Skip to main content Accessibility help
×
Hostname: page-component-7479d7b7d-c9gpj Total loading time: 0 Render date: 2024-07-08T08:24:24.069Z Has data issue: false hasContentIssue false

11 - Ecomorphology of North American Eocene carnivores: evidence for competition between Carnivorans and Creodonts

Published online by Cambridge University Press:  05 July 2014

Anthony R. Friscia
Affiliation:
University of California, Los Angeles
Blaire Van Valkenburgh
Affiliation:
University of California, Los Angeles
Anjali Goswami
Affiliation:
University College London
Anthony Friscia
Affiliation:
University of California, Los Angeles
Get access

Summary

Introduction

Evolutionary history is characterised by numerous occurrences of ‘double-wedge’ patterns of diversification and decline, wherein one taxon rises in diversity, but then declines alongside an increase in diversity of a second group (Figure 11.1). In some instances, temporal overlap of these two diversity curves has been taken to imply competitive replacement. In a review of the subject, Benton (1987) discussed the problem of distinguishing true competitive replacement from turnover events that result from some extrinsic factor such as environmental change. This distinction between intrinsic and extrinsic factors is at the heart of the debate over detection of competition in the fossil record.

Intrinsic factors imply a competitive advantage that one group has over another, but defining that advantage is difficult. Replacement can be caused by direct competition, such as uneven resource gathering capabilities (Sepkoski, 1996; Schluter, 2000) or interference competition (e.g. carcass theft and interspecific killing) (Palomares and Caro, 1999; Van Valkenburgh, 2001). The successful group in this direct competition may possess an adaptation (Rosenzweig and McCord, 1991) that allows it to outcompete the declining group. Benton (1987) termed turnover events derived from direct competition ‘active replacement’ or ‘ecological replacement’, and found very few convincing cases in the literature for this type of replacement (Benton, 1996).

Type
Chapter
Information
Carnivoran Evolution
New Views on Phylogeny, Form and Function
, pp. 311 - 341
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alroy, J., Koch, P. L. and Zachos, J. C. (2000). Global climate change and North American mammalian evolution. Paleobiology, 26(supp), 259–88.CrossRefGoogle Scholar
Barnosky, A. D. (2001). Distinguishing the effects of the Red Queen and Court Jester on Miocene evolution in the Rocky Mountains. Journal of Vertebrate Paleontology, 21, 172–85.CrossRefGoogle Scholar
Benton, M. J. (1987). Progress and competition in macroevolution. Biological Review of the Cambridge Philosophical Society, 62, 305–28.CrossRefGoogle Scholar
Benton, M. J. (1996). On the nonprevalence of competitive replacement in the evolution of tetrapods. In Evolutionary Paleobiology, ed. Jablonski, D., Erwin, D. H., and Lipps, J. H.. Chicago, IL: University of Chicago Press, pp. 185–210.Google Scholar
Carbone, C., Mace, G. M., Roberts, S. C. and Macdonald, D. W. (1999). Energetic constraints on the diet of terrestrial carnivores. Nature, 402, 286–88.CrossRefGoogle ScholarPubMed
Carbone, C., Teacher, A. and Rowcliff, J. M. (2007). The costs of carnivory. PLoS Biology, 5, 363–68.CrossRefGoogle ScholarPubMed
Carrano, M. T., Janis, C. M. and Sepkoski, J. J. (1999). Hadrosaurs as ungulate parallels: lost lifestyles and deficient data. Acta Palaeontologica Polonica, 44, 237–61.Google Scholar
Clark, K. R. (1993). Non-parametric analyses of changes in community structure. Australian Journal of Ecology, 18, 117–43.CrossRefGoogle Scholar
Dashzeveg, D. (1996). Some carnivorous mammals from the Paleogene of the eastern Gobi Desert, Mongolia, and the application of Oligocene carnivores to stratigraphic correlation. American Museum Novitates, 3179, 1–14.Google Scholar
Dayan, T. and Simberloff, D. (1994). Character displacement, sexual dimorphism, and morphological variation among British and Irish mustelids. Ecology, 75, 1063–73.CrossRefGoogle Scholar
Dayan, T. and Simberloff, D. (1996). Patterns of size separation in carnivore communities. In Carnivore Behavior, Ecology, and Evolution: Volume 2, ed. Gittleman, J. L.. Ithaca, NY: Cornell University Press, pp. 243–66.Google Scholar
Dayan, T., Simberloff, D., Tchernov, E. and Yom-Tov, Y. (1989a). Inter- and intraspecific character displacement in mustelids. Ecology, 70, 1526–39.CrossRefGoogle Scholar
Dayan, T., Tchernov, E., Yom-Tov, Y. and Simberloff, D. (1989b). Ecological character displacement in Saharo-Arabian Vulpes: outfoxing Bergmann's rule. Oikos, 55, 263–72.CrossRefGoogle Scholar
Erwin, D. H. (1998). The end and the beginning: recoveries from mass extinctions. Trends in Ecology and Evolution, 13, 344–49.CrossRefGoogle ScholarPubMed
Ewer, R. F. (1973). The Carnivores. Ithaca, NY: Cornell University Press.Google Scholar
Finarelli, J. A. and Flynn, J. J. (2006). Ancestral state reconstruction of body size in the Caniformia (Carnivora, Mammalia): the effects of incorporating data from the fossil record. Systematic Biology, 55, 301–13.CrossRefGoogle ScholarPubMed
Flynn, J. J. (1998). Early Cenozoic Carnivora (‘Miacoidea’). In Evolution of Tertiary Mammals of North America, Volume 1: Terrestrial Carnivores, Ungulates, and Ungulatelike Mammals, ed. Janis, C. M., Scott, K. M., and Jacobs, L. L.. Cambridge: Cambridge University Press, pp. 110–23.Google Scholar
Foote, M. (1996). Models of morphological diversification. In Evolutionary Paleobiology, ed. Jablonski, D., Erwin, D. H., and Lipps, J. H.. Chicago, IL: University of Chicago Press, pp. 62–86.Google Scholar
Freeman, P. W. (1979). Specialized insectivory: beetle-eating and moth-eating molossid bats. Journal of Mammalogy, 60, 467–79.CrossRefGoogle Scholar
Freeman, P. W. (1988). Frugivorous and animalivorous bats (Microchiroptera): dental and cranial adaptations. Biological Journal of the Linnean Society, 33, 249–72.CrossRefGoogle Scholar
Friscia, A. R., Van Valkenburgh, B. and Biknevicius, A. R. (2007). An ecomorphological analysis of extant small carnivorans. Journal of Zoology, London, 272, 82–100.CrossRefGoogle Scholar
Gebo, D. L. and Rose, K. D. (1993). Skeletal morphology and locomotor adaptation in Prolimnocyon atavus, an early Eocene hyaenodontid creodont. Journal of Vertebrate Paleontology, 13, 125–44.CrossRefGoogle Scholar
Gunnell, G. F. (1998). Creodonta. In Evolution of Tertiary Mammals of North America, Volume 1: Terrestrial Carnivores, Ungulates, and Ungulatelike Mammals, ed. Janis, C. M., Scott, K. M., and Jacobs, L. L.. Cambridge: Cambridge University Press, pp. 91–109.Google Scholar
Heinrich, R. E. and Rose, K. D. (1995). Partial skeleton of the primitive carnivoran Miacis petilus from the early Eocene of Wyoming. Journal of Mammalogy, 76, 148–62.CrossRefGoogle Scholar
Heinrich, R. E. and Rose, K. D. (1997). Postcranial morphology and locomotor behavior of two early Eocene miacoid carnivorans, Vulpavus and Didymictis. Palaeontology, 40, 279–305.Google Scholar
Holliday, J. A. and Steppan, S. J. (2004). Evolution of hypercarnivory: the effect of specialization on morphological and taxonomic diversity. Paleobiology, 30, 108–28.2.0.CO;2>CrossRefGoogle Scholar
Hone, D. W. E. and Benton, H. J. (2005). The evolution of large size: how does Cope's Rule work?Trends in Ecology and Evolution, 20, 4–6.CrossRefGoogle Scholar
Hunt, R. M. (1998). Evolution of the aeluroid Carnivora; diversity of the earliest aeluroids from Eurasia (Quercy, Hsanda-Gol) and the origin of felids. American Museum Novitates, 3252, 1–65.Google Scholar
Hunt, R. M. (2004). Global climate and the evolution of large mammalian carnivores during the Later Cenozoic in North America. Bulletin of the American Museum of Natural History, 285, 139–56.2.0.CO;2>CrossRefGoogle Scholar
Janis, C. M. (1989). A climatic explanation for patterns of evolutionary diversity in ungulate animals. Palaeontology, 32, 463–81.Google Scholar
Janis, C. M. (1993). Tertiary mammal evolution in the context of changing climates, vegetation, and tectonic events. Annual Review of Ecology and Systematics, 24, 467–500.CrossRefGoogle Scholar
Janis, C. M., Gordon, I. J. and Illius, A. W. (1994). Modellling equid/ruminant competition in the fossil record. Historical Biology, 8, 15–29.Google Scholar
Janis, C. M., Scott, K. M. and Jacobs, L. L. (eds.) (1998). Evolution of Tertiary Mammals of North America, Volume 1: Terrestrial Carnivores, Ungulates, and Ungulatelike Mammals. Cambridge: Cambridge University Press.
Jones, M. (2003). Convergence in ecomorphology and guild structure among marsupial and placental carnivores. In Predators with Pouches, ed. Jones, M., Dickman, C., and Archer, M.. Collingwood, Australia: CSIRO Publishing, pp. 285–96.Google Scholar
Kemp, T. S. (1999). Fossils and Evolution. New York, NY: Oxford University Press.Google Scholar
King, C. (1989). The Natural History of Weasels and Stoats. Ithaca, NY: Cornell University Press.Google Scholar
Kingdon, J. (1997). The Kingdon Field Guide to African Mammals. San Diego, CA: Academic Press.Google Scholar
Kruskal, J. B. (1964a). Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis. Psychometrika, 2, 1–27.CrossRefGoogle Scholar
Kruskal, J. B. (1964b). Nonmetric multidimensional scaling: a numerical method. Psychometrika, 29, 115–29.CrossRefGoogle Scholar
Kruskal, J. B. and Wish, M. (1978). Multidimensional Scaling. Quantitative Applications in the Social Sciences, vol. 11. Beverly Hills, CA: Sage.CrossRefGoogle Scholar
Kumar, K. (1992). Paratritemnodon indicus (Creodonta; Mammalia) from the early middle Eocene Subathu Formation, NW Himalaya, India, and the Kalakot mammalian community structure. Palaeontologische Zeitschrift, 66, 387–403.Google Scholar
Maas, M. C., Krause, D. W. and Strait, S. G. (1988). The decline and extinction of Plesiadapiformes (Mammalia: ?Primates) in North America: displacement or replacement?Paleobiology, 14, 410–31.CrossRefGoogle Scholar
McKenna, M. C. and Bell, S. K. (1997). Classification of Mammals Above the Species Level. New York, NY: Columbia University Press.Google Scholar
McNab, B. K. (1989). Basal rate of metabolism, body size, and food habits in the Order Carnivora. In Carnivore Behavior, Ecology, and Evolution: volume 1, ed. Gittleman, J. L.. Ithaca, NY: Cornell University Press, pp. 335–54.CrossRefGoogle Scholar
McShea, D. W. (2000). Trends, tools, terminology. Paleobiology, 26, 330–33.2.0.CO;2>CrossRefGoogle Scholar
Mellett, J. S. (1977). Paleobiology of North American Hyaenodon (Mammalia, Creodonta). Contributions to Vertebrate Evolution, 1, 1–134.Google Scholar
Meng, J. and McKenna, M. C. (1998). Faunal turnovers of Palaeogene mammals from the Mongolian Plateau. Nature, 394, 364–67.CrossRefGoogle Scholar
Morlo, M. (1999). Niche structure and evolution in creodont (Mammalia) faunas of the European and North American Eocene. Geobios, 32, 297–305.CrossRefGoogle Scholar
Morlo, M. and Gunnell, G. F. (2003). Small Limnocyonines (Hyaenodontidae, Mammalia) from the Bridgerian Middle Eocene of Wyoming: Thinocyon, Prolimnocyon, and Iridodon, new genus. Contributions from the Museum of Paleontology, University of Michigan, 31, 43–78.Google Scholar
Morlo, M. and Habersetzer, J. (1999). The Hyaenodontidae (Creodonta, Mammalia) from the lower Middle Eocene (MP 11) of Messel (Germany) with special remarks on new X-ray methods. Courier Forsch.-Inst.Senckenberg, 216, 31–73.Google Scholar
Munthe, K. (1998). Canidae. In Evolution of Tertiary Mammals of North America, Volume 1: Terrestrial Carnivores, Ungulates, and Ungulatelike Mammals, ed. Janis, C. M., Scott, K. M., and Jacobs, L. L.. Cambridge: Cambridge University Press, pp. 73–90.Google Scholar
Nagel, D. and Morlo, M. (1993). Guild structure of the carnivorous mammals (Creodonta, Carnivora) from the Taatsiin Gol area, Lower Oligocene of Central Mongolia. DEINSEA, 10, 419–29.Google Scholar
Nel, J. A. J. and Kok, O. B. (1999). Diet and foraging group size in the yellow mongoose: a comparison with the suricate and the bat-eared fox. Ethology, Ecology and Evolution, 11, 25–34.CrossRefGoogle Scholar
Nowak, R. M. (1991). Walker's Mammals of the World, 5th ed. Volume 2. Baltimore, MD: Johns Hopkins University Press.Google Scholar
Palmqvist, P., Arribas, A. and Martínez-Navarro, B. (1999). Ecomorphological study of large canids from the lower Pleistocene of southeastern Spain. Lethaia, 32, 75–88.CrossRefGoogle Scholar
Palomares, F. and Caro, T. M. (1999). Interspecific killing among mammalian carnivores. American Naturalist, 153, 492–508.CrossRefGoogle ScholarPubMed
Prothero, D. R. (1998). The chronological, climatic, and paleogeographic background to North American mammalian evolution. In Evolution of Tertiary Mammals of North America, Volume 1: Terrestrial Carnivores, Ungulates, and Ungulatelike Mammals, ed. Janis, C. M., Scott, K. M., and Jacobs, L. L.. Cambridge: Cambridge University Press, pp. 9–36.Google Scholar
Prothero, D. R. and Emry, R. J. (2004). The Chadronian, Orellan, and Whitneyan North American Land Mammal Ages. In Late Cretaceous and Cenozoic Mammals of North America, ed. Woodburne, M. O.. New York, NY: Columbia University Press, pp. 156–68.Google Scholar
Radinsky, L. B. (1981). Evolution of skull shape in carnivores 1. Representative modern carnivores. Biological Journal of the Linnean Society, 15, 369–88.CrossRefGoogle Scholar
Ray, J. C. and Sunquist, M. E. (2001). Trophic relations in a community of African rainforest carnivores. Oecologia, 127, 395–408.CrossRefGoogle Scholar
Robinson, P., Gunnell, G. F., Walsh, S. L., et al. (2004). Wasatchian through Duchesnean biochronology. In Late Cretaceous and Cenozoic Mammals of North America, ed. Woodburne, M. O.. New York, NY: Columbia University Press, pp. 106–45.Google Scholar
Rosenzweig, M. L. and McCord, R. D. (1991). Incumbent replacement: evidence for long-term evolutionary progress. Paleobiology, 13, 202–13.CrossRefGoogle Scholar
Roy, K., Valentine, J. W., Jablonski, D. and Kidwell, S. M. (1996). Scales of climatic variability and time averaging in Pleistocene biotas: implications for ecology and evolution. Trends in Ecology and Evolution, 11, 458–63.CrossRefGoogle ScholarPubMed
Sacco, T. and Van Valkenburgh, B. (2004). Ecomorphological indicators of feeding behaviour in the bears (Carnivora: Ursidae). Journal of Zoology, London, 263, 41–54.CrossRefGoogle Scholar
Savage, R. J. G. (1978). Carnivora. In Evolution of African Mammals, ed. Maglio, V. J. and Cooke, H. B. S.. Cambridge, MA: Harvard University Press, pp. 249–67.Google Scholar
Schluter, D. (2000). Ecological character displacement in adaptive radiation. American Naturalist, 156, S4–16.CrossRefGoogle Scholar
Scott, W. B. (1938). Problematical cat-like mandible from the Uinta Eocene, Apataelurus kayi, Scott. Annals of Carnegie Museum, 27, 113–20.Google Scholar
Sepkoski, J. J. (1996). Competition in macroevolution: the double wedge revisited. In Evolutionary Paleobiology, ed. Jablonski, D., Erwin, D. H., and Lipps, J. H.. Chicago, IL: University of Chicago Press, pp. 211–55.Google Scholar
Sepkoski, J. J. (1998). Rates of speciation in the fossil record. Philosophical Transactions of the Royal Society of London, Series B, 353, 315–26.CrossRefGoogle ScholarPubMed
Springhorn, R. (1988). Carnivorous elements of the Messel fauna. Courier Forschungsinstitut Senckenberg, 107, 291–97.Google Scholar
Strait, S. G. (1993a). Differences in occlusal morphology and molar size in frugivores and faunivores. Journal of Human Evolution, 25, 471–84.CrossRefGoogle Scholar
Strait, S. G. (1993b). Molar morphology and food texture among small-bodied insectivorous mammmals. Journal of Mammalogy, 74, 391–402.CrossRefGoogle Scholar
Tao, Q., Guanfu, Z. and Yuanqing, W. (1991). Discovery of Lushilagus and Miacis in Jiangsu and its zoogeographical significance. Vertebrata PalAsiatica, 29, 59–63.Google Scholar
Van Valen, L. (1971). Adaptive zones and the orders of mammals. Evolution, 25, 420–28.CrossRefGoogle ScholarPubMed
Van Valkenburgh, B. (1985). Locomotor diversity within past and present guilds of large predatory mammals. Paleobiology, 11, 406–28.CrossRefGoogle Scholar
Van Valkenburgh, B. (1988). Trophic diversity in past and present guilds of large predatory mammals. Paleobiology, 14, 155–73.CrossRefGoogle Scholar
Van Valkenburgh, B. (1989). Carnivore dental adaptations and diet: a study of trophic diversity within guilds. In Carnivore Behavior, Ecology, and Evolution: volume 1, ed. Gittleman, J. L.. Ithaca, NY: Cornell University Press, pp. 410–36.CrossRefGoogle Scholar
Van Valkenburgh, B. (1990). Skeletal and dental predictors of body mass in carnivores. In Body Size in Mammalian Paleobiology: Estimation and Biological Implications, ed. Damuth, J. and MacFadden, B. J.. Cambridge: Cambridge Univeristy Press, pp. 181–205.Google Scholar
Van Valkenburgh, B. (1991). Iterative evolution of hypercarnivory in canids (Mammalia: Carnivora): evolutionary interactions among sympatric predators. Paleobiology, 17, 340–62.CrossRefGoogle Scholar
Van Valkenburgh, B. (1994). Extinction and replacement among predatory mammals in the North American Late Eocene and Oligocene: tracking a paleoguild over twelve million years. Historical Biology, 8, 129–50.CrossRefGoogle Scholar
Van Valkenburgh, B. (1999). Major patterns in the history of carnivorous. Annual Review of Earth and Planetary Sciences, 27, 463–93.CrossRefGoogle Scholar
Van Valkenburgh, B. (2001). The dog-eat-dog world of carnivores: a review of past and present carnivore community dynamics. In Meat-Eating and Human Evolution, ed. Stanford, C. B. and Bunn, H. T.. Oxford: Oxford University Press, pp. 101–21.Google Scholar
Van Valkenburgh, B. and Janis, C. M. (1993). Historical diversity patterns in North American large herbivores and carnivores. In Species Diversity in Ecological Communities, ed. Ricklefs, R. E. and Schluter, D.. Chicago, IL: University of Chicago, pp. 330–40.Google Scholar
Van Valkenburgh, B. and Koepfli, K.-P. (1993). Cranial and dental adaptations to predation in canids. Symposium of the Zoological Society of London, 65, 15–37.Google Scholar
Van Valkenburgh, B. and Ruff, C. B. (1987). Canine tooth strength and killing behavior in large carnivores. Journal of Zoology, London, 212, 379–97.CrossRefGoogle Scholar
Van Valkenburgh, B., Wang, X. and Damuth, J. (2004). Cope's Rule, hypercarnivory, and extinction in North American canids. Science, 306, 101–04.CrossRefGoogle ScholarPubMed
Venables, W. N. and Ripley, B. D. (2002). Modern Applied Statistics with S. New York, NY: Springer.CrossRefGoogle Scholar
Vermeij, G. J. (1977). The Mesozoic marine revolution: evidence from snails, predators and grazers. Paleobiology, 3, 245–58.CrossRefGoogle Scholar
Viranta, S. and Andrews, P. (1995). Carnivore guild structure in the Pasalar Miocene fauna. Journal of Human Evolution, 28, 359–72.CrossRefGoogle Scholar
Wagner, P. J. (1995). Diversity patterns among early gastropods: contrasting taxonomic and phylogenetic descriptions. Paleobiology, 21, 410–39.CrossRefGoogle Scholar
Walker, A. (1980). Functional anatomy and taphonomy. In Fossils in the Making: Vertebrate Taphonomy and Paleontology, ed. Behrensmeyer, A. K. and Hill, A. P.. Chicago, IL: University of Chicago Press, pp. 182–96.Google Scholar
Wang, X. and Tedford, R. H. (1996). Canidae. In The Terrestrial Eocene–Oligocene Transition in North America, ed. Prothero, D. R. and Emry, R. J.. Cambidge, Cambridge University Press, pp. 433–52.CrossRefGoogle Scholar
Werdelin, L. (1987). Jaw geometry and molar morphology in marsupial carnivores: analysis of a constraint and its macroevolutionary consequences. Paleobiology, 13, 342–50.CrossRefGoogle Scholar
Werdelin, L. (1996a). Carnivoran ecomorphology: a phylogenetic perspective. In Carnivore Behavior, Ecology, and Evolution: Volume 2, ed. Gittleman, J. L.. Ithaca, NY: Cornell University Press, pp. 582–624.Google Scholar
Werdelin, L. (1996b). Community-wide character displacement in Miocene hyenas. Lethaia, 29, 97–106.CrossRefGoogle Scholar
Wesley-Hunt, G. D. (2005). The morphological diversification of carnivores in North America. Palaeobiology, 31, 35–55.2.0.CO;2>CrossRefGoogle Scholar
Wesley-Hunt, G. D. and Flynn, J. J. (2005). Phylogeny of the Carnivora: basal relationships among the carnivoramorphans, and assessment of the position of ‘Miacoidea’ relative to Carnivora. Journal of Systematic Paleontology, 3, 1–28.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×