). Sexual inequalities in helminth infections: a cost of being male? The American Naturalist, 147, 289–295.CrossRefGoogle Scholar
Poulin, R. (1999). Body size vs abundance among parasite species: positive relationships? Ecography, 22, 246–250.CrossRefGoogle Scholar
Poulin, R. (2006). Variation in infection parameters among populations within parasite species: intrinsic properties versus local factors. International Journal for Parasitology, 36, 877–885.CrossRefGoogle ScholarPubMed
Poulin, R. (2007). Evolutionary Ecology of Parasites: From Individuals to Communities (2nd edn). Princeton, NJ: Princeton University Press.Google Scholar
Randolph, S. E. (1977). Changing spatial relationships in a population of Apodemus sylvaticus with the onset of breeding. Journal of Animal Ecology, 46, 653–676.CrossRefGoogle Scholar
Rizzoli, A., Hauffe, H. C., Tagliapietra, V., Neteler, M., & Rosà, R. (2009). Forest structure and roe deer abundance predict tick-borne encephalitis risk in Italy. PLoS ONE, 4, E4336.CrossRefGoogle ScholarPubMed
Rosà, R., Pugliese, A., Ghosh, M., Perkins, S. E., & Rizzoli, A. (2007). Temporal variation of Ixodes ricinus intensity on the rodent host Apodemus flavicollis in relation to local climate and host dynamics. Vector-Borne and Zoonotic Diseases, 7, 285–295CrossRefGoogle ScholarPubMed
Rosenzweig, M. L. (1981). A theory of habitat selection. Ecology, 62, 327–335.CrossRefGoogle Scholar
Rousset, F., Thomas, F., de Meeûs, T., & Renaud, F. (1996). Inference of parasite-induced host mortality from distribution of parasite loads. Ecology, 77, 2203–2211.CrossRefGoogle Scholar
Schofield, S., & Torr, S. J. (2002). A comparison of feeding behaviour of tsetse and stable flies. Medical and Veterinary Entomology, 16, 177–185.CrossRefGoogle ScholarPubMed
Shaw, D. J., & Dobson, A. P. (1995). Patterns of macroparasite abundance and aggregation in wildlife populations: a quantitative review. Parasitology, 111, S111–S127.CrossRefGoogle ScholarPubMed
Shaw, D. J., Grenfell, B. T., & Dobson, A. P. (1998). Patterns of macroparasite aggregation in wildlife host populations. Parasitology, 117, 597–610.CrossRefGoogle ScholarPubMed
Simkova, A., Kadlec, D., Gelnar, M., & Morand, S. (2002). Abundance-prevalence relationship of gill congeneric ectoparasites: testing the core satellite hypothesis and ecological specialization. Parasitology Research, 88, 682–686.Google Scholar
Smith, A., Telfer, S., Burthe, S., Bennett, M., & Begon, M. (2005). Trypanosomes, fleas and field voles: ecological dynamics of a host-vector-parasite interaction. Parasitology, 131, 355–365.CrossRefGoogle ScholarPubMed
Sorci, G., Defraipont, M., & Clobert, J. (1997). Host density and ectoparasite avoidance in the common lizard (Lacerta vivipara). Oecologia, 11, 183–188.CrossRefGoogle Scholar
Stanko, M., Krasnov, B. R., & Morand, S. (2006). Relationship between host density and parasite distribution: inferring regulating mechanisms from census data. Journal of Animal Ecology, 75, 575–583.CrossRefGoogle ScholarPubMed
Stanko, M., Krasnov, B. R., Miklisova, D., & Morand, S. (2007). Simple epidemiological model predicts the relationships between prevalence and abundance in ixodid ticks. Parasitology, 134, 59–68.CrossRefGoogle ScholarPubMed
Stradiotto, A., Cagnacci, F., Delahay, R., Tioli, S., Nieder, L., & Rizzoli, A. (2009). Spatial organization of the yellow-necked mouse: effects of density and resource availability. Journal of Mammalogy, 90, 704–714.CrossRefGoogle Scholar
Tagliapietra, V., Rosà, R., Arnoldi, D., et al. (2011). Saturation deficit and deer density affect questing activity and local abundance of Ixodes ricinus (Acari, Ixodidae) in Italy. Veterinary Parasitology, 183, 114–124.CrossRefGoogle Scholar
Taylor, L. R., Woiwod, I. P., & Perry, J. N. (1979). The negative binomial as a dynamic ecological model and density-dependence of k. Journal of Animal Ecology, 48, 289–304.CrossRefGoogle Scholar
Telfer, S., Bown, K. J., Sekules, R., et al. (2005). Disruption of a host-parasite system following the introduction of an exotic host species. Parasitology, 130, 661–668.CrossRefGoogle ScholarPubMed
Ulmanen, I., & Myllymäki, A. (1971). Species composition and numbers of fleas (Siphonaptera) in a local population of the field vole, Microtus agrestis (L.). Annales Zoologici Fennici, 8, 374–384.Google Scholar
Wilson, K., Bjørnstad, O. N., Dobson, A. P., et al. (2001). Heterogeneities in macroparasite infections: patterns and processes. In Hudson, P. J., Rizzoli, A., Grenfell, B. T., Heesterbeek, H. & Dobson, A. P. (Eds.), The Ecology of Wildlife Diseases (pp. 6–44). Oxford: Oxford University Press.Google Scholar
Zahn, A., & Rupp, D. (2004). Ectoparasite load in European vespertilionid bats. Journal of Zoology, 262, 383–391.CrossRefGoogle Scholar
Zuk, M., & McKean, K. A. (1996). Sex differences in parasite infections: patterns and processes. International Journal for Parasitology, 26, 1009–1024.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×