Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-21T09:08:30.915Z Has data issue: false hasContentIssue false

11 - The Comparison Theorem for the Soulé–Deligne Classes

Published online by Cambridge University Press:  05 March 2015

Annette Huber
Affiliation:
Albert-Ludwigs-Universität Freiburg, Germany
John Coates
Affiliation:
University of Cambridge
A. Raghuram
Affiliation:
Indian Institute of Science Education and Research, Pune
Anupam Saikia
Affiliation:
Indian Institute of Technology, Guwahati
R. Sujatha
Affiliation:
University of British Columbia, Vancouver
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2015

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[BG03] Burns, D., and Greither, C. 2003. On the equivariant Tamagawa number conjecture for Tate motives. Invent. Math., 153, no. 2, 303–359.Google Scholar
[BK90] Bloch, S., and Kato, K. 1990. L-functions and Tamagawa numbers of motives. The Grothendieck Festschrift, Vol. I. Progr. Math., 86, 333–400. Birkhauser Boston, Boston, MA.
[BL94] Beilinson, A., and Levin, A. 1994. The elliptic polylogarithm. Motives (Seattle, WA, 1991), Proc. Sympos. Pure Math., Part 2, 55, 123–190. Amer. Math. Soc., Providence, RI.
[Be84] Beilinson, A. A. 1984. Higher regulators and values of L-functions. Current Problems in Mathematics, 24, 181–238, Itogi Nauki i Tekhniki|Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. Inform., Moscow.
[Be86] Beilinson, A. A. 1986. Higher regulators of modular curves. Applications of algebraic K-theory to algebraic geometry and number theory, Part I, II (Boulder, Colo., 1983). Contemp. Math., 55, 1–34. Amer. Math. Soc., Providence, RI.
[Bl15] Blasius, D. 2015. The motivic Eisenstein classes, in The Bloch-Kato Conjecture for the Riemann Zeta Function, LMS Lecture Note Series 418. Cambridge University Press. 193–209.
[Co15] Coates, J. 2015. Values of the Riemann zeta function at the odd positive integers and Iwasawa theory, in The Bloch-Kato Conjecture for the Riemann Zeta Function, LMS Lecture Note Series 418. Cambridge University Press. 45–64
[De89] Deligne, P. 1989. Le groupe fondamental de la droite projective moins trois points. Galois groups over ℚ (Berkeley, CA, 1987). Math. Sci. Res. Inst. Publ., 16, 79–297. Springer, New York.
[Den97] Deninger, C. 1997. Extensions of motives associated to symmetric powers of elliptic curves and to Hecke characters of imaginary quadratic fields. Arithmetic geometry (Cortona, 1994), 99–137. Sympos. Math., XXXVII, Cambridge Univ. Press, Cambridge.
[Es89] Esnault, H. 1989. On the Loday symbol in the Deligne-Beilinson cohomology. K-Theory, 3, no. 1, 1–28.Google Scholar
[Gi81] Gillet, H. 1981. Riemann-Roch theorems for higher algebraic K-theory. Adv. in Math., 40, no. 3, 203–289.Google Scholar
[HK99a] Huber, A., and Kings, G. 1999. Dirichlet motives via modular curves. Ann. Sci. Ecole Norm. Sup., 32, no. 3, 313–345.Google Scholar
[HK99b] Huber, A., and Kings, G. 1999. Degeneration of l-adic Eisenstein classes and of the elliptic polylog. Invent. Math., 135, no. 3, 545–594.Google Scholar
[HK03] Huber, A., and Kings, G. 2003. Bloch-Kato conjecture and Main Conjecture of Iwasawa theory for Dirichlet Characters. Duke Math. J., 119, no. 3, 393–464.Google Scholar
[HW97] Huber, A., and Wildeshaus, J. May 1-4, 1997. The Classical Polylogarithm. Abstract of a series of lectures given at the workhsop on polylogs in Essen. arXiv:1210.2358 [math.NT]
[HW98] Huber, A., and Wildeshaus, J. 1998. Classical motivic polylogarithm according to Beilinson and Deligne. Doc. Math., 3, 27–133; and Correction Doc. Math., 3, 297–299.Google Scholar
[Ha93] Harder, G. 1993. Eisensteinkohomologie und die Konstruktion gemischter Motive. Lecture Notes in Mathematics, 1562, Springer-Verlag, Berlin.
[Ja88] Jannsen, U. 1988. Continuous étale cohomology. Math. Ann., 280, no. 2, 207–245.Google Scholar
[KNF96] Kolster, M., Nguyen Quang Do, T., and Fleckinger, V. (1996). Twisted S-units, p-adic class number formulas, and the Lichtenbaum conjectures. Duke Math. J., 84, no. 3, 679–717.Google Scholar
[Ki99] Kings, G. 1999. K-theory elements for the polylogarithm of abelian schemes. J. Reine Angew. Math., 517, 103–116.Google Scholar
[Ki08] Kings, G. 2008. Degeneration of polylogarithms and special values of L-functions for totally real fields. Doc. Math., 13, 131–159.Google Scholar
[Ki15] Kings, G. 2015. Eisenstein classes, elliptic Soulé elements and the ℓ-adic elliptic polylogarithm, in The Bloch-Kato Conjecture for the Riemann Zeta Function, LMS Lecture Note Series 418. Cambridge University Press. 239–296.
[Kt93] Kato, K. 1993. Iwasawa theory and p-adic Hodge theory. Kodai Math. J., 16, no. 1, 131.Google Scholar
[Kt04] Kato, K. 2004. p-adic Hodge theory and values of zeta functions of modular forms, Cohomologies p-adiques et applications arithmétiques. III. Astérisque, 295.Google Scholar
[Le94] Levine, M. 1994. Bloch's higher Chow groups revisited. Proc. of the Congress of K-theory (Strasbourg, 1992), Asterisque No., 226, 10, 235–320.Google Scholar
[MVW06] Mazza, C., Voevodsky, V., and Weibel, C. 2006. Lecture notes on motivic cohomology. Clay Mathematics Monographs, 2. American Mathematical Society, Providence, RI; Clay Mathematics Institute, Cambridge, MA.
[Ne88] Neukirch, J. 1988. The Beilinson conjecture for algebraic number fields. Beilinson's conjectures on special values of L-functions. Perspect. Math., 4, 193247 Academic Press, Boston, MA.
[Ng15] Nguyen Quang Do, T. 2015. On the determinantal approach to the Tamagawa Number Conjecture, in The Bloch-Kato Conjecture for the Riemann Zeta Function, LMS Lecture Note Series 418. Cambridge University Press. 154–192.
[PS08] Peters, C., and Steenbrink, J. 2008. Mixed Hodge structures. Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics, 52. Springer-Verlag, Berlin.
[SS91] Schappacher, N., and Scholl, A. 1991. The boundary of the Eisenstein symbol. Math. Ann., 290, no. 2, 303–321, Erratum: Math. Ann. 290, no. 4, 815.
[So81] Soulé, C. 1981. On higher p-adic regulators. Algebraic K-theory, Evanston 1980 (Proc. Conf., Northwestern Univ., Evanston, Ill., 1980). Lecture Notes in Math., 854, 372–401, Springer, Berlin-New York.
[Vo00] Voevodsky, V. 2000. Triangulated categories of motives over a field. Cycles, transfers, and motivic homology theories. Ann. of Math. Stud., 143, 188–238, Princeton Univ. Press, Princeton, NJ.
[Wi97] Wildeshaus, J. 1997. Realizations of polylogarithms. Lecture Notes in Mathematics, 1650. Springer-Verlag, Berlin.

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×