Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-20T22:28:17.115Z Has data issue: false hasContentIssue false

12 - A Common Mode of Processing Governing Divergent Thinking and Future Imagination

from Part III - Attention and Imagination

Published online by Cambridge University Press:  19 January 2018

Rex E. Jung
Affiliation:
University of New Mexico
Oshin Vartanian
Affiliation:
University of Toronto
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2018

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abraham, A. (2014). Creative thinking as orchestrated by semantic processing vs. cognitive control brain networks. Frontiers in Human Neuroscience, 8. https://doi.org/10.3389/fnhum.2014.00095CrossRefGoogle ScholarPubMed
Abraham, A., Pieritz, K., Thybusch, K., Rutter, B., Kröger, S., Schweckendiek, J., … Hermann, C. (2012). Creativity and the brain: Uncovering the neural signature of conceptual expansion. Neuropsychologia, 50, 19061917. https://doi.org/10.1016/j.neuropsychologia.2012.04.015CrossRefGoogle ScholarPubMed
Addis, D. R., Cheng, T., Roberts, R. P., & Schacter, D. L. (2011). Hippocampal contributions to the episodic simulation of specific and general future events. Hippocampus, 21, 10451052. https://doi.org/10.1002/hipo.20870CrossRefGoogle Scholar
Addis, D. R., Hach, S., & Tippett, L. J. (2016). Do strategic processes contribute to the specificity of future simulation in depression? The British Journal of Clinical Psychology, 55, 167186. https://doi.org/10.1111/bjc.12103CrossRefGoogle Scholar
Addis, D. R., Musicaro, R., Pan, L., & Schacter, D. L. (2010). Episodic simulation of past and future events in older adults: Evidence from an experimental recombination task. Psychology and Aging, 25, 369376. https://doi.org/10.1037/a0017280CrossRefGoogle ScholarPubMed
Addis, D. R., Pan, L., Musicaro, R., & Schacter, D. L. (2016). Divergent thinking and constructing episodic simulations. Memory (Hove, England), 24, 8997. https://doi.org/10.1080/09658211.2014.985591CrossRefGoogle ScholarPubMed
Addis, D. R., Pan, L., Vu, M.-A., Laiser, N., & Schacter, D. L. (2009). Constructive episodic simulation of the future and the past: Distinct subsystems of a core brain network mediate imagining and remembering. Neuropsychologia, 47, 22222238. https://doi.org/10.1016/j.neuropsychologia.2008.10.026CrossRefGoogle ScholarPubMed
Addis, D. R., Roberts, R. P., & Schacter, D. L. (2011). Age-related neural changes in autobiographical remembering and imagining. Neuropsychologia, 49, 36563669. https://doi.org/10.1016/j.neuropsychologia.2011.09.021CrossRefGoogle ScholarPubMed
Addis, D. R., & Schacter, D. L. (2008). Effects of detail and temporal distance of past and future events on the engagement of a common neural network. Hippocampus, 18, 227237.CrossRefGoogle Scholar
Addis, D. R., & Schacter, D. L. (2012). The hippocampus and imagining the future: Where do we stand? Frontiers in Human Neuroscience, 5, 173. https://doi.org/10.3389/fnhum.2011.00173CrossRefGoogle ScholarPubMed
Addis, D. R., Wong, A. T., & Schacter, D. L. (2007). Remembering the past and imagining the future: Common and distinct neural substrates during event construction and elaboration. Neuropsychologia, 45, 13631377. https://doi.org/10.1016/j.neuropsychologia.2006.10.016CrossRefGoogle ScholarPubMed
Addis, D. R., Wong, A. T., & Schacter, D. L. (2008). Age-related changes in the episodic simulation of future events. Psychological Science, 19, 3341. https://doi.org/10.1111/j.1467-9280.2008.02043.xCrossRefGoogle ScholarPubMed
Allen, A. P., & Thomas, K. E. (2011). A dual process account of creative thinking. Creativity Research Journal, 23, 109118. https://doi.org/10.1080/10400419.2011.571183CrossRefGoogle Scholar
Anderson, R. J., Dewhurst, S. A., & Nash, R. A. (2012). Shared cognitive processes underlying past and future thinking: The impact of imagery and concurrent task demands on event specificity. Journal of Experimental Psychology. Learning, Memory, and Cognition, 38, 356365. https://doi.org/10.1037/a0025451CrossRefGoogle ScholarPubMed
Andrews-Hanna, J. R. (2012). The brain’s default network and its adaptive role in internal mentation. The Neuroscientist: A Review Journal Bringing Neurobiology, Neurology and Psychiatry, 18, 251270. https://doi.org/10.1177/1073858411403316CrossRefGoogle ScholarPubMed
Andrews-Hanna, J. R., Reidler, J. S., Huang, C., & Buckner, R. L. (2010). Evidence for the default network’s role in spontaneous cognition. Journal of Neurophysiology, 104, 322335. https://doi.org/10.1152/jn.00830.2009CrossRefGoogle ScholarPubMed
Andrews-Hanna, J. R., Smallwood, J., & Spreng, R. N. (2014). The default network and self-generated thought: Component processes, dynamic control, and clinical relevance. Annals of the New York Academy of Sciences, 1316, 2952. https://doi.org/10.1111/nyas.12360CrossRefGoogle ScholarPubMed
Arden, R., Chavez, R. S., Grazioplene, R., & Jung, R. E. (2010). Neuroimaging creativity: A psychometric view. Behavioural Brain Research, 214, 143156. https://doi.org/10.1016/j.bbr.2010.05.015CrossRefGoogle ScholarPubMed
Aron, A. R., Robbins, T. W., & Poldrack, R. A. (2004). Inhibition and the right inferior frontal cortex. Trends in Cognitive Sciences, 8, 170177. https://doi.org/10.1016/j.tics.2004.02.010CrossRefGoogle ScholarPubMed
Barbas, H., & Blatt, G. J. (1995). Topographically specific hippocampal projections target functionally distinct prefrontal areas in the rhesus monkey. Hippocampus, 5, 511533. https://doi.org/10.1002/hipo.450050604CrossRefGoogle ScholarPubMed
Barr, N., Pennycook, G., Stolz, J. A., & Fugelsang, J. A. (2015). Reasoned connections: A dual-process perspective on creative thought. Thinking & Reasoning, 21, 6175. https://doi.org/10.1080/13546783.2014.895915CrossRefGoogle Scholar
Beaty, R. E., Benedek, M., Kaufman, S. B., & Silvia, P. J. (2015). Default and executive network coupling supports creative idea production. Scientific Reports, 5, 10964. https://doi.org/10.1038/srep10964CrossRefGoogle Scholar
Beaty, R. E., Benedek, M., Silvia, P. J., & Schacter, D. L. (2016). Creative cognition and brain network dynamics. Trends in Cognitive Sciences, 20, 8795. https://doi.org/10.1016/j.tics.2015.10.004CrossRefGoogle ScholarPubMed
Beaty, R. E., Benedek, M., Wilkins, R. W., Jauk, E., Fink, A., Silvia, P. J., … Neubauer, A. C. (2014). Creativity and the default network: A functional connectivity analysis of the creative brain at rest. Neuropsychologia, 64, 9298. https://doi.org/10.1016/j.neuropsychologia.2014.09.019CrossRefGoogle ScholarPubMed
Beaty, R. E., & Silvia, P. J. (2012). Why do ideas get more creative across time? An executive interpretation of the serial order effect in divergent thinking tasks. Psychology of Aesthetics, Creativity, and the Arts, 6, 309319. https://doi.org/10.1037/a0029171CrossRefGoogle Scholar
Beaty, R. E., Silvia, P. J., Nusbaum, E. C., Jauk, E., & Benedek, M. (2014). The roles of associative and executive processes in creative cognition. Memory & Cognition, 42, 11861197. https://doi.org/10.3758/s13421-014-0428-8CrossRefGoogle ScholarPubMed
Benedek, M., Franz, F., Heene, M., & Neubauer, A. C. (2012). Differential effects of cognitive inhibition and intelligence on creativity. Personality and Individual Differences, 53, 480485. https://doi.org/10.1016/j.paid.2012.04.014CrossRefGoogle ScholarPubMed
Benedek, M., Jauk, E., Fink, A., Koschutnig, K., Reishofer, G., Ebner, F., & Neubauer, A. C. (2014). To create or to recall? Neural mechanisms underlying the generation of creative new ideas. NeuroImage, 88, 125133. https://doi.org/10.1016/j.neuroimage.2013.11.021CrossRefGoogle ScholarPubMed
Benedek, M., Könen, T., & Neubauer, A. C. (2012). Associative abilities underlying creativity. Psychology of Aesthetics, Creativity, and the Arts, 6, 273281. https://doi.org/10.1037/a0027059CrossRefGoogle Scholar
Benoit, R. G., & Schacter, D. L. (2015). Specifying the core network supporting episodic simulation and episodic memory by activation likelihood estimation. Neuropsychologia, 75, 450457. https://doi.org/10.1016/j.neuropsychologia.2015.06.034CrossRefGoogle ScholarPubMed
Benoit, R. G., Szpunar, K. K., & Schacter, D. L. (2014). Ventromedial prefrontal cortex supports affective future simulation by integrating distributed knowledge. Proceedings of the National Academy of Sciences, 111, 1655016555. https://doi.org/10.1073/pnas.1419274111CrossRefGoogle ScholarPubMed
Berryhill, M. E., Picasso, L., Arnold, R., Drowos, D., & Olson, I. R. (2010). Similarities and differences between parietal and frontal patients in autobiographical and constructed experience tasks. Neuropsychologia, 48, 13851393. https://doi.org/10.1016/j.neuropsychologia.2010.01.004CrossRefGoogle ScholarPubMed
Binder, J. R., & Desai, R. H. (2011). The neurobiology of semantic memory. Trends in Cognitive Sciences, 15, 527536. https://doi.org/10.1016/j.tics.2011.10.001CrossRefGoogle ScholarPubMed
Binder, J. R., Desai, R. H., Graves, W. W., & Conant, L. L. (2009). Where is the Ssmantic system? A critical review and meta-analysis of 120 functional neuroimaging studies. Cerebral Cortex, 19, 27672796. https://doi.org/10.1093/cercor/bhp055CrossRefGoogle ScholarPubMed
Buckner, R. L., Andrews-Hanna, J. R., & Schacter, D. L. (2008). The brain’s default network: Anatomy, function, and relevance to disease. Annals of the New York Academy of Sciences, 1124, 138. https://doi.org/10.1196/annals.1440.011CrossRefGoogle ScholarPubMed
Buckner, R. L., & Carroll, D. C. (2007). Self-projection and the brain. Trends in Cognitive Sciences, 11, 4957. https://doi.org/10.1016/j.tics.2006.11.004CrossRefGoogle ScholarPubMed
Burianova, H., McIntosh, A. R., & Grady, C. L. (2010). A common functional brain network for autobiographical, episodic, and semantic memory retrieval. NeuroImage, 49, 865874. https://doi.org/10.1016/j.neuroimage.2009.08.066CrossRefGoogle Scholar
Campbell, K. L., Grady, C. L., Ng, C., & Hasher, L. (2012). Age differences in the frontoparietal cognitive control network: Implications for distractibility. Neuropsychologia, 50, 22122223.CrossRefGoogle ScholarPubMed
Carson, S. H., Peterson, J. B., & Higgins, D. M. (2003). Decreased latent inhibition is associated with increased creative achievement in high-functioning individuals. Journal of Personality and Social Psychology, 85, 499506. https://doi.org/10.1037/0022-3514.85.3.499CrossRefGoogle ScholarPubMed
Chao, O. Y., Huston, J. P., Li, J.-S., Wang, A.-L., & de Souza Silva, M. A. (2016). The medial prefrontal cortex–lateral entorhinal cortex circuit is essential for episodic-like memory and associative object-recognition. Hippocampus, 26, 633645. https://doi.org/10.1002/hipo.22547CrossRefGoogle ScholarPubMed
Christoff, K., Irving, Z. C., Fox, K. C. R., Spreng, R. N., & Andrews-Hanna, J. R. (2016). Mind-wandering as spontaneous thought: A dynamic framework. Nature Reviews Neuroscience, advance online publication. https://doi.org/10.1038/nrn.2016.113CrossRefGoogle ScholarPubMed
Christoff, K., Prabhakaran, V., Dorfman, J., Zhao, Z., Kroger, J. K., Holyoak, K. J., & Gabrieli, J. D. E. (2001). Rostrolateral prefrontal cortex involvement in relational integration during reasoning. NeuroImage, 14, 11361149. https://doi.org/10.1006/nimg.2001.0922CrossRefGoogle ScholarPubMed
Cocchi, L., Zalesky, A., Fornito, A., & Mattingley, J. B. (2013). Dynamic cooperation and competition between brain systems during cognitive control. Trends in Cognitive Sciences, 17, 493501. https://doi.org/10.1016/j.tics.2013.08.006CrossRefGoogle ScholarPubMed
Conway, A. R. A., Kane, M. J., & Engle, R. W. (2003). Working memory capacity and its relation to general intelligence. Trends in Cognitive Sciences, 7, 547552.CrossRefGoogle ScholarPubMed
Conway, M. A., & Pleydell-Pearce, C. W. (2000). The construction of autobiographical memories in the self-memory system. Psychological Review, 107, 261288.CrossRefGoogle ScholarPubMed
D’Argembeau, A., Lardi, C., & Linden, M. V. der. (2012). Self-defining future projections: Exploring the identity function of thinking about the future. Memory, 20, 110120. https://doi.org/10.1080/09658211.2011.647697CrossRefGoogle ScholarPubMed
D’Argembeau, A., Ortoleva, C., Jumentier, S., & Linden, M. V. der. (2010). Component processes underlying future thinking. Memory & Cognition, 38, 809819. https://doi.org/10.3758/MC.38.6.809CrossRefGoogle ScholarPubMed
De Brigard, F., Addis, D. R., Ford, J. H., Schacter, D. L., & Giovanello, K. S. (2013). Remembering what could have happened: Neural correlates of episodic counterfactual thinking. Neuropsychologia, 51, 24012414. https://doi.org/10.1016/j.neuropsychologia.2013.01.015CrossRefGoogle ScholarPubMed
de Vito, S., Gamboz, N., Brandimonte, M. A., Barone, P., Amboni, M., & Della Sala, S. (2012). Future thinking in Parkinson’s disease: An executive function? Neuropsychologia, 50, 14941501. https://doi.org/10.1016/j.neuropsychologia.2012.03.001CrossRefGoogle ScholarPubMed
Demblon, J., Bahri, M. A., & D’Argembeau, A. (2016). Neural correlates of event clusters in past and future thoughts: How the brain integrates specific episodes with autobiographical knowledge. NeuroImage, 127, 257266. https://doi.org/10.1016/j.neuroimage.2015.11.062CrossRefGoogle ScholarPubMed
Duff, M. C., Kurczek, J., Rubin, R., Cohen, N. J., & Tranel, D. (2013). Hippocampal amnesia disrupts creative thinking. Hippocampus, 23, 11431149. https://doi.org/10.1002/hipo.22208CrossRefGoogle ScholarPubMed
Eichenbaum, H., & Cohen, N. J. (2004). From conditioning to conscious recollection. Oxford: Oxford University Press. Retrieved from www.oxfordscholarship.com/view/10.1093/acprof:oso/9780195178043.001.0001/acprof-9780195178043CrossRefGoogle Scholar
Ellamil, M., Dobson, C., Beeman, M., & Christoff, K. (2012). Evaluative and generative modes of thought during the creative process. NeuroImage, 59, 17831794. https://doi.org/10.1016/j.neuroimage.2011.08.008CrossRefGoogle ScholarPubMed
Erika-Florence, M., Leech, R., & Hampshire, A. (2014). A functional network perspective on response inhibition and attentional control. Nature Communications, 5, 4073. https://doi.org/10.1038/ncomms5073CrossRefGoogle ScholarPubMed
Gaesser, B., Sacchetti, D. C., Addis, D. R., & Schacter, D. L. (2011). Characterizing age-related changes in remembering the past and imagining the future. Psychology and Aging, 26, 8084. https://doi.org/10.1037/a0021054CrossRefGoogle ScholarPubMed
Gaesser, B., Spreng, R. N., McLelland, V. C., Addis, D. R., & Schacter, D. L. (2013). Imagining the future: Evidence for a hippocampal contribution to constructive processing. Hippocampus, 23, 11501161. https://doi.org/10.1002/hipo.22152CrossRefGoogle ScholarPubMed
Gao, W., & Lin, W. (2012). Frontal parietal control network regulates the anti-correlated default and dorsal attention networks. Human Brain Mapping, 33, 192202. https://doi.org/10.1002/hbm.21204CrossRefGoogle ScholarPubMed
Gerlach, K. D., Spreng, R. N., Gilmore, A. W., & Schacter, D. L. (2011). Solving future problems: Default network and executive activity associated with goal-directed mental simulations. NeuroImage, 55, 18161824. https://doi.org/10.1016/j.neuroimage.2011.01.030CrossRefGoogle ScholarPubMed
Gerlach, K. D., Spreng, R. N., Madore, K. P., & Schacter, D. L. (2014). Future planning: Default network activity couples with frontoparietal control network and reward-processing regions during process and outcome simulations. Social Cognitive and Affective Neuroscience, 9, 19421951. https://doi.org/10.1093/scan/nsu001CrossRefGoogle ScholarPubMed
Gilhooly, K. J., Fioratou, E., Anthony, S. H., & Wynn, V. (2007). Divergent thinking: Strategies and executive involvement in generating novel uses for familiar objects. British Journal of Psychology, 98, 611625. https://doi.org/10.1111/j.2044-8295.2007.tb00467.xCrossRefGoogle ScholarPubMed
Guilford, J. P. (1967). The nature of human intelligence. New York, NY: McGraw-Hill.Google Scholar
Hach, S., Tippett, L. J., & Addis, D. R. (2014). Neural changes associated with the generation of specific past and future events in depression. Neuropsychologia, 65, 4155. https://doi.org/10.1016/j.neuropsychologia.2014.10.003CrossRefGoogle ScholarPubMed
Hassabis, D., Kumaran, D., & Maguire, E. A. (2007). Using imagination to understand the neural basis of episodic memory. The Journal of Neuroscience, 27, 1436514374. https://doi.org/10.1523/JNEUROSCI.4549-07.2007CrossRefGoogle ScholarPubMed
Hassabis, D., Kumaran, D., Vann, S. D., & Maguire, E. A. (2007). Patients with hippocampal amnesia cannot imagine new experiences. Proceedings of the National Academy of Sciences of the United States of America, 104, 17261731. https://doi.org/10.1073/pnas.0610561104CrossRefGoogle ScholarPubMed
Hassabis, D., & Maguire, E. A. (2007). Deconstructing episodic memory with construction. Trends in Cognitive Sciences, 11, 299306. https://doi.org/10.1016/j.tics.2007.05.001CrossRefGoogle ScholarPubMed
Irish, M. (2016). Semantic memory as the essential scaffold for future-oriented mental time travel. In Michaelian, K., Klein, S. B., & Szpunar, K. K. (Eds.), Seeing the future: Theoretical perspectives on future-oriented mental time travel (pp. 389408). New York, NY: Oxford University Press.CrossRefGoogle Scholar
Irish, M., Addis, D. R., Hodges, J. R., & Piguet, O. (2012). Considering the role of semantic memory in episodic future thinking: Evidence from semantic dementia. Brain, 135, 21782191. https://doi.org/10.1093/brain/aws119CrossRefGoogle ScholarPubMed
Irish, M., & Piguet, O. (2013). The pivotal role of semantic memory in remembering the past and imagining the future. Frontiers in Behavioral Neuroscience, 7, 27. https://doi.org/10.3389/fnbeh.2013.00027CrossRefGoogle ScholarPubMed
Jauk, E., Benedek, M., & Neubauer, A. C. (2012). Tackling creativity at its roots: Evidence for different patterns of EEG alpha activity related to convergent and divergent modes of task processing. International Journal of Psychophysiology, 84, 219225. https://doi.org/10.1016/j.ijpsycho.2012.02.012CrossRefGoogle ScholarPubMed
Jung, R. E., Mead, B. S., Carrasco, J., & Flores, R. A. (2013). The structure of creative cognition in the human brain. Frontiers in Human Neuroscience, 7, 330. https://doi.org/10.3389/fnhum.2013.00330CrossRefGoogle ScholarPubMed
Jung, R. E., Segall, J. M., Jeremy Bockholt, H., Flores, R. A., Smith, S. M., Chavez, R. S., & Haier, R. J. (2009). Neuroanatomy of creativity. Human Brain Mapping. https://doi.org/10.1002/hbm.20874Google Scholar
Kane, M. J., & Engle, R. W. (2002). The role of prefrontal cortex in working-memory capacity, executive attention, and general fluid intelligence: An individual-differences perspective. Psychonomic Bulletin & Review, 9, 637671.CrossRefGoogle ScholarPubMed
Kesner, R. P. (2013). A process analysis of the CA3 subregion of the hippocampus. Frontiers in Cellular Neuroscience, 7, 78. https://doi.org/10.3389/fncel.2013.00078CrossRefGoogle ScholarPubMed
Knyazev, G. G., Slobodskoj-Plusnin, J. Y., Bocharov, A. V., & Pylkova, L. V. (2011). The default mode network and EEG α oscillations: An independent component analysis. Brain Research, 1402, 6779. https://doi.org/10.1016/j.brainres.2011.05.052CrossRefGoogle ScholarPubMed
Kröger, S., Rutter, , Stark, B., Windmann, R., Hermann, S., , C., & Abraham, A. (2012). Using a shoe as a plant pot: Neural correlates of passive conceptual expansion. Brain Research, 1430, 5261. https://doi.org/10.1016/j.brainres.2011.10.031CrossRefGoogle ScholarPubMed
Kühn, S., Ritter, S. M., Müller, B. C. N., van Baaren, , Brass, R. B., , M., & Dijksterhuis, A. (2014). The importance of the default mode network in creativity – A structural MRI study. The Journal of Creative Behavior, 48, 152163. https://doi.org/10.1002/jocb.45CrossRefGoogle Scholar
Levine, B., Svoboda, E., Hay, J. F., Winocur, G., & Moscovitch, M. (2002). Aging and autobiographical memory: Dissociating episodic from semantic retrieval. Psychology and Aging, 17, 677689.CrossRefGoogle ScholarPubMed
Madore, K. P., Addis, D. R., & Schacter, D. L. (2015). Creativity and memory effects of an episodic-specificity induction on divergent thinking. Psychological Science, 26, 14611468. https://doi.org/10.1177/0956797615591863CrossRefGoogle ScholarPubMed
Madore, K. P., Jing, H. G., & Schacter, D. L. (2016). Divergent creative thinking in young and older adults: Extending the effects of an episodic specificity induction. Memory & Cognition, 44, 974988. https://doi.org/10.3758/s13421-016-0605-zCrossRefGoogle Scholar
Madore, K. P., Szpunar, K. K., Addis, D. R., & Schacter, D. L. (2016). Episodic specificity induction impacts activity in a core brain network during construction of imagined future experiences. Proceedings of the National Academy of Sciences of the United States of America, 113, 1069610701. https://doi.org/10.1073/pnas.1612278113CrossRefGoogle Scholar
Maguire, E. A., Vargha-Khadem, F., & Hassabis, D. (2010). Imagining fictitious and future experiences: Evidence from developmental amnesia. Neuropsychologia, 48, 31873192. https://doi.org/10.1016/j.neuropsychologia.2010.06.037CrossRefGoogle ScholarPubMed
Martin, V. C., Schacter, D. L., Corballis, M. C., & Addis, D. R. (2011). A role for the hippocampus in encoding simulations of future events. Proceedings of the National Academy of Sciences, 108, 1385813863. https://doi.org/10.1073/pnas.1105816108CrossRefGoogle ScholarPubMed
Mayseless, N., Eran, A., & Shamay-Tsoory, S. G. (2015). Generating original ideas: The neural underpinning of originality. NeuroImage, 116, 232239. https://doi.org/10.1016/j.neuroimage.2015.05.030CrossRefGoogle ScholarPubMed
Mayseless, N., & Shamay-Tsoory, S. G. (2015). Enhancing verbal creativity: Modulating creativity by altering the balance between right and left inferior frontal gyrus with tDCS. Neuroscience, 291, 167176. https://doi.org/10.1016/j.neuroscience.2015.01.061CrossRefGoogle ScholarPubMed
Mednick, S. (1962). The associative basis of the creative process. Psychological Review, 69, 220232. https://doi.org/10.1037/h0048850CrossRefGoogle ScholarPubMed
Menon, V., & Uddin, L. Q. (2010). Saliency, switching, attention and control: A network model of insula function. Brain Structure & Function, 214, 655667. https://doi.org/10.1007/s00429-010-0262-0CrossRefGoogle ScholarPubMed
Milgram, R. M., & Rabkin, L. (1980). Developmental test of Mednick’s associative hierarchies of original thinking. Developmental Psychology, 16, 157158. https://doi.org/10.1037/0012-1649.16.2.157CrossRefGoogle Scholar
Mok, L. W. (2014). The interplay between spontaneous and controlled processing in creative cognition. Frontiers in Human Neuroscience, 8. https://doi.org/10.3389/fnhum.2014.00663CrossRefGoogle ScholarPubMed
Morcom, A. M., & Rugg, M. D. (2012). Retrieval orientation and the control of recollection: An fMRI study. Journal of Cognitive Neuroscience, 24, 23722384. https://doi.org/10.1162/jocn_a_00299CrossRefGoogle ScholarPubMed
Morgan, H. M., Jackson, M. C., van Koningsbruggen, M. G., Shapiro, K. L., & Linden, D. E. J. (2012). Frontal and parietal theta burst TMS impairs working memory for visual–spatial conjunctions. Brain Stimulation, 6, 122129. https://doi.org/10.1016/j.brs.2012.03.001CrossRefGoogle ScholarPubMed
Moscovitch, M. (1992). Memory and working-with-memory: A component process model based on modules and central systems. Journal of Cognitive Neuroscience, 4 257267. https://doi.org/10.1162/jocn.1992.4.3.257CrossRefGoogle ScholarPubMed
Mumford, M. D. (2003). Where have we been, where are we going? Taking stock in creativity research. Creativity Research Journal, 15, 107120. https://doi.org/10.1080/10400419.2003.9651403CrossRefGoogle Scholar
Nusbaum, E. C., & Silvia, P. J. (2011). Are intelligence and creativity really so different? Fluid intelligence, executive processes, and strategy use in divergent thinking. Intelligence, 39, 3645. https://doi.org/10.1016/j.intell.2010.11.002CrossRefGoogle Scholar
Okuda, J., Fujii, T., Ohtake, H., Tsukiura, T., Tanji, K., Suzuki, K., … Yamadori, A. (2003). Thinking of the future and past: The roles of the frontal pole and the medial temporal lobes. NeuroImage, 19, 13691380.CrossRefGoogle ScholarPubMed
Park, H. R. P., Kirk, I. J., & Waldie, K. E. (2015). Neural correlates of creative thinking and schizotypy. Neuropsychologia, 73, 94107. https://doi.org/10.1016/j.neuropsychologia.2015.05.007CrossRefGoogle ScholarPubMed
Renoult, L., Davidson, P. S. R., Palombo, D. J., Moscovitch, M., & Levine, B. (2012). Personal semantics: At the crossroads of semantic and episodic memory. Trends in Cognitive Sciences, 16, 550558. https://doi.org/10.1016/j.tics.2012.09.003CrossRefGoogle ScholarPubMed
Roberts, R. P., Hach, S., Tippett, L. J., & Addis, D. R. (2016). The Simpson’s paradox and fMRI: Similarities and differences between functional connectivity measures derived from within-subject and across-subject correlations. NeuroImage. https://doi.org/10.1016/j.neuroimage.2016.04.028CrossRefGoogle ScholarPubMed
Roberts, R. P., Wiebels, K., Sumner, R. L., van Mulukom, V., Grady, C. L., Schacter, D. L., & Addis, D. R. (2017). An fMRI investigation of the relationship between future imagination and cognitive flexibility. Neuropsychologia, 95, 156172.CrossRefGoogle ScholarPubMed
Rossmann, E., & Fink, A. (2010). Do creative people use shorter associative pathways? Personality and Individual Differences, 49, 891895. https://doi.org/10.1016/j.paid.2010.07.025CrossRefGoogle Scholar
Runco, M. A., & Jaeger, G. J. (2012). The standard definition of creativity. Creativity Research Journal, 24, 9296. https://doi.org/10.1080/10400419.2012.650092CrossRefGoogle Scholar
Schacter, D. L., & Addis, D. R. (2007a). On the constructive episodic simulation of past and future events. Behavioral and Brain Sciences, 30, 331332. https://doi.org/10.1017/S0140525X07002178CrossRefGoogle Scholar
Schacter, D. L., & Addis, D. R. (2007b). The cognitive neuroscience of constructive memory: remembering the past and imagining the future. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 362, 773786. https://doi.org/10.1098/rstb.2007.2087CrossRefGoogle ScholarPubMed
Schacter, D. L., Addis, D. R., Hassabis, D., Martin, V. C., Spreng, R. N., & Szpunar, K. K. (2012). The future of memory: Remembering, imagining, and the brain. Neuron, 76, 677694. https://doi.org/10.1016/j.neuron.2012.11.001CrossRefGoogle ScholarPubMed
Schwab, D., Benedek, M., Papousek, I., Weiss, E. M., & Fink, A. (2014). The time-course of EEG alpha power changes in creative ideation. Frontiers in Human Neuroscience, 8, 310. https://doi.org/10.3389/fnhum.2014.00310CrossRefGoogle ScholarPubMed
Shamay-Tsoory, S. G., Adler, N., Aharon-Peretz, J., Perry, D., & Mayseless, N. (2011). The origins of originality: The neural bases of creative thinking and originality. Neuropsychologia, 49, 178185. https://doi.org/10.1016/j.neuropsychologia.2010.11.020CrossRefGoogle ScholarPubMed
Spreng, R. N., Mar, R. A., & Kim, A. S. N. (2009). The common neural basis of autobiographical memory, prospection, navigation, theory of mind, and the default mode: A quantitative meta-analysis. Journal of Cognitive Neuroscience, 21, 489510. https://doi.org/10.1162/jocn.2008.21029CrossRefGoogle Scholar
Spreng, R. N., Sepulcre, J., Turner, G. R., Stevens, W. D., & Schacter, D. L. (2013). Intrinsic architecture underlying the relations among the default, dorsal attention, and frontoparietal control networks of the human brain. Journal of Cognitive Neuroscience, 25, 7486. https://doi.org/10.1162/jocn_a_00281CrossRefGoogle ScholarPubMed
Spreng, R. N., Stevens, W. D., Chamberlain, J. P., Gilmore, A. W., & Schacter, D. L. (2010). Default network activity, coupled with the frontoparietal control network, supports goal-directed cognition. NeuroImage, 53, 303317. https://doi.org/10.1016/j.neuroimage.2010.06.016CrossRefGoogle ScholarPubMed
Stawarczyk, D., & D’Argembeau, A. (2015). Neural correlates of personal goal processing during episodic future thinking and mind-wandering: An ALE meta-analysis. Human Brain Mapping, 36, 29282947. https://doi.org/10.1002/hbm.22818CrossRefGoogle ScholarPubMed
Suddendorf, T., & Corballis, M. C. (1997). Mental time travel and the evolution of the human mind. Genetic, Social, and General Psychology Monographs, 123, 133167.Google ScholarPubMed
Svoboda, E., McKinnon, M. C., & Levine, B. (2006). The functional neuroanatomy of autobiographical memory: A meta-analysis. Neuropsychologia, 44, 21892208. https://doi.org/10.1016/j.neuropsychologia.2006.05.023CrossRefGoogle ScholarPubMed
Szpunar, K. K., Spreng, R. N., & Schacter, D. L. (2014). A taxonomy of prospection: Introducing an organizational framework for future-oriented cognition. Proceedings of the National Academy of Sciences, 111, 1841418421. https://doi.org/10.1073/pnas.1417144111CrossRefGoogle ScholarPubMed
Szpunar, K. K., Watson, J. M., & McDermott, K. B. (2007). Neural substrates of envisioning the future. Proceedings of the National Academy of Sciences of the United States of America, 104, 642647. https://doi.org/10.1073/pnas.0610082104CrossRefGoogle ScholarPubMed
Torrance, E. P. (1962). Guiding creative talent. Englewood Clliffs, NJ: Prentice-Hall.CrossRefGoogle Scholar
Underwood, A. G., Guynn, M. J., & Cohen, A.-L. (2015). The future orientation of past memory: The role of BA 10 in prospective and retrospective retrieval modes. Frontiers in Human Neuroscience, 9, 668. https://doi.org/10.3389/fnhum.2015.00668CrossRefGoogle ScholarPubMed
Van Hoeck, N., Ma, N., Ampe, L., Baetens, K., Vandekerckhove, M., & Van Overwalle, F. (2013). Counterfactual thinking: An fMRI study on changing the past for a better future. Social Cognitive and Affective Neuroscience, 8, 556564. https://doi.org/10.1093/scan/nss031CrossRefGoogle Scholar
van Mulukom, V., Schacter, D. L., Corballis, M. C., & Addis, D. R. (2013). Re-imagining the future: Repetition decreases hippocampal involvement in future simulation. PLoS ONE, 8, e69596. https://doi.org/10.1371/journal.pone.0069596CrossRefGoogle ScholarPubMed
van Mulukom, V., Schacter, D. L., Corballis, M. C., & Addis, D. R. (2016). The degree of disparateness of event details modulates future simulation construction, plausibility and recall. Quarterly Journal of Experimental Psychology, 69, 234242.CrossRefGoogle ScholarPubMed
Ward, T. B., Smith, S. M., & Vaid, J. (Eds.). (1997). Creative thought: An investigation of conceptual structures and processes. Washington, DC: American Psychological Association. Retrieved from http://content.apa.org/books/10227-000CrossRefGoogle Scholar
Wendelken, C., & Bunge, S. A. (2009). Transitive inference: Distinct contributions of rostrolateral prefrontal cortex and the hippocampus. Journal of Cognitive Neuroscience, 22, 837847. https://doi.org/10.1162/jocn.2009.21226CrossRefGoogle Scholar
Wendelken, C., Chung, D., & Bunge, S. A. (2012). Rostrolateral prefrontal cortex: Domain-general or domain-sensitive? Human Brain Mapping, 33, 19521963. https://doi.org/10.1002/hbm.21336CrossRefGoogle ScholarPubMed
Wendelken, C., Nakhabenko, D., Donohue, S. E., Carter, C. S., & Bunge, S. A. (2007). “Brain is to thought as stomach is to??”: Investigating the role of rostrolateral prefrontal cortex in relational reasoning. Journal of Cognitive Neuroscience, 20, 682693. https://doi.org/10.1162/jocn.2008.20055CrossRefGoogle Scholar
Wu, X., Yang, W., Tong, D., Sun, J., Chen, Q., Wei, D., … Qiu, J. (2015). A meta-analysis of neuroimaging studies on divergent thinking using activation likelihood estimation. Human Brain Mapping, 36, 27032718. https://doi.org/10.1002/hbm.22801CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×