Published online by Cambridge University Press: 02 December 2009
Overview
When a dense fluid is ejected into a less dense fluid from a narrow slit whose thickness is much smaller than its width, a sheet of fluid can form. When the fluid is ejected not from a slit but from a hole, a jet forms. The linear scale of a sheet or jet can range from light years in astrophysical phenomena (Hughes, 1991) to nanometers in biological applications (Benita, 1996). The fluids involved range from a complex charged plasma under strong electromagnetic and gravitational forces to a small group of simple molecules moving freely with little external force. The fluid sheet and jet are inherently unstable and breakup easily. The dynamics of liquid sheets was first investigated systematically by Savart (1833). Platou (1873) sought the nature of surface tension through his inquiry of jet instability. Rayleigh (1879) illuminated his jet stability analysis results with acoustic excitation of the jet. In some modern applications of the instability of sheets and jets, it is advantageous to hasten the breakup, but in other applications suppression of the breakup is essential. Hence knowledge of the physical mechanism of breakup, aside from its intrinsic scientific value, is very useful when one needs to exploit the phenomenon to the fullest extent. Recent applications include film coating, nuclear safety curtain formation, spray combustion, agricultural sprays, ink jet printing, fiber and sheet drawing, powdered milk processing, powder metallurgy, toxic material removal, and encapsulation of biomedical materials.
To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.