Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-13T11:05:45.285Z Has data issue: false hasContentIssue false

23 - The Neural Representation of Concrete and Abstract Concepts

from Part V - Translating Research on the Neuroscience of Intelligence into Action

Published online by Cambridge University Press:  11 June 2021

Aron K. Barbey
Affiliation:
University of Illinois, Urbana-Champaign
Sherif Karama
Affiliation:
McGill University, Montréal
Richard J. Haier
Affiliation:
University of California, Irvine
Get access

Summary

Although the study of concept knowledge has long been of interest in psychology and philosophy, it is only in the past two decades that it has been possible to characterize the neural implementation of concept knowledge. With the use of neuroimaging technology, it has become possible to ask previously unanswerable questions about the representation of concepts, such as the semantic composition of a concept in its brain representation. In particular, it has become possible to uncover some of the fundamental dimensions of representation that characterize several important domains of concepts.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, A. J., Kiela, D., Clark, S., & Poesio, M. (2017). Visually grounded and textual semantic models differentially decode brain activity associated with concrete and abstract nouns. Transactions of the Association for Computational Linguistics, 5, 1730.Google Scholar
Barsalou, L. W. (1999). Perceptual symbol systems. Behavioral and Brain Sciences, 22(4), 577660.Google Scholar
Barsalou, L. W. (2003). Abstraction in perceptual symbol systems. Philosophical Transactions of the Royal Society B: Biological Sciences, 358(1435), 11771187. doi.org/10.1098/rstb.2003.1319Google Scholar
Benn, Y., Zheng, Y., Wilkinson, I. D., Siegal, M., & Varley, R. (2012). Language in calculation: A core mechanism? Neuropsychologia, 50(1), 110. https://doi.org/10.1016/j.neuropsychologia.2011.09.045CrossRefGoogle ScholarPubMed
Brysbaert, M., Warriner, A. B., & Kuperman, V. (2014). Concreteness ratings for 40 thousand generally known English word lemmas. Behavior Research Methods, 46(3), 904911. https://doi.org/10.3758/s13428-013-0403-5CrossRefGoogle ScholarPubMed
Chen, J. L., Zatorre, R. J., & Penhune, V. B. (2006). Interactions between auditory and dorsal premotor cortex during synchronization to musical rhythms. NeuroImage, 32(4), 17711781. https://doi.org/10.1016/j.neuroimage.2006.04.207Google Scholar
Clarke, A., Taylor, K. I., Devereux, B., Randall, B., & Tyler, L. K. (2013). From perception to conception: How meaningful objects are processed over time. Cerebral Cortex, 23(1), 187197. https://doi.org/10.1093/cercor/bhs002CrossRefGoogle ScholarPubMed
Collins, A. M., & Loftus, E. F. (1975). A spreading-activation theory of semantic processing. Psychological Review, 82(6), 407428. https://doi.org/10.1037/0033-295X.82.6.407Google Scholar
Coutanche, M. N., & Thompson-Schill, S. L. (2015). Creating concepts from converging features in human cortex. Cerebral Cortex, 25(9), 25842593. https://doi.org/10.1093/cercor/bhu057Google Scholar
Crutch, S. J., & Warrington, E. K. (2005). Abstract and concrete concepts have structurally different representational frameworks. Brain, 128(3), 615627. https://doi.org/10.1093/brain/awh349CrossRefGoogle ScholarPubMed
Crutch, S. J., & Warrington, E. K. (2010). The differential dependence of abstract and concrete words upon associative and similarity-based information: Complementary semantic interference and facilitation effects. Cognitive Neuropsychology, 27(1), 4671. https://doi.org/10.1080/02643294.2010.491359Google Scholar
Deerwester, S., Dumais, S. T., Furnas, G. W., Landauer, T. K., & Harshman, R. (1990). Indexing by latent semantic analysis. Journal of the Association for Information Science and Technology, 41(6), 391407.Google Scholar
Fugelsang, J. A., & Dunbar, K. N. (2005). Brain-based mechanisms underlying complex causal thinking. Neuropsychologia, 43(8), 12041213. https://doi.org/10.1016/j.neuropsychologia.2004.10.012Google Scholar
Fugelsang, J. A., Roser, M. E., Corballis, P. M., Gazzaniga, M. S., & Dunbar, K. N. (2005). Brain mechanisms underlying perceptual causality. Cognitive Brain Research, 24(1), 4147. https://doi.org/10.1016/j.cogbrainres.2004.12.001CrossRefGoogle ScholarPubMed
Grill-Spector, K., & Malach, R. (2004). The human visual cortex. Annual Review of Neuroscience, 27(1), 649677. https://doi.org/10.1146/annurev.neuro.27.070203.144220Google Scholar
Hauk, O., & Pulvermüller, F. (2004) Neurophysiological distinction of action words in the fronto‐central cortex. Human Brain Mapping, 21(3), 191201. DOI: 10.1002/hbm.10157Google Scholar
Haxby, J. V., Gobbini, M. I., Furey, M. L., Ishai, A., Schouten, J. L., & Pietrini, P. (2001). Distributed and overlapping representations of faces and objects in ventral temporal cortex, Science, 293(5539), 24252430. doi: 10.1126/science.1063736.Google Scholar
Hayes, J. C., & Kraemer, D. J. M. (2017). Grounded understanding of abstract concepts: The case of STEM learning. Cognitive Research: Principles and Implications, 2(1), 7. https://doi.org/10.1186/s41235-016-0046-zGoogle ScholarPubMed
Haynes, J. D., & Rees, G. (2006). Decoding mental states from brain activity in humans. Nature Reviews Neuroscience, 7(7), 523534. https://doi.org/10.1038/nrn1931Google Scholar
Hoffman, P. (2016). The meaning of “life” and other abstract words: Insights from neuropsychology. Journal of Neuropsychology, 10(2), 317343. https://doi.org/10.1111/jnp.12065Google Scholar
Hoffman, P., Jefferies, E., & Lambon Ralph, M. A. (2010). Ventrolateral prefrontal cortex plays an executive regulation role in comprehension of abstract words: Convergent neuropsychological and repetitive TMS evidence. Journal of Neuroscience, 30(46), 1545015456. https://doi.org/10.1523/JNEUROSCI.3783-10.2010Google Scholar
Huth, A. G., De Heer, W. A., Griffiths, T. L., Theunissen, F. E., & Gallant, J. L. (2016). Natural speech reveals the semantic maps that tile human cerebral cortex. Nature, 532(7600), 453458. https://doi.org/10.1038/nature17637Google Scholar
Just, M. A., Cherkassky, V. L., Aryal, S., & Mitchell, T. M. (2010). A neurosemantic theory of concrete noun representation based on the underlying brain codes. PLoS ONE, 5(1), e8622. https://doi.org/10.1371/journal.pone.0008622Google Scholar
Just, M. A., Cherkassky, V. L., Buchweitz, A., Keller, T. A., & Mitchell, T. M. (2014). Identifying autism from neural representations of social interactions: Neurocognitive markers of autism. PLoS ONE, 9(12), e113879. https://doi.org/10.1371/journal.pone.0113879CrossRefGoogle ScholarPubMed
Kassam, K. S., Markey, A. R., Cherkassky, V. L., Loewenstein, G., & Just, M. A. (2013). Identifying emotions on the basis of neural activation. PLoS ONE, 8(6), e66032. https://doi.org/10.1371/journal.pone.0066032Google Scholar
Klasen, M., Kenworthy, C. A., Mathiak, K. A., Kircher, T. T. J., & Mathiak, K. (2011). Supramodal representation of emotions. Journal of Neuroscience, 31(38), 1363513643. https://doi.org/10.1523/JNEUROSCI.2833-11.2011Google Scholar
Kober, H., Barrett, L. F., Joseph, J., Bliss-Moreau, E., Lindquist, K., & Wager, T. D. (2008). Functional grouping and cortical–subcortical interactions in emotion. NeuroImage, 42(2), 9981031. https://doi.org/10.1016/j.neuroimage.2008.03.059Google Scholar
Kriegeskorte, N., Goebel, R., & Bandettini, P. (2006). Information-based functional brain mapping. Proceedings of the National Academy of Sciences of the United States of America, 103(10), 38633868. https://doi.org/10.1073/pnas.0600244103Google Scholar
Kriegeskorte, N., Mur, M., & Bandettini, P. (2008a). Representational similarity analysis – Connecting the branches of systems neuroscience. Frontiers in Systems Neuroscience, 2(11), 128. https://doi.org/10.3389/neuro.06.004.2008Google Scholar
Kriegeskorte, N., Mur, M., Ruff, D. A., Kiani, R., Bodurka, J., Esteky, H., … Bandettini, P. A. (2008b). Matching categorical object representations in inferior temporal cortex of man and monkey. Neuron, 60(6), 11261141. https://doi.org/10.1016/j.neuron.2008.10.043Google Scholar
Lambon Ralph, M. A. (2014). Neurocognitive insights on conceptual knowledge and its breakdown. Philosophical Transactions of the Royal Society B: Biological Sciences, 369(1634), 20120392. https://doi.org/10.1098/rstb.2012.0392Google Scholar
Landauer, T. K., & Dumas, S. T. (1997) A solution to Plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological Review, 104(2), 211240.Google Scholar
Martin, A. (2007). The representation of object concepts in the brain. Annual Review of Psychology, 58, 2545.Google Scholar
Mason, R. A., & Just, M. A. (2016). Neural representations of physics concepts. Psychological Science, 27(6), 904913. https://doi.org/10.1177/0956797616641941Google Scholar
Meyer, K., & Damasio, A. (2009). Convergence and divergence in a neural architecture for recognition and memory. Trends in Neurosciences, 32(7), 376382. https://doi.org/10.1016/j.tins.2009.04.002Google Scholar
Mitchell, T. M., Shinkareva, S. V., Carlson, A., Chang, K. M., Malave, V. L., Mason, R. A., & Just, M. A. (2008). Predicting human brain activity associated with the meanings of nouns. Science, 320(5880), 11911195. https://doi.org/10.1126/science.1152876Google Scholar
Mur, M., Bandettini, P. A., & Kriegeskorte, N. (2009). Revealing representational content with pattern-information fMRI – An introductory guide. Social Cognitive and Affective Neuroscience, 4(1), 101109. https://doi.org/10.1093/scan/nsn044Google Scholar
Naselaris, T., Kay, K. N., Nishimoto, S., & Gallant, J. L. (2011). Encoding and decoding in fMRI. Neuroimage, 56(2), 400410.Google Scholar
Nishimoto, S., Vu, A. T., Naselaris, T., Benjamini, Y., Yu, B., & Gallant, J. L. (2011). Reconstructing visual experiences from brain activity evoked by natural movies. Current Biology, 21(19), 16411646. https://doi.org/10.1016/j.cub.2011.08.031Google Scholar
Pennington, J., Socher, R., & Manning, C. D. (2014). GloVe: Global Vectors for Word Representation. Proceedings of the Conference on Empirical Methods in Natural Language Processing, 1532–1543.Google Scholar
Pereira, F., Lou, B., Pritchett, B., Ritter, S., Gershman, S. J., Kanwisher, N., … Fedorenko, E. (2018). Toward a universal decoder of linguistic meaning from brain activation. Nature Communications, 9(1), 963. https://doi.org/10.1038/s41467-018-03068-4Google Scholar
Phan, K. L., Wager, T., Taylor, S. F., & Liberzon, I. (2002). Functional neuroanatomy of emotion: A meta-analysis of emotion activation studies in PET and fMRI. NeuroImage, 16(2), 331348. https://doi.org/10.1006/nimg.2002.1087Google Scholar
Vargas, R., & Just, M. A. (2019). Neural representations of abstract concepts: Identifying underlying neurosemantic dimensions. Cerebral Cortex, 30(4), 21572166. https://doi.org/10.1093/cercor/bhz229CrossRefGoogle Scholar
Wang, J., Conder, J. A., Blitzer, D. N., & Shinkareva, S. V. (2010). Neural representation of abstract and concrete concepts: A meta-analysis of neuroimaging studies. Human Brain Mapping, 31(10), 14591468. https://doi.org/10.1002/hbm.20950Google Scholar
Wang, X., Wu, W., Ling, Z., Xu, Y., Fang, Y., Wang, X., … Bi, Y. (2018). Organizational principles of abstract words in the human brain. Cerebral Cortex, 28(12), 43054318. https://doi.org/10.1093/cercor/bhx283Google Scholar
Xu, J., Kemeny, S., Park, G., Frattali, C., & Braun, A. (2005). Language in context: Emergent features of word, sentence, and narrative comprehension. NeuroImage, 25(3), 10021015. https://doi.org/10.1016/j.neuroimage.2004.12.013Google Scholar
Yang, Y., Wang, J., Bailer, C., Cherkassky, V., & Just, M. A. (2017). Commonality of neural representations of sentences across languages: Predicting brain activation during Portuguese sentence comprehension using an English-based model of brain function. NeuroImage, 146, 658666. https://doi.org/10.1016/j.neuroimage.2016.10.029Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×