Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-18T07:41:06.048Z Has data issue: false hasContentIssue false

10 - The Development of Infant Feeding

from Part II - Perceptual Development

Published online by Cambridge University Press:  26 September 2020

Jeffrey J. Lockman
Affiliation:
Tulane University, Louisiana
Catherine S. Tamis-LeMonda
Affiliation:
New York University
Get access

Summary

In this chapter, we review the scientific evidence, primarily from experimental research, that reveals important aspects of the ontogeny of feeding and the development of food preferences and food choice in the context of the mother. We focus on the first 2 years of life, when children make the drastic transition from eating an all-liquid diet to one containing solid foods. We focus on feeding in the context of the mother, exploring the contribution of each member of the dyad: the infant (who is being fed) and the mother (who is selecting the foods and feeding the child).

Type
Chapter
Information
The Cambridge Handbook of Infant Development
Brain, Behavior, and Cultural Context
, pp. 263 - 302
Publisher: Cambridge University Press
Print publication year: 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Afeiche, M. C., Koyratty, B. N. S., Wang, D., Jacquier, E. F., & Le, K. A. (2018). Intakes and sources of total and added sugars among 4- to 13-year-old children in China, Mexico and the United States. Pediatric Obesity, 13(4), 204212. doi:10.1111/ijpo.12234CrossRefGoogle Scholar
Ahern, S. M., Caton, S. J., Blundell, P., & Hetherington, M. M. (2014). The root of the problem: Increasing root vegetable intake in preschool children by repeated exposure and flavour learning. Appetite, 80, 154160. doi:10.1016/j.appet.2014.04.016Google Scholar
Al Ain, S., Perry, R. E., Nunez, B., Kayser, K., Hochman, C., Brehman, E., … Sullivan, R. M. (2017). Neurobehavioral assessment of maternal odor in developing rat pups: Implications for social buffering. Social Neuroscience, 12(1), 3249. doi:10.1080/17470919.2016.1159605Google Scholar
Bailey, R. L., Catellier, D. J., Jun, S., Dwyer, J. T., Jacquier, E. F., Anater, A. S., & Eldridge, A. L. (2018). Total usual nutrient intakes of US children (under 48 months): Findings from the Feeding Infants and Toddlers Study (FITS) 2016. Journal of Nutrition, 148(Suppl. 9), 1557S1566S. doi:10.1093/jn/nxy042Google Scholar
Ballard, O., & Morrow, A. L. (2013). Human milk composition: Nutrients and bioactive factors. Pediatric Clinics of North America, 60(1), 4974. doi:10.1016/j.pcl.2012.10.002Google Scholar
Barends, C., de Vries, J., Mojet, J., & de Graaf, C. E. (2013). Effects of repeated exposure to either vegetables or fruits on infant’s vegetable and fruit acceptance at the beginning of weaning. Food Quality and Preference, 29, 157165.Google Scholar
Barker, E. (1980). Sensory evaluation of human milk. Manitoba, Canada: University of Manitoba.Google Scholar
Bartolomei, F., Lagarde, S., Medina Villalon, S., McGonigal, A., & Benar, C. G. (2017). The “Proust phenomenon”: Odor-evoked autobiographical memories triggered by direct amygdala stimulation in human. Cortex, 90, 173175. doi:10.1016/j.cortex.2016.12.005CrossRefGoogle ScholarPubMed
Bassette, R., Fung, D. Y. C., & Mantha, V. R. (1986). Off-flavors in milk. CRC Critical Reviews in Food Science and Nutrition, 24, 152.CrossRefGoogle ScholarPubMed
Beauchamp, G. K., & Cowart, B. J. (1990). Preference for high salt concentrations among children. Developmental Psychology, 26(4), 539545.Google Scholar
Beauchamp, G. K., Cowart, B. J., & Moran, M. (1986). Developmental changes in salt acceptability in human infants. Developmental Psychobiology, 19, 1725.CrossRefGoogle ScholarPubMed
Beauchamp, G. K., Katahira, K., Yamazaki, K., Mennella, J. A., Bard, J., & Boyse, E. A. (1995). Evidence suggesting that the odortypes of pregnant women are a compound of maternal and fetal odortypes. Proceedings of the National Academy of the Sciences of the United States of America, 92(7), 26172621.Google Scholar
Berridge, K. C. (1996). Food reward: Brain substrates of wanting and liking. Neuroscience & Biobehavioral Reviews, 20, 125. doi:0149-7634(95)00033-B [pii]Google Scholar
Birch, L. L., Gunder, L., Grimm-Thomas, K., & Laing, D. G. (1998). Infants’ consumption of a new food enhances acceptance of similar foods. Appetite, 30, 283295.Google Scholar
Birch, L. L., & Marlin, D. W. (1982). I don’t like it; I never tried it: Effects of exposure on two-year-old children’s food preferences. Appetite, 3, 353360.Google Scholar
Birch, L. L., McPhee, L., Shoba, B. C., Pirok, E., & Steinberg, L. (1987). What kind of exposure reduces children’s food neophobia? Looking vs. tasting. Appetite, 9, 171178.Google Scholar
Black, M. M., & Aboud, F. E. (2011). Responsive feeding is embedded in a theoretical framework of responsive parenting. Journal of Nutrition, 141(3), 490494. doi:10.3945/jn.110.129973Google Scholar
Bridger, W. H. (1961). Ethological concepts and human development. Recent Advances in Biological Psychiatry, 4, 95107.Google Scholar
Bronfenbrenner, U., & Morris, P. (1998). The ecology of human developmental processes. In Damon, W. & Eisenberg, N. (Eds.), Theoretical models of human development (pp. 9931028). New York, NY: John Wiley & Sons.Google Scholar
Brown, G. W., Tuholski, J. M., Sauer, L. W., Minsk, L. D., & Rosenstern, I. (1960). Evaluation of prepared milks for infant nutrition: Use of the Latin square technique. Journal of Pediatrics, 56, 391398.Google Scholar
Butte, N. F., Wills, C., Jean, C. A., Smith, E. O., & Garza, C. (1985). Feeding patterns of exclusively breast-fed infants during the first four months of life. Early Human Development, 12(3), 291300.Google Scholar
Cameron, S. L., Heath, A. L., & Taylor, R. W. (2012). How feasible is baby-led weaning as an approach to infant feeding? A review of the evidence. Nutrients, 4(11), 15751609. doi:10.3390/nu4111575CrossRefGoogle ScholarPubMed
Cannon, A. M., Gridneva, Z., Hepworth, A. R., Lai, C. T., Tie, W. J., Khan, S., … Geddes, D. T. (2017). The relationship of human milk leptin and macronutrients with gastric emptying in term breastfed infants. Pediatric Research, 82(1), 7278. doi:10.1038/pr.2017.79CrossRefGoogle ScholarPubMed
Capretta, P. J., Petersik, J. T., & Steward, D. J. (1975). Acceptance of novel flavours is increased after early experience of diverse taste. Nature, 254, 689691.Google Scholar
Carruth, B. R., & Skinner, J. D. (2002). Feeding behaviors and other motor development in healthy children (2–24 months). Journal of the American College of Nutrition, 21(2), 8896.CrossRefGoogle ScholarPubMed
Carruth, B. R., Ziegler, P. J., Gordon, A., & Hendricks, K. (2004). Developmental milestones and self-feeding behaviors in infants and toddlers. Journal of the American Dietetic Association, 104(Suppl. 1), s51s56. doi:10.1016/j.jada.2003.10.019Google Scholar
Caton, S. J., Ahern, S. M., Remy, E., Nicklaus, S., Blundell, P., & Hetherington, M. M. (2013). Repetition counts: Repeated exposure increases intake of a novel vegetable in UK pre-school children compared to flavour–flavour and flavour–nutrient learning. British Journal of Nutrition, 109, 20892097. doi:S0007114512004126[pii]10.1017/S0007114512004126CrossRefGoogle ScholarPubMed
Chan, S., Pollitt, E., & Leibel, R. (1979). Effect of nutrient cues on formula intake in 5-week-old infants. Infant Behaviour and Development, 2, 201208.CrossRefGoogle Scholar
Coldwell, S. E., Oswald, T. K., & Reed, D. R. (2009). A marker of growth differs between adolescents with high vs. low sugar preference. Physiolology and Behavior, 96, 574580. doi:S0031-9384(08)00394-6[pii]10.1016/j.physbeh.2008.12.010Google Scholar
Couch, S. C., Glanz, K., Zhou, C., Sallis, J. F., & Saelens, B. E. (2014). Home food environment in relation to children’s diet quality and weight status. Journal of the Academy of Nutrition and Dietetics, 114, 15691579. doi:10.1016/j.jand.2014.05.015S2212-2672(14)00600-5[pii]CrossRefGoogle ScholarPubMed
Davis, C. M. (1928). Self-selection of diet by newly weaned infants: An experimental study. American Journal of Diseases of Childhood, 36, 361659.CrossRefGoogle Scholar
Davis, C. M. (1939). Results of the self-selection of diets by young children. Canadian Medical Association Journal, 41(3), 257261.Google ScholarPubMed
Debiec, J., & Sullivan, R. M. (2014). Intergenerational transmission of emotional trauma through amygdala-dependent mother-to-infant transfer of specific fear. Proceedings of the National Academy of the Sciences of the United States of America, 111(33), 1222212227. doi:10.1073/pnas.1316740111Google Scholar
Delaunay-El Allam, M., Soussignan, R., Patris, B., Marlier, L., & Schaal, B. (2010). Long-lasting memory for an odor acquired at the mother’s breast. Developmental Science, 13(6), 849863. doi:10.1111/j.1467-7687.2009.00941.xGoogle Scholar
Deming, D. M., Briefel, R. R., & Reidy, K. C. (2014). Infant feeding practices and food consumption patterns of children participating in WIC. Journal of Nutrition Education and Behavior, 46, S29–37. doi:10.1016/j.jneb.2014.02.020Google Scholar
Deming, D. M., Reidy, K. C., Fox, M. K., Briefel, R. R., Jacquier, E., & Eldridge, A. L. (2017). Cross-sectional analysis of eating patterns and snacking in the US Feeding Infants and Toddlers Study 2008. Public Health Nutrition, 20(9), 15841592. doi:10.1017/S136898001700043XGoogle Scholar
Denney, L., Reidy, K. C., & Eldridge, A. L. (2016). Differences in complementary feeding of 6 to 23 month olds in China, US and Mexico. Journal of Nutritional Health and Food Science, 4(3), 18. doi: http://dx.doi.org/10.15226/jnhfs.2016.00181Google Scholar
Denzer, M. Y., Kirsch, F., & Buettner, A. (2015). Are odorant constituents of herbal tea transferred into human milk? Journal of Agriculture and Food Chemistry, 63(1), 104111. doi:10.1021/jf504073dGoogle Scholar
Derks, I. P., Tiemeier, H., Sijbrands, E. J., Nicholson, J. M., Voortman, T., Verhulst, F. C., … Jansen, P. W. (2017). Testing the direction of effects between child body composition and restrictive feeding practices: Results from a population-based cohort. American Journal of Clinical Nutrition, 106(3), 783790. doi:10.3945/ajcn.117.156448Google Scholar
Desor, J. A., & Beauchamp, G. K. (1987). Longitudinal changes in sweet preferences in humans. Physiology and Behavior, 39(5), 639641.Google Scholar
Desor, J. A., Maller, O., & Andrews, K. (1975). Ingestive responses of human newborns to salty, sour, and bitter stimuli. Journal of Comparative and Physiological Psychology, 89, 966970.Google Scholar
Domjan, M., & Gillan, D. (1976). Role of novelty in the aversion for increasingly concentrated saccharin solutions. Physiology and Behavior, 16(5), 537542.Google Scholar
Draxten, M., Fulkerson, J. A., Friend, S., Flattum, C. F., & Schow, R. (2014). Parental role modeling of fruits and vegetables at meals and snacks is associated with children’s adequate consumption. Appetite, 78, 17. doi:10.1016/j.appet.2014.02.017CrossRefGoogle ScholarPubMed
Faas, A. E., March, S. M., Moya, P. R., & Molina, J. C. (2015). Alcohol odor elicits appetitive facial expressions in human neonates prenatally exposed to the drug. Physiology and Behavior, 148, 7886. doi:10.1016/j.physbeh.2015.02.031Google Scholar
Faas, A. E., Sponton, E. D., Moya, P. R., & Molina, J. C. (2000). Differential responsiveness to alcohol odor in human neonates: Effects of maternal consumption during gestation. Alcohol, 22(1), 717.Google Scholar
Fisher, J. O., Mitchell, D. C., Smiciklas-Wright, H., & Birch, L. L. (2002). Parental influences on young girls’ fruit and vegetable, micronutrient, and fat intakes. Journal of the American Dietetic Association, 102, 5864.Google Scholar
Flynn, M. A., McNeil, D. A., Maloff, B., Mutasingwa, D., Wu, M., Ford, C., & Tough, S. C. (2006). Reducing obesity and related chronic disease risk in children and youth: A synthesis of evidence with “best practice” recommendations. Obesity Review, 7(Suppl. 1), 766. doi:10.1111/j.1467-789X.2006.00242.xGoogle Scholar
Fomon, S. J. (1980). Factors influencing food consumption in the human infant. International Journal of Obesity, 4(4), 348350.Google Scholar
Fomon, S. J., Filmer, L. J., Jr., Thomas, L. N., Anderson, T. A., & Nelson, S. E. (1975). Influence of formula concentration on caloric intake and growth of normal infants. Acta Paediatrica, 64(2), 172181.Google Scholar
Fomon, S. J., Filer, L. J., Jr., Thomas, L. N., Rogers, R. R., & Proksch, A. M. (1969). Relationship between formula concentration and rate of growth of normal infants. Journal of Nutrition, 98(2), 241254. doi:10.1093/jn/98.2.241Google Scholar
Fomon, S. J., Thomas, L. N., Filer, L. J., Jr., Anderson, T. A., & Nelson, S. E. (1976). Influence of fat and carbohydrate content of diet on food intake and growth of male infants. Acta Paediatrica, 65(2), 136144.Google Scholar
Fomon, S. J., Ziegler, E. E., Nelson, S. E., & Edwards, B. B. (1983). Sweetness of diet and food consumption by infants. Proceedings of the Society for Experimental Biology and Medicine, 173(2), 190193.Google Scholar
Forestell, C. A., & LoLordo, V. M. (2003). Palatability shifts in taste and flavour preference conditioning. Quarterly Journal of Experimental Psychology B, 56, 140160. doi:10.1080/02724990244000232Google Scholar
Forestell, C. A., & Mennella, J. A. (2005). Children’s hedonic judgments of cigarette smoke odor: effects of parental smoking and maternal mood. Psychology of Addictive Behaviors, 19(4), 423432.Google Scholar
Forestell, C. A., (2007). Early determinants of fruit and vegetable acceptance. Pediatrics, 120(6), 12471254.Google Scholar
Forestell, C. A., (2008). Food, folklore and flavor preference development. In Lammi-Keefe, C. (Ed.), Handbook of nutrition and pregnancy (pp. 5564). Totowa, NJ.: Humana Press.CrossRefGoogle Scholar
Forestell, C. A., (2015). The ontogeny of taste perception and preference throughout childhood. In Doty, R. L. (Ed.), Handbook of olfaction and gustation (3rd ed., pp. 797830). New York, NY: Wiley-Liss.Google Scholar
Foterek, K., Hilbig, A., & Alexy, U. (2015). Associations between commercial complementary food consumption and fruit and vegetable intake in children. Results of the DONALD study. Appetite, 85, 8490. doi:10.1016/j.appet.2014.11.015CrossRefGoogle ScholarPubMed
Fox, M. K., Devaney, B., Reidy, K., Razafindrakoto, C., & Ziegler, P. (2006). Relationship between portion size and energy intake among infants and toddlers: Evidence of self-regulation. Journal of the American Dietetic Association, 106(Suppl. 1), S77–83.Google Scholar
Galef, B. G. J., & Sherry, D. F. (1973). Mother’s milk: A medium for transmission of cues reflecting the flavor of mother’s diet. Journal of Comparative and Physiological Psychology, 83(3), 374378.Google Scholar
Garcia, J., Hankins, W. G., & Rusiniak, K. W. (1974). Behavioral regulation of the milieu interne in man and rat. Science, 185(4154), 824831.Google Scholar
Gerrish, C. J., & Mennella, J. A. (2001). Flavor variety enhances food acceptance in formula-fed infants. American Journal of Clinical Nutrition, 73, 10801085.Google Scholar
Grimes, C. A., Szymlek-Gay, E. A., Campbell, K. J., & Nicklas, T. A. (2015). Food sources of total energy and nutrients among U.S. infants and toddlers: National Health and Nutrition Examination Survey 2005–2012. Nutrients, 7(8), 67976836. doi:10.3390/nu7085310Google Scholar
Gross, R. S., Fierman, A. H., Mendelsohn, A. L., Chiasson, M. A., Rosenberg, T. J., Scheinmann, R., & Messito, M. J. (2010). Maternal perceptions of infant hunger, satiety, and pressuring feeding styles in an urban Latina WIC population. Academic Pediatrics, 10(1), 2935. doi:10.1016/j.acap.2009.08.001Google Scholar
Grummer-Strawn, L. M., Scanlon, K. S., & Fein, S. B. (2008). Infant feeding and feeding transitions during the first year of life. Pediatrics, 122(Suppl. 2), S36S42. doi:10.1542/peds.2008-1315dGoogle Scholar
Hausner, H., Bredie, W. L., Molgaard, C., Petersen, M. A., & Moller, P. (2008). Differential transfer of dietary flavour compounds into human breast milk. Physiology and Behavior, 95(1–2), 118124.Google Scholar
Hepper, P. G. (1995). Human fetal ‘‘olfactory’’ learning International Journal of Prenatal and Perinatal Psychology and Medicine, 7, 147151.Google Scholar
Hepper, P. G., Wells, D. L., Dornan, J. C., & Lynch, C. (2013). Long-term flavor recognition in humans with prenatal garlic experience. Developmental Psychobiology, 55(5), 568574. doi:10.1002/dev.21059Google Scholar
Hetherington, M. M., Schwartz, C., Madrelle, J., Croden, F., Nekitsing, C., Vereijken, C. M., & Weenen, H. (2015). A step-by-step introduction to vegetables at the beginning of complementary feeding. The effects of early and repeated exposure. Appetite, 84, 280290. doi:10.1016/j.appet.2014.10.014S0195-6663(14)00494-2Google Scholar
Hodges, E. A., Hughes, S. O., Hopkinson, J., & Fisher, J. O. (2008). Maternal decisions about the initiation and termination of infant feeding. Appetite, 50(2–3), 333339.Google Scholar
Hodges, E. A., Johnson, S. L., Hughes, S. O., Hopkinson, J. M., Butte, N. F., & Fisher, J. O. (2013). Development of the responsiveness to child feeding cues scale. Appetite, 65, 210219. doi:10.1016/j.appet.2013.02.010Google Scholar
Holley, C. E., Haycraft, E., & Farrow, C. (2015). “Why don’t you try it again?” A comparison of parent led, home based interventions aimed at increasing children’s consumption of a disliked vegetable. Appetite, 87, 215222. doi:10.1016/j.appet.2014.12.216Google Scholar
Kent, J. C., Mitoulas, L. R., Cregan, M. D., Ramsay, D. T., Doherty, D. A., & Hartmann, P. E. (2006). Volume and frequency of breastfeedings and fat content of breast milk throughout the day. Pediatrics, 117(3), e387–395. doi:10.1542/peds.2005-1417Google Scholar
Kirsch, F., Beauchamp, J., & Buettner, A. (2012). Time-dependent aroma changes in breast milk after oral intake of a pharmacological preparation containing 1, 8-cineole. Clinical Nutrition, 31(5), 682692. doi:10.1016/j.clnu.2012.02.002Google Scholar
Kolb, B., & Gibb, R. (2011). Brain plasticity and behaviour in the developing brain. Journal of the Canadian Academy of Child and Adolescent Psychiatry, 20, 265276.Google ScholarPubMed
Korner, A. K., Chuck, B., & Dontchos, S. (1968). Organismic determinants of spontaneous oral behavior in neonates. Child Development, 39, 11471157.Google Scholar
Kyureghian, G., Stratton, J., Bianchini, A., & Albrecht, J. (2010). Nutritional comparison of frozen and non-frozen fruits and vegetables: Literature review. Retrieved from https://pdfs.semanticscholar.org/fd90/0931812081bff85f304a557906852b9add90.pdf.Google Scholar
Laing, D. G., Oram, N., Burgess, J., Ram, P. R., Moore, G., Rose, G., … Skurray, G. R. (1999). The development of meat-eating habits during childhood in Australia. International Journal of Food Sciences and Nutrition, 50, 2937.Google Scholar
Larsen, J. K., Hermans, R. C., Sleddens, E. F., Engels, R. C., Fisher, J. O., & Kremers, S. P. (2015). How parental dietary behavior and food parenting practices affect children’s dietary behavior. Interacting sources of influence? Appetite, 89, 246257. doi: 10.1016/j.appet.2015.02.012Google Scholar
Lipchock, S. V., Reed, D. R., & Mennella, J. A. (2011). The gustatory and olfactory systems during infancy: Implications for development of feeding behaviors in the high-risk neonate. Clinics in Perinatology, 38(4), 627641Google Scholar
Lundy, B., Field, T., Carraway, K., Hart, S., Malphurs, J., Rosenstein, M., … Hernandez-Reif, M. (1998). Food texture preferences in infants versus toddlers. Early Child Development and Care, 146, 6985.Google Scholar
Maalouf, J., Cogswell, M. E., Bates, M., Yuan, K., Scanlon, K. S., Pehrsson, P., … Merritt, R. K. (2017). Sodium, sugar, and fat content of complementary infant and toddler foods sold in the United States, 2015. American Journal of Clinical Nutrition, 105(6), 14431452. doi:10.3945/ajcn.116.142653Google Scholar
McDaniel, M. R. (1980). Off-flavors in human milk. In Charalambous, G. (Ed.), The analysis and control of less desirable flavors in foods and beverages (pp. 267291). New York, NY: Academic Press.Google Scholar
McNally, J., Hugh-Jones, S., Caton, S., Vereijken, C., Weenen, H., & Hetherington, M. (2016). Communicating hunger and satiation in the first 2 years of life: A systematic review. Maternal Child Nutrition, 12(2), 205228. doi:10.1111/mcn.12230Google Scholar
Meltzoff, A. N. (2007). Infants’ causal learning: Intervention, observation, imitation. In Gopnik, A. & Schulz, L. (Eds.), Causal learning: Psychology, philosophy, and computation (pp. 3741). Oxford: Oxford University Press.Google Scholar
Mennella, J. A. (1997). Infants’ suckling responses to the flavor of alcohol in mothers’ milk. Alcohol: Clinical and Experimental Research, 21(4), 581585.Google Scholar
Mennella, J. A. (2007). The chemical senses and the development of flavor preferences in humans. In Hale, T. W. & Hartmann, P. E. (Eds.), Textbook on human lactation (pp. 403414). Amarillo, TX: Hale.Google Scholar
Mennella, J. A. (2012). Alcohol use during lactation: Effects on the mother–infant dyad. In Watson, R. R. & Preedy, V. R. (Eds.), Nutrition and alcohol: Linking nutrient interactions and dietary intake (pp. 6382). New York, NY: Springer.Google Scholar
Mennella, J. A., & Beauchamp, G. K. (1991a). Maternal diet alters the sensory qualities of human milk and the nursling’s behavior. Pediatrics, 88(4), 737744.Google Scholar
Mennella, J. A., (1991b). The transfer of alcohol to human milk. Effects on flavor and the infant’s behavior. New England Journal of Medicine, 325(14), 981985.Google Scholar
Mennella, J. A., (1993a). Beer, breast feeding, and folklore. Developmental Psychobiology, 26(8), 459466.Google Scholar
Mennella, J. A., (1993b). The effects of repeated exposure to garlic-flavored milk on the nursling’s behavior. Pediatric Research, 34, 805808.Google Scholar
Mennella, J. A., (1994). The infant’s response to flavored milk. Infant Behavior and Development, 19(1), 119.Google Scholar
Mennella, J. A., (1996). The human infants’ responses to vanilla flavors in mother’s milk and formula. Infant Behavior and Development, 19, 1319.Google Scholar
Mennella, J. A., (1998a). The infant’s response to scented toys: Effects of exposure. Chemical Senses, 23, 1117.Google Scholar
Mennella, J. A., (1998b). Smoking and the flavor of breast milk. New England Journal of Medicine, 339, 15591560.Google Scholar
Mennella, J. A., (1999). Experience with a flavor in mother’s milk modifies the infant’s acceptance of flavored cereal. Developmental Psychobiology, 35(3), 197203.Google Scholar
Mennella, J. A., (2002). Flavor experiences during formula feeding are related to preferences during childhood. Early Human Development, 68(2), 7182.Google Scholar
Mennella, J. A., (2015). The sweetness and bitterness of childhood: Insights from basic research on taste preferences. Physiology and Behavior, 152(Pt. B), 502507. doi:10.1016/j.physbeh.2015.05.015Google Scholar
Mennella, J. A., Daniels, L. M., & Reiter, A. R. (2017). Learning to like vegetables during breastfeeding: A randomized clinical trial of lactating mothers and infants. American Journal of Clinical Nutrition, 106, 6776. doi:10.3945/ajcn.116.143982Google Scholar
Mennella, J. A., Finkbeiner, S., Lipchock, S. V., Hwang, L. D., & Reed, D. R. (2014). Preferences for salty and sweet tastes are elevated and related to each other during childhood. PLoS One, 9(3), e92201. doi:10.1371/journal.pone.0092201Google Scholar
Mennella, J. A., Forestell, C. A., Morgan, L. K., & Beauchamp, G. K. (2009). Early milk feeding influences taste acceptance and liking during infancy. American Journal of Clinical Nutrition, 90(3), 780–788S. doi:10.3945/ajcn.2009.27462OCrossRefGoogle ScholarPubMed
Mennella, J. A., Inamdar, L., Pressman, N., Schall, J., Papas, M. A., Schoeller, D., … Trabulsi, J. C. (2018). Type of infant formula increases early weight gain and impacts energy balance: A randomized controlled trial. American Journal of Clinical Nutrition, 108, 111. doi: 10.1093/ajcn/nqy188Google Scholar
Mennella, J. A., Jagnow, C. P., & Beauchamp, G. K. (2001). Prenatal and postnatal flavor learning by human infants. Pediatrics, 107, E88.Google Scholar
Mennella, J. A., Johnson, A., & Beauchamp, G. K. (1995). Garlic ingestion by pregnant women alters the odor of amniotic fluid. Chemical Senses, 20(2), 207209.Google Scholar
Mennella, J. A., Nicklaus, S., Jagolino, A. L., & Yourshaw, L. M. (2008). Variety is the spice of life: Strategies for promoting fruit and vegetable acceptance during infancy. Physiology and Behavior, 94(1), 2938.Google Scholar
Mennella, J. A., Papas, M. A., Reiter, A. R., Stallings, V. A., & Trabulsi, J. C. (2019). Early rapid weight gain among formula-fed infants: Impact of formula type and maternal feeding styles. Pediatric Obesity, e12503. doi:10.1111/ijpo.12503Google Scholar
Mennella, J. A., Pepino, M. Y., Duke, F. F., & Reed, D. R. (2010). Age modifies the genotype–phenotype relationship for the bitter receptor TAS2R38. BMC Genetics, 11, 60. doi:10.1186/1471-2156-11-60Google Scholar
Mennella, J. A., Reiter, A. R., & Daniels, L. M. (2016). Vegetable and fruit acceptance during infancy: Impact of ontogeny, genetics, and early experiences. Advances in Nutrition, 7, 211S-219S. doi:10.3945/an.115.008649Google Scholar
Mennella, J. A., Ventura, A. K., & Beauchamp, G. K. (2011). Differential growth patterns among healthy infants fed protein hydrolysate or cow-milk formulas. Pediatrics, 127, 110118. doi:10.1542/peds.2010-1675Google Scholar
Moding, K. J., Ferrante, M. J., Bellows, L. L., Bakke, A. J., Hayes, J. E., & Johnson, S. L. (2018). Variety and content of commercial infant and toddler vegetable products manufactured and sold in the United States. American Journal of Clinical Nutrition, 107(4), 576583. doi:10.1093/ajcn/nqx079Google Scholar
Montanari, M. (2006). Food is culture (A. Sonnenfeld, Trans.). New York, NY: Columbia University Press.Google Scholar
Myers, K. P., & Sclafani, A. (2006). Development of learned flavor preferences. Developmental Psychobiology, 48(5), 380388.Google Scholar
Nagasawa, M., Okabe, S., Mogi, K., & Kikusui, T. (2012). Oxytocin and mutual communication in mother–infant bonding. Frontiers in Human Neuroscience, 6, 31. doi:10.3389/fnhum.2012.00031Google Scholar
Naylor, A. J., & Morrow, A. L. (2001). Developmental readiness of normal full-term infants to progress from exclusive breastfeeding to the introduction of complementary foods Reviews of the Relevant Literature Concerning Infantimmunologic, Gastrointestinal, Oral Motor and Maternal Reproductive and Lactational Development. Retrieved from www.pronutrition.org/files/Developmental%20Readiness.pdfGoogle Scholar
Negayama, K. (1993). Weaning in Japan: A longitudinal study of mother and child behaviours during milk- and solid-feeding. Infant Child Development, 2, 2937.Google Scholar
Neville, M. C., Anderson, S. M., McManaman, J. L., Badger, T. M., Bunik, M., Contractor, N., … Williamson, P. (2012). Lactation and neonatal nutrition: Defining and refining the critical questions. Journal of Mammary Gland Biology and Neoplasia, 17, 167188. doi:10.1007/s10911-012-9261-5Google Scholar
Nishitani, S., Kuwamoto, S., Takahira, A., Miyamura, T., & Shinohara, K. (2014). Maternal prefrontal cortex activation by newborn infant odors. Chemical Senses, 39(3), 195202. doi:10.1093/chemse/bjt068Google Scholar
Obbagy, J. E., Blum-Kemelor, D. M., Essery, E. V., Lyon, J. M., & Spahn, J. M. (2014). USDA Nutrition Evidence Library: Methodology used to identify topics and develop systematic review questions for the birth-to-24-mo population. American Journal of Clinical Nutrition, 99(3), 692S-696S. doi:10.3945/ajcn.113.071670Google Scholar
Paul, I. M., Savage, J. S., Anzman, S. L., Beiler, J. S., Marini, M. E., Stokes, J. L., & Birch, L. L. (2011). Preventing obesity during infancy: A pilot study. Obesity (Silver Spring), 19(2), 353361. doi:10.1038/oby.2010.182Google Scholar
Prentice, P., Ong, K. K., Schoemaker, M. H., van Tol, E. A., Vervoort, J., Hughes, I. A., … Dunger, D. B. (2016). Breast milk nutrient content and infancy growth. Acta Paediatrica, 105(6), 641647. doi:10.1111/apa.13362Google Scholar
Pritchard, J. A. (1965). Deglutition by normal and anencephalic fetuses. Obstetrics and Gynecology, 25, 289297.Google Scholar
Provenza, F. (2018). Nourishment: What animals can teach us about rediscovering our nutritional wisdom. White River Junction, VT: Chelsea Green Publishing.Google Scholar
Raiten, D. J., Raghavan, R., Porter, A., Obbagy, J. E., & Spahn, J. M. (2014). Executive summary: Evaluating the evidence base to support the inclusion of infants and children from birth to 24 mo of age in the Dietary Guidelines for Americans – “the B-24 Project.” American Journal of Clinical Nutrition, 99(3), 663S691S. doi:10.3945/ajcn.113.072140Google Scholar
Reidy, K. C., Bailey, R. L., Deming, D. M., O’Neill, L., Carr, B. T., Lesniauskas, R., & Johnson, W. (2018). Food consumption patterns and micronutrient density of complementary foods consumed by infants fed commercially prepared baby foods. Nutrition Today, 53(2), 6878. doi:10.1097/NT.0000000000000265Google Scholar
Remington, A., Anez, E., Croker, H., Wardle, J., & Cooke, L. (2012). Increasing food acceptance in the home setting: A randomized controlled trial of parent-administered taste exposure with incentives. American Journal of Clinical Nutrition, 95, 7277. doi:10.3945/ajcn.111.024596Google Scholar
Remy, E., Issanchou, S., Chabanet, C., & Nicklaus, S. (2013). Repeated exposure of infants at complementary feeding to a vegetable puree increases acceptance as effectively as flavor–flavor learning and more effectively than flavor–nutrient learning. Journal of Nutrition, 143(7), 11941200. doi:10.3945/jn.113.175646Google Scholar
Roess, A. A., Jacquier, E. F., Catellier, D. J., Carvalho, R., Lutes, A. C., Anater, A. S., & Dietz, W. H. (2018). Food consumption patterns of infants and toddlers: Findings from the Feeding Infants and Toddlers Study (FITS) 2016. Journal of Nutrition, 148(Suppl. 3), 1525S1535S. doi:10.1093/jn/nxy171Google Scholar
Rosenstein, D., & Oster, H. (1988). Differential facial responses to four basic tastes in newborns. Child Development, 59, 15551568.Google Scholar
Rother, K. I., Sylvetsky, A. C., Walter, P. J., Garraffo, H. M., & Fields, D. A. (2018). Pharmacokinetics of sucralose and acesulfame-potassium in breast milk following ingestion of diet soda. Journal of Pediatric Gastroenterology and Nutrition, 66(3), 466470. doi:10.1097/MPG.0000000000001817Google Scholar
Rozin, E. (1973). The flavor-principle cookbook. New York, NY: Hawthorn Books.Google Scholar
Rozin, P. (1982). “Taste-smell confusions” and the duality of the olfactory sense. Perception and Psychophysics, 31(4), 397401.Google Scholar
Rozin, P. (1984). The acquisition of food habits and preferences. In Mattarazzo, J. D., Weiss, S. M., Herd, J. A., Miller, N. E., & Weiss, S. M. (Eds.), Behavioral health: A handbook of health enhancement and disease prevention (pp. 590607). New York, NY: John Wiley & Sons.Google Scholar
San Gabriel, A., & Uneyama, H. (2013). Amino acid sensing in the gastrointestinal tract. Amino Acids, 45, 451461. doi:10.1007/s00726-012-1371-2Google Scholar
Schaal, B., & Marlier, L. (1998). Maternal and paternal perception of individual odor signatures in human amniotic fluid – potential role in early bonding? Biology of the Neonate, 74(4), 266273.Google Scholar
Schaal, B., Marlier, L., & Soussignan, R. (2000). Human foetuses learn odours from their pregnant mother’s diet. Chemical Senses, 25(6), 729737.Google Scholar
Scheffler, L., Sauermann, Y., Zeh, G., Hauf, K., Heinlein, A., Sharapa, C., & Buettner, A. (2016). Detection of volatile metabolites of garlic in human breast milk. Metabolites, 6(2). doi:10.3390/metabo6020018Google Scholar
Sclafani, A., & Ackroff, K. (1994). Glucose- and fructose-conditioned flavor preferences in rats: Taste versus postingestive conditioning. Physiology and Behavior, 56(2), 399405.Google Scholar
Shipe, W. F., Bassette, R., Deane, D. D., Dunkley, W. L., Hammond, E. G., Harper, W. J., … Scanlan, R. A. (1978). Off-flavors of milk: Nomenclature, standards and bibliography. Journal of Dairy Science, 61, 855868.Google Scholar
Shipe, W. F., Ledford, R. A., Peterson, R. D., Scanlan, R. A., Geerken, H. F., Dougherty, R. W., & Morgan, M. E. (1962). Physiological mechanisms involved in transmitting flavors and odors to milk. II: Transmission of some flavor components of silage. Journal of Dairy Science, 45, 477480.Google Scholar
Shloim, N., Vereijken, C., Blundell, P., & Hetherington, M. M. (2017). Looking for cues: Infant communication of hunger and satiation during milk feeding. Appetite, 108, 7482. doi:10.1016/j.appet.2016.09.020Google Scholar
Siega-Riz, A. M., Kinlaw, A., Deming, D. M., & Reidy, K. C. (2011). New findings from the Feeding Infants and Toddlers Study 2008. Nestle Nutrition Workshop Series Pediatric Program, 68, 83100. doi:10.1159/000325667Google Scholar
Skinner, J. D., Carruth, B. R., Houck, K., Moran, J., III, Reed, A., Coletta, F., & Ott, D. (1998). Mealtime communication patterns of infants from 2 to 24 months of age. JNE, 30, 816.Google Scholar
Spjut, R. W. (1994). A systematic treatment of fruit types. New York, NY: New York Botanical Garden.Google Scholar
Stein, L. J., Cowart, B. J., & Beauchamp, G. K. (2012). The development of salty taste acceptance is related to dietary experience in human infants: A prospective study. American Journal of Clinical Nutrition, 95(1), 123129. doi:10.3945/ajcn.111.014282Google Scholar
Stein, L. J., Nagai, H., Nakagawa, M., & Beauchamp, G. K. (2003). Effects of repeated exposure and health-related information on hedonic evaluation and acceptance of a bitter beverage. Appetite, 40(2), 119129.Google Scholar
Steiner, J. E. (1987). What the neonate can tell us about umami. In Kawamura, Y. & Kare, M. R. (Eds.), Umami: A basic taste (pp. 97103). New York, NY: Marcel Dekker.Google Scholar
Strauss, S. (2006). Clara M. Davis and the wisdom of letting children choose their own diets. Canadian Medical Association Journal, 175(10), 1199. doi:10.1503/cmaj.060990Google Scholar
Sullivan, R., Perry, R., Sloan, A., Kleinhaus, K., & Burtchen, N. (2011). Infant bonding and attachment to the caregiver: Insights from basic and clinical science. Clinics in Perinatology, 38(4), 643655. doi:10.1016/j.clp.2011.08.011Google Scholar
Sullivan, S. A., & Birch, L. L. (1994). Infant dietary experience and acceptance of solid foods. Pediatrics, 93(2), 271277.Google Scholar
Sumonja, S., & Novakovic, B. (2013). Determinants of fruit, vegetable, and dairy consumption in a sample of schoolchildren, northern Serbia, 2012. Preventing Chronic Disease, 10, E178. doi:10.5888/pcd10.130072Google Scholar
Swinburn, B. A., Caterson, I., Seidell, J. C., & James, W. P. (2004). Diet, nutrition and the prevention of excess weight gain and obesity. Public Health Nutrition, 7, 123146.Google Scholar
Taber, D. R., Chriqui, J. F., & Chaloupka, F. J. (2013). State laws governing school meals and disparities in fruit/vegetable intake. American Journal of Preventative Medicine, 44, 365372. doi:10.1016/j.amepre.2012.11.038Google Scholar
Thompson, A. L., Mendez, M. A., Borja, J. B., Adair, L. S., Zimmer, C. R., & Bentley, M. E. (2009). Development and validation of the Infant Feeding Style Questionnaire. Appetite, 53(2), 210221. doi:10.1016/j.appet.2009.06.010Google Scholar
Uneyama, H., Niijima, A., San Gabriel, A., & Torii, K. (2006). Luminal amino acid sensing in the rat gastric mucosa. American Journal of Physiology: Gastrointestinal and Liver Physiology, 291(6), G1163–1170. doi:10.1152/ajpgi.00587.2005Google Scholar
USDA (2010). Report of the Dietary Guidelines Advisory Committee on the dietary guidelines for Americans. Retrieved from www.nutriwatch.org/05Guidelines/dga_advisory_2010.pdf.Google Scholar
van den Engel-Hoek, L., van Hulst, K. C., van Gerven, M. H., van Haaften, L., & de Groot, S. A. (2014). Development of oral motor behavior related to the skill assisted spoon feeding. Infant Behaviour and Development, 37(2), 187191. doi:10.1016/j.infbeh.2014.01.008CrossRefGoogle Scholar
Ventura, A. K., Beauchamp, G. K., & Mennella, J. A. (2012). Infant regulation of intake: The effect of free glutamate content in infant formulas. American Journal of Clinical Nutrition, 95(4), 875881. doi:10.3945/ajcn.111.024919Google Scholar
Ventura, A. K., Inamdar, L. B., & Mennella, J. A. (2015). Consistency in infants’ behavioural signalling of satiation during bottle-feeding. Pediatric Obesity, 10, 180187. doi:10.1111/ijpo.250Google Scholar
Ventura, A. K., & Mennella, J. A. (2017). An experimental approach to study individual differences in infants’ intake and satiation behaviors during bottle-feeding. Child Obesity, 13(1), 4452. doi:10.1089/chi.2016.0122Google Scholar
Wahlqvist, M. L., & Lee, M. S. (2007). Regional food culture and development. Asia Pacific Journal of Clinical Nutrition, 16 (Suppl. 1), 27.Google Scholar
Wardle, J., Carnell, S., & Cooke, L. (2005). Parental control over feeding and children’s fruit and vegetable intake: How are they related? Journal of the American Dietetic Association, 105(2), 227232.Google Scholar
Welker, E., Jacquier, E. F., Catellier, D. J., Anater, A. S., & Story, M. T. (2016). Room for improvement remains in food consumption patterns of young children aged 2–4 years. Journal of Nutrition, 148, 111.Google Scholar
Welsh, J. A., & Cunningham, S. A. (2011). The role of added sugars in pediatric obesity. Pediatric Clinics of North America, 58(6), 14551466. doi:10.1016/j.pcl.2011.09.009Google Scholar
Welsh, J. A., Sharma, A., Cunningham, S. A., & Vos, M. B. (2011). Consumption of added sugars and indicators of cardiovascular disease risk among US adolescents. Circulation, 123, 249257. doi:10.1161/CIRCULATIONAHA.110.972166Google Scholar
Willander, J., & Larsson, M. (2006). Smell your way back to childhood: Autobiographical odor memory. Psychosomatic Bulletin and Review, 13(2), 240244.Google Scholar
Wilson, D., Best, A., & Sullivan, R. (2004). Plasticity in the olfactory system: Lessons for the neurobiology of memory. Neuroscientist, 10, 513524.Google Scholar
Woolridge, M. W., Baum, J. D., & Drewett, R. F. (1980). Does a change in the composition of human milk affect sucking patterns and milk intake? Lancet, 2(8207), 12921293.Google Scholar
Woolridge, M. W., Baum, J. D., (1982 ). Individual patterns of milk intake during breast-feeding. Early Human Development, 7(3), 265272.Google Scholar
Worobey, H., Ostapkovich, K., Yudin, K., & Worobey, J. (2010). Trying versus liking fruits and vegetables: Correspondence between mothers and preschoolers. Ecology of Food and Nutrition, 49, 8797. doi:10.1080/03670240903433261Google Scholar
Yang, Q., Zhang, Z., Gregg, E. W., Flanders, W. D., Merritt, R., & Hu, F. B. (2014). Added sugar intake and cardiovascular diseases mortality among US adults. JAMA Internal Medicine, 174(4), 516524. doi:10.1001/jamainternmed.2013.13563Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×