Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-19T14:20:42.087Z Has data issue: false hasContentIssue false

Chapter 7 - Lung and pleura

from Part II - Oncologic applications

Published online by Cambridge University Press:  05 September 2012

Victor H. Gerbaudo
Affiliation:
Brigham and Women's Hospital, Harvard Medical School
Get access

Summary

Lung cancer

In 2011 the total number of expected cancer cases in the USA is 1,596,670 with 571,950 estimated deaths from cancer. The expected number of new lung cancer cases is 221,130 (115,060 men and 106,070 women), of which a total of 156,940 are expected to die from the disease (85,600 men and 71,340 women) (1). These data place lung cancer as the second most commonly diagnosed malignancy, and as the leading cause of cancer-related deaths in both men and women in the USA (1).

Amongst the known risk factors for developing lung cancer, cigarette smoking occupies the first place in importance (more than 90% of cases), followed by occupational and environmental exposure to adon, asbestos, second-hand smoke, chromium, arsenic, cadmium, organic chemicals, air pollution, radiation, and a previous history of tuberculosis. In those that develop lung cancer at a younger age, genetic susceptibility is also considered an important contributing risk factor (1).

Histology

The tumor cell type and the stage at presentation affect the prognosis and survival after treating lung cancer patients. Accurate diagnosis with confirmed cell type is of utmost importance. Lung cancers are divided into two main histologic types: non-small cell lung cancer (NSCLC) and small-cell lung cancer (SCLC). The histologic classification of lung cancer has undergone several revisions since the original 1967 recommendation proposed by the World Health Organization (WHO). The most significant update took place in 1999, followed by a slight change in 2004 (2–5). The revised cellular classification for NSCLC and SCLC summarizing the 1999 and 2004 WHO recommendations is presented in Table 7.1.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Siegel, RWard, EBrawley, DJemal, A.Cancer Statistics, 2011: the impact of eliminating socioeconomic and racial disparities on premature cancer deathsCA Cancer J Clin 2011 61 212CrossRefGoogle ScholarPubMed
Travis, WDColby, TVCorrin, BShimosato, YBrambilla, E.Collaboration with Sobin LH and Pathologists from 14 Countries. World Health Organization International Histological Classification of TumoursHistological Typing of Lung and Pleural TumoursBerlinSpringer-Verlag 1999CrossRefGoogle Scholar
Travis, WDBrambilla, EMuller-Hermelink, HKHarris, CCWorld Health Organization Classification of Tumours. Pathology and Genetics of Tumours of the Lung, Pleura, Thymus and HeartLyonIARC Press 2004Google Scholar
Travis, WDGarg, KFranklin, WAEvolving concepts in the pathology and computed tomography imaging of lung adenocarcinoma and bronchioloalveolar carcinomaJ Clin Oncol 2005 23 3279CrossRefGoogle ScholarPubMed
Travis, WDGarg, KFranklin, WABronchioloalveolar carcinoma and lung adenocarcinoma: the clinical importance and research relevance of the 2004 World Health Organization pathologic criteriaJ Thorac Oncol 2006 1 S13CrossRefGoogle ScholarPubMed
Travis, WDBrambilla, EInternational Association for the Study of Lung Cancer/American Thoracic Society/European Respiratory Society International Multidisciplinary Classification of Lung AdenocarcinomaJ Thorac Oncol 2011 6 244CrossRefGoogle Scholar
Hirsch, FRMatthews, MJAisner, SHistopathologic classification of small cell lung cancer. Changing concepts and terminologyCancer 1988 62 9733.0.CO;2-O>CrossRefGoogle ScholarPubMed
Edge, SBByrd, DRCompton, CCAJCC Cancer Staging ManualNew York, NYSpringer 2010 253Google ScholarPubMed
Godlstraw, PCrowley, JChanskey, KThe IASLC Lung Cancer Staging Project: proposals for the revision of the TNM stage groupings in the forthcoming (seventh) edition of the TNM classification of malignant tumoursJ Thorac Oncol 2007 2 706Google Scholar
Quekel, LGKessels, AGGoei, Rvan Engelshoven, JM.Miss rate of lung cancer on the chest radiograph in clinical practiceChest 1999 115 720CrossRefGoogle ScholarPubMed
Silvestri, GAGould, MKMargolis, MLNoninvasive staging of non-small cell lung cancer: ACCP evidenced-based clinical practice guidelinesChest 2007 132 178SCrossRefGoogle ScholarPubMed
Yung, RC.Tissue diagnosis of suspected lung cancer: selecting between bronchoscopy, transthoracic needle aspiration, and resectional biopsyRespir Care Clin N Am 2003 9 51CrossRefGoogle ScholarPubMed
Lacasse, YWong, EGuyatt, GHCook, DJ.Transthoracic needle aspiration biopsy for the diagnosis of localised pulmonary lesions: a meta-analysisThorax 1999 54 884CrossRefGoogle Scholar
De Leyn, PLerut, T.Cervical mediastinoscopyMultimedia Manual of Cardiothoracic Surgery 2005 http://mmcts.ctsnetjournals.org/cgi/reprint/2005/0324/mmcts.2004.000158.pdfGoogle Scholar
De Leyn, PVansteenkiste, JCuypers, PRole of cervical mediastinoscopy in staging of non-small cell lung cancer without enlarged mediastinal lymph nodes on CT scanEur J Cardiothorac Surg 1997 12 706CrossRefGoogle ScholarPubMed
De Leyn, PStroobants, SDe Wever, WProspective comparative study of integrated positron emission tomography-computed tomography scan compared with remediastinoscopy in the assessment of residual mediastinal lymph node disease after induction chemotherapy for mediastinoscopy-proven stage IIIA-N2 Non-small-cell lung cancer: a Leuven Lung Cancer Group StudyJ Clin Oncol 2006 24 3333CrossRefGoogle ScholarPubMed
Harris, RJKavuru, MSRice, TWKirby, KJ.The diagnostic and therapeutic utility of thoracoscopyChest 1995 108 828CrossRefGoogle ScholarPubMed
Landreneau, RJMack, MJHazelrigg, SRVideo assisted thoracic surgery: basic technical concepts and intercostal approach strategiesAnn Thorac Surg 1992 54 800CrossRefGoogle ScholarPubMed
National Comprehensive Cancer Networkhttp://www.nccn.org/professionals/physician_gls/f_guidelines.asp 2010
Jackman, DMJohnson, BE.Small-cell lung cancerLancet 2005 366 1385CrossRefGoogle ScholarPubMed
Simon, GRTurrisi, AAmerican College of Chest Physicians. Management of small cell lung cancer: ACCP evidence-based clinical practice guidelinesChest 2007 132 324SCrossRefGoogle ScholarPubMed
Lillington, GA.Management of solitary pulmonary nodulesDis Mon 1991 37 271CrossRefGoogle ScholarPubMed
Khouri, NFMeziane, MAZerhouni, EAFishman, EK.The solitary pulmonary nodule: assessment, diagnosis, and managementChest 1987 91 128CrossRefGoogle Scholar
Ost, DFein, AMFeinsilver, SH.Clinical practice: the solitary pulmonary noduleN Engl J Med 2003 348 2535CrossRefGoogle ScholarPubMed
Swensen, SJJett, JRPayne, WSAn integrated approach to evaluation of the solitary pulmonary noduleMayo Clin Proc 1990 65 173CrossRefGoogle ScholarPubMed
Gould, MKFletcher, JIannettoni, MDAmerican College of Chest Physicians. Evaluation of patients with pulmonary nodules: when is it lung cancer?: ACCP evidence-based clinical practice guidelinesChest 2007 132 108SCrossRefGoogle ScholarPubMed
Swensen, SJSilverstein, MDIlstrup, DMSchleck, CDEdell, ES.The probability of malignancy in solitary pulmonary nodules. Application to small radiologically indeterminate nodulesArch Intern Med 1997 157 849CrossRefGoogle ScholarPubMed
Swensen, SJViggiano, RWMidthun, DELung nodule enhancement at CT: multicenter studyRadiology 2000 214 73CrossRefGoogle ScholarPubMed
Gurney, JW.Determining the likelihood of malignancy in solitary pulmonary nodules with Bayesian analysis. Part I. TheoryRadiology 1993 186 405CrossRefGoogle ScholarPubMed
Zerhouni, EAStitik, FPSiegelman, SSCT of the pulmonary nodule: a cooperative studyRadiology 1986 160 319CrossRefGoogle ScholarPubMed
Henschke, CIYankelevitz, DFMirtcheva, RELCAP Group. CT screening for lung cancer: frequency and significance of part-solid and nonsolid nodulesAm J Roentgenol 2002 178 1053CrossRefGoogle ScholarPubMed
Woodring, JHFried, AM.Significance of wall thickness in solitary cavities of the lung: a follow-up studyAm J Roentgenol 1983 140 473CrossRefGoogle ScholarPubMed
Yankelevitz, DFHenschke, CI.Does 2-year stability imply that pulmonary nodules are benign?Am J Roentgenol 1997 168 325CrossRefGoogle ScholarPubMed
Erasmus, JJMcAdams, HPConnolly, JE.Solitary pulmonary nodules: Part II. Evaluation of the indeterminate noduleRadiographics 2000 20 59CrossRefGoogle ScholarPubMed
Gupta, NCMaloof, JGunel, E.Probability of malignancy in solitary pulmonary nodules using fluorine-18-FDG and PETJ Nucl Med 1996 37 943Google ScholarPubMed
Lowe, VJFletcher, JWGobar, LProspective investigation of PET in lung nodules (PIOPILN)J Clin Oncol 1998 16 1075CrossRefGoogle Scholar
Gould, MKMaclean, CCKuschner, WGRydzak, CEOwens, DK.Accuracy of positron emission tomography for diagnosis of pulmonary nodules and mass lesions: a meta-analysisJ Am Med Assoc 2001 285 914CrossRefGoogle ScholarPubMed
Kim, YHLee, KSPrimack, SLSmall pulmonary nodules on CT accompanying surgically resectable lung cancer: likelihood of malignancyJ Thorac Imaging 2002 17 40CrossRefGoogle ScholarPubMed
Chalmers, NBest, JJ.The significance of pulmonary nodules detected by CT but not by chest radiography in tumor stagingClin Radiol 1991 44 410CrossRefGoogle ScholarPubMed
Yuan, YMatsumoto, THiyama, AThe probability of malignancy in small pulmonary nodules coexisting with potentially operable lung cancer detected by CTEur Radiol 2003 13 2447CrossRefGoogle ScholarPubMed
Herder, GJGolding, RPHoekstra, OSThe performance of (18)F-fluorodeoxyglucose positron emission tomography in small solitary pulmonary nodulesEur J Nucl Med Mol Imaging 2004 31 1231CrossRefGoogle ScholarPubMed
Divisi, DDi Tommaso, SDi Leonardo, G18-fluorine fluorodeoxyglucose positron emission tomography with computerized tomography versus computerized tomography alone for the management of solitary lung nodules with diameters inferior to 1.5 cmThorac Cardiovasc Surg 2010 58 422CrossRefGoogle ScholarPubMed
Higashi, KUeda, YSeki, HFluorine-18-FDG PET imaging is negative in bronchioloalveolar lung carcinomaJ Nucl Med 1998 39 1016Google ScholarPubMed
Erasmus, JJMcAdams, HPPatz, EFEvaluation of primary pulmonary carcinoid tumors using FDG PETAm J Roentgenol 1998 170 1369CrossRefGoogle ScholarPubMed
Bryant, ASCerfolio, RJ.The maximum standardized uptake values on integrated FDG-PET/CT is useful in differentiating benign from malignant pulmonary nodulesAnn Thorac Surg 2006 82 1016CrossRefGoogle ScholarPubMed
O JHYoo IeRKim, SHSohn, HSChung, SK.Clinical significance of small pulmonary nodules with little or no 18F-FDG uptake on PET/CT images of patients with nonthoracic malignanciesJ Nucl Med 2007 48 15Google Scholar
Matthies, AHickeson, MCuchiara, AAlavi, A.Dual time point 18F-FDG PET for the evaluation of pulmonary nodulesJ Nucl Med 2002 43 871Google ScholarPubMed
Cloran, FJBanks, KPSong, WSKim, YBradley, YC.Limitations of dual time point PET in the assessment of lung nodules with low FDG avidityLung Cancer 2010 68 66CrossRefGoogle ScholarPubMed
Erdi, YENehmeh, SAPan, TThe CT motion quantitation of lung lesions and its impact on PET measured SUVsJ Nucl Med 2004 45 1287Google ScholarPubMed
Park, SJIonascu, DKilloran, JEvaluation of the combined effects of target size, respiratory motion and background activity on 3D and 4D PET/CT imagesPhys Med Biol 2008 3661CrossRefGoogle ScholarPubMed
Werner, MKParker, JAKolodny, GMEnglish, JRPalmer, MR.Respiratory gating enhances imaging of pulmonary nodules and measurement of tracer uptake in FDG PET/CTAm J Roentgenol 2009 193 1640CrossRefGoogle ScholarPubMed
Jones, HAClark, RJRhodes, CGPositron emission tomography of 18FDG uptake in localized pulmonary inflammationActa Radiol Suppl 1991 376Google ScholarPubMed
Chang, JMLee, HJGoo, JMFalse positive and false negative FDG-PET scans in various thoracic diseasesKorean J Radiol 2006 7 57CrossRefGoogle ScholarPubMed
Alavi, AGupta, NAlberini, JLPositron emission tomography imaging in nonmalignant thoracic disordersSemin Nucl Med 2002 32 293CrossRefGoogle ScholarPubMed
Gerbaudo, VHJulius, B.Anatomo-metabolic characteristics of atelectasis in F-18 FDG-PET/CT imagingEur J Radiol 2007 64 401CrossRefGoogle ScholarPubMed
Britz-Cunningham, SHMillstine, JWGerbaudo, VH.Improved discrimination of benign and malignant lesions on FDG PET/CT, using comparative activity ratios to brain, basal ganglia, or cerebellumClin Nucl Med 2008 33 681CrossRefGoogle ScholarPubMed
Lardinois, DWeder, WHany, TFStaging of non–small-cell lung cancer with integrated positron emission tomography and computed tomographyN Engl J Med 2003 348 2500CrossRefGoogle ScholarPubMed
Kim, SKAllen-Auerbach, MGoldin, JAccuracy of PET/CT in characterization of solitary pulmonary lesionsJ Nucl Med 2007 48 214Google ScholarPubMed
Yamashita, KMatsunobe, STsuda, TSolitary pulmonary nodule: preliminary study of evaluation with incremental dynamic CTRadiology 1995 194 399CrossRefGoogle ScholarPubMed
Swensen, SJViggiano, RWMidthun, DELung nodule enhancement at CT: multicenter studyRadiology 2000 214 73CrossRefGoogle ScholarPubMed
Jeong, YJLee, KSJeong, SYSolitary pulmonary nodule: characterization with combined washin and washout features at dynamic multi-detector row CTRadiology 2005 237 675CrossRefGoogle Scholar
Yi, CALee, KSKim, B-TTissue characterization of solitary pulmonary nodule: comparative study between helical dynamic CT and integrated PET/CTJ Nucl Med 2006 47 443Google ScholarPubMed
Gould, MKSanders, GDBarnett, PGCost-effectiveness of alternative management strategies for patients with solitary pulmonary nodulesAnn Intern Med 2003 724CrossRefGoogle ScholarPubMed
Alberts, WMAmerican College of Chest Physicians. Diagnosis and management of lung cancer executive summary: ACCP evidence-based clinical practice guidelines (2nd Edition)Chest 2007 132 1SCrossRefGoogle Scholar
Fletcher, JWDjulbegovic, BSoares, HPRecommendations on the use of 18F-FDG PET in oncologyJ Nucl Med 2008 49 480CrossRefGoogle Scholar
Antoch, GStattaus, JNemat, ATNon-small cell lung cancer: dual-modality PET/CT in preoperative stagingRadiology 2003 229 526CrossRefGoogle ScholarPubMed
Dizendorf, EVBaumert, BGvon Schulthess, GKImpact of whole-body 18E-EDG PET on staging and managing patients for radiation therapyJ Nucl Med 2003 44 24Google ScholarPubMed
Ahuja, VColeman, REHerndon, JPatz, EFThe prognostic significance of fluorodeoxyglucose positron emission tomography imaging for patients with nonsmall cell lung carcinomaCancer 1998 83 9183.0.CO;2-Y>CrossRefGoogle ScholarPubMed
Cerfolio, RJBryant, ASOhja, BBartolucci, AA.The maximum standardized uptake values on positron emission tomography of a non-small cell lung cancer predict stage, recurrence, and survivalJ Thorac Cardiovasc Surg 2005 130 151CrossRefGoogle ScholarPubMed
Dillemans, BDeneffe, GVerschakelen, JDecramer, M.Value of computed tomography and mediastinoscopy in preoperative evaluation of mediastinal nodes in non-small cell lung cancer. A study of 569 patientsEur J Cardiothorac Surg 1994 8 37CrossRefGoogle ScholarPubMed
Toloza, EMHarpole, LMcCrory, DC.Noninvasive staging of non-small cell lung cancer: a review of the current evidenceChest 2003 123 137SCrossRefGoogle ScholarPubMed
Gould, MKKuschner, WGRydzak, CETest performance of positron emission tomography and computed tomography for mediastinal staging in patients with non-small-cell lung cancer: a meta-analysisAnn Intern Med 2003 139 879CrossRefGoogle ScholarPubMed
Gupta, NCGraeber, GMBishop, HA.Comparative efficacy of positron emission tomography with fluorodeoxyglucose in evaluation of small (< 1 cm), intermediate (1 to 3 cm), and large (> 3 cm) lymph node lesionsChest 2000 117 773CrossRefGoogle ScholarPubMed
de Langen, AJRaijmakers, PRiphagen, IPaul, MAHoekstra, OS.The size of mediastinal lymph nodes and its relation with metastatic involvement: a meta-analysisEur J Cardiothorac Surg 2006 29 26CrossRefGoogle ScholarPubMed
Vesselle, HTurcotte, ELinda, WHaynor, D.Application of a neural network to improve nodal staging accuracy with F-18 FDG PET in non-small cell lung cancerJ Nucl Med 2003 44 1918Google Scholar
Higashi, KIto, KHiramatsu, Y18F-FDG uptake by primary tumor as a predictor of intratumoral lymphatic vessel invasion and lymph node involvement in non-small cell lung cancer: analysis of a multicenter studyJ Nucl Med 2005 46 267Google ScholarPubMed
Quint, LETummala, SBrisson, LJDistribution of distant metastases from newly diagnosed non-small cell lung cancerAnn Thorac Surg 1996 62 246CrossRefGoogle ScholarPubMed
Sider, LHorejs, D.Frequency of extrathoracic metastases from bronchogenic carcinoma in patients with normal-sized hilar and mediastinal lymph nodes on CTAm J Roentgenol 1988 151 893CrossRefGoogle ScholarPubMed
Facey, KBradbury, ILaking, GPayne, E.Positron emission tomography (PET ) imaging in cancer management. Ultra Rapid Review. Health Technology AssessmentSouthamptonNHS R&D Programme 2004Google Scholar
Hellwig, DUkena, DPaulsen, FBamberg, MKirsch, CMOnko-PET der Deutschen Gesellschaft fur Nuklearmedizin. [Meta-analysis of the efficacy of positron emission tomography with F-18-fluorodeoxyglucose in lung tumors. Basis for discussion of the German Consensus Conference on PET in Oncology 2000]Pneumologie 2001 55 367CrossRefGoogle Scholar
Cook, GJHouston, SRubens, RMaisey, MNFogelman, I.Detection of bone metastases in breast cancer by 18FDG PET: differing metabolic activity in osteoblastic and osteolytic lesionsJ Clin Oncol 1998 16 3375CrossRefGoogle ScholarPubMed
Hustinx, RPaulus, PJacquet, NClinical evaluation of whole-body 18F-fluorodeoxyglucose positron emission tomography in the detection of liver metastasesAnn Oncol 1998 9 397CrossRefGoogle ScholarPubMed
MacManus, MPHicks, RJMatthews, JPHigh rate of detection of unsuspected distant metastases by PET in apparent stage III non-small-cell lung cancer: implications for radical radiation therapyInt J Radiat Oncol Biol Phys 2001 50 287CrossRefGoogle ScholarPubMed
Lardinois, DWeder, WRoudas, MEtiology of solitary extrapulmonary positron emission tomography and computed tomography findings in patients with lung cancerJ Clin Oncol 2005 23 6846CrossRefGoogle ScholarPubMed
Vansteenkiste, JFischer, BMDooms, CMortensen, J.Positron-emission tomography in prognostic and therapeutic assessment of lung cancer: systematic reviewLancet Oncol 2004 5 531CrossRefGoogle ScholarPubMed
de Geus-Oei, LFvan der Heijden, HFCorstens, FHOven, WJ.Predictive and prognostic value of FDG-PET in nonsmall-cell lung cancer: a systematic reviewCancer 2007 110 1654CrossRefGoogle ScholarPubMed
Weber, WAPetersen, VSchmidt, BPositron emission tomography in non-small-cell lung cancer: prediction of response to chemotherapy by quantitative assessment of glucose useJ Clin Oncol 2003 21 2651CrossRefGoogle ScholarPubMed
Cerfolio, RJBryant, ASWinokur, TSOhja, BBartolucci, AA.Repeat 18F-FDG-PET after neoadjuvant therapy is a predictor of pathologic response in patients with non-small cell lung cancerAnn Thorac Surg 2004 78 1903CrossRefGoogle Scholar
Inoue, TKim, EEKomaki, RDetecting recurrent or residual lung cancer with FDG-PETJ Nucl Med 1995 36 788Google ScholarPubMed
Patz, EFLowe, VJHoffman, JMPersistent or recurrent bronchogenic carcinoma: detection with PET and 2-[F-18]-2-deoxy-D-glucoseRadiology 1994 191 379CrossRefGoogle ScholarPubMed
Bury, TCorhay, JLDuysinx, BValue of FDG-PET in detecting residual or recurrent nonsmall cell lung cancerEur Respir J 1999 14 1376CrossRefGoogle ScholarPubMed
Hicks, RJKalff, VMacManus, MPThe utility of (18)F-FDG PET for suspected recurrent non-small cell lung cancer after potentially curative therapy: impact on management and prognostic stratificationJ Nucl Med 2001 42 1605Google ScholarPubMed
Higashi, KUeda, YArisaka, Y18F-FDG uptake as a biologic prognostic factor for recurrence in patients with surgically resected non-small cell lung cancerJ Nucl Med 2002 43 39Google ScholarPubMed
Singnurkar, ASolomon, SBGönen, MLarson, SMSchöder, H.18F-FDG PET/CT for the prediction and detection of local recurrence after radiofrequency ablation of malignant lung lesionsJ Nucl Med 2010 51 1833CrossRefGoogle ScholarPubMed
Shiono, SAbiko, MSato, T.Positron emission tomography/computed tomography and lymphovascular invasion predict recurrence in stage I lung cancersJ Thorac Oncol 2011 6 43CrossRefGoogle ScholarPubMed
Hellwig, DGröschel, AGraeter, TPDiagnostic performance and prognostic impact of FDG-PET in suspected recurrence of surgically treated non-small cell lung cancerEur J Nucl Med Mol Imaging 2006 33 13CrossRefGoogle ScholarPubMed
Schumacher, TBrink, IMix, MFDG-PET imaging for the staging and follow-up of small cell lung cancerEur J Nucl Med 2001 28 483CrossRefGoogle ScholarPubMed
Kamel, EMZwahlen, DWyss, MTWhole-body (18)F-FDG PET improves the management of patients with small cell lung cancerJ Nucl Med 2003 44 1911Google ScholarPubMed
Bradley, JDDehdashti, FMintun, MAPositron emission tomography in limited-stage small-cell lung cancer: a prospective studyJ Clin Oncol 2004 22 3248CrossRefGoogle ScholarPubMed
Shen, YYShiau, YCWang, JJHo, STKao, CH.Whole-body 18F-2-deoxyglucose positron emission tomography in primary staging small cell lung cancerAnticancer Res 2002 22 1257Google ScholarPubMed
Fischer, BMMortensen, JLanger, SWA prospective study of PET/CT in initial staging of small-cell lung cancer: comparison with CT, bone scintigraphy and bone marrow analysisAnn Oncol 2007 18 338CrossRefGoogle ScholarPubMed
Azad, AChionh, FScott, AMHigh impact of 18F-FDG-PET on management and prognostic stratification of newly diagnosed small cell lung cancerMol Imaging Biol 2010 12 443CrossRefGoogle Scholar
Fischer, BMMortensen, JLanger, SWPET/CT imaging in response evaluation of patients with small cell lung cancerLung Cancer 2006 54 41CrossRefGoogle ScholarPubMed
Lee, YJCho, ACho, BCHigh tumor metabolic activity as measured by fluorodeoxyglucose positron emission tomography is associated with poor prognosis in limited and extensive stage small-cell lung cancerClin Cancer Res 2009 15 2426CrossRefGoogle ScholarPubMed
Connelly, RRSpirtas, RMyers, MHPercy, CLFraumeni, JFDemographic patterns for mesothelioma in the United StatesJ Natl Cancer Inst 1987 78 1053Google ScholarPubMed
Price, BWare, A.Time trend of mesothelioma incidence in the United States and projection of future cases: an update based on SEER data for 1973 through 2005Crit Rev Toxicol 2009 39 576CrossRefGoogle ScholarPubMed
Wagner, JCSleggs, CAMarchand, P.Diffuse pleural mesothelioma and asbestos exposure in the North Western Cape ProvinceBr J Ind Med 1960 17 260Google ScholarPubMed
Bianchi, CGiarelli, LGrandi, GLatency periods in asbestos-related mesothelioma of the pleuraEur J Cancer Prev 1997 6 162Google ScholarPubMed
Travis, WD.Sarcomatoid neoplasms of the lung and pleuraArch Pathol Lab Med 2010 134 1645Google ScholarPubMed
Lopez-Rios, FIllei, PBRusch, VLadanyi, M.Evidence against a role for SV40 infection in human mesotheliomas and high risk of false-positive PCR results owing to presence of SV40 sequences in common laboratory plasmidsLancet 2004 364 1157CrossRefGoogle ScholarPubMed
Manfredi, JJDong, JLiu, WJEvidence against a role for SV40 in human mesotheliomaCancer Res 2005 65 2602CrossRefGoogle ScholarPubMed
Klebe, SBrownlee, NAMahar, ASarcomatoid mesothelioma: a clinical-pathologic correlation of 326 casesMod Pathol 2010 23 470CrossRefGoogle ScholarPubMed
Gerbaudo, VHKatz, SNowak, AFrancis, R.Multimodality imaging review of malignant pleural mesothelioma diagnosis and stagingPET Clinics 2011 6 275CrossRefGoogle ScholarPubMed
Nowak, AFrancis, RKatz, SGerbaudo, VH.Multimodality imaging review of malignant pleural mesothelioma response to therapy assessmentPET Clinics 2011 6 299CrossRefGoogle Scholar
Metintas, MUcgun, IElbek, OComputed tomography features in malignant pleural mesothelioma and other commonly seen pleural diseasesEur J Radiol 2002 41 1CrossRefGoogle ScholarPubMed
Yamamuro, MGerbaudo, VHGill, RRMorphologic and functional imaging of malignant pleural mesotheliomaEur J Radiol 2007 64 356CrossRefGoogle ScholarPubMed
Gill, RRGerbaudo, VHJacobson, FLMR imaging of benign and malignant pleural diseaseMagn Reson Imaging Clin N Am 2008 16 319CrossRefGoogle ScholarPubMed
Bénard, FSterman, DSmith, RJMetabolic imaging of malignant pleural mesothelioma with fluorodeoxyglucose positron emission tomographyChest 1998 114 713CrossRefGoogle ScholarPubMed
Gerbaudo, VHSugarbaker, DJBritz-Cunningham, SAssessment of malignant pleural mesothelioma with 18 F-FDG dual-head gamma-camera coincidence imaging: comparison with histopathologyJ Nucl Med 2002 43 1144Google ScholarPubMed
Carretta, ALandoni, CMelloni, G18-FDG positron emission tomography in the evaluation of malignant pleural diseases – a pilot studyEur J Cardiothorac Surg 2000 17 377CrossRefGoogle ScholarPubMed
Bury, TPaulus, PDowlati, AEvaluation of pleural diseases with FDG-PET imaging: preliminary reportThorax 1997 52 187CrossRefGoogle ScholarPubMed
Schneider, DBClary-Macy, CChalla, SPositron emission tomography with F18-fluorodeoxyglucose in the staging and preoperative evaluation of malignant pleural mesotheliomaJ Thorac Cardiovasc Surg 2000 120 128CrossRefGoogle ScholarPubMed
Sugarbaker, DJFlores, RMJaklitsch, MTResection margins, extrapleural nodal status, and cell type determine postoperative long-term survival in trimodality therapy of malignant pleural mesothelioma: results in 183 patientsJ Thorac Cardiovasc Surg 1999 117 54CrossRefGoogle ScholarPubMed
Rusch, VW.A proposed new international TNM staging system for malignant pleural mesothelioma from the International Mesothelioma Interest GroupLung Cancer 1996 14 1CrossRefGoogle ScholarPubMed
Flores, RMAkhurst, TGonen, MLarson, SMRusch, VW.Positron emission tomography defines metastatic disease but not locoregional disease in patients with malignant pleural mesotheliomaJ Thorac Cardiovasc Surg 2003 126 11CrossRefGoogle Scholar
Erasmus, JJTruong, MTSmythe, WRIntegrated computed tomography-positron emission tomography in patients with potentially resectable malignant pleural mesothelioma: Staging implicationsJ Thorac Cardiovasc Surg 2005 129 1364CrossRefGoogle ScholarPubMed
Gerbaudo, VH.18F-FDG imaging of malignant pleural mesothelioma: scientiam impendere vero. . . [Editorial]Nucl Med Com 2003 24 609CrossRefGoogle Scholar
Baldini, EHRecht, AStrauss, GMPatterns of failure after trimodality therapy for malignant pleural mesotheliomaAnn Thorac Surg 1997 63 334Google ScholarPubMed
Oksuzoglu, BYalcin, SErman, MDagdelen, S.Leptomeningeal infiltration of malignant mesotheliomaMed Oncol 2002 19 167CrossRefGoogle ScholarPubMed
Gerbaudo, VHMamede, MTrotman-Dickenson, BHatabu, HSugarbaker, DJ.FDG PET/CT patterns of treatment failure of malignant pleural mesothelioma: relationship to histologic type, treatment algorithm, and survivalEur J Nucl Med Mol Imaging 2011 38 810CrossRefGoogle Scholar
Baldini, EHRecht, AStrauss, GMPatterns of failure after trimodality therapy for malignant pleural mesotheliomaAnn Thorac Surg 1997 63 334Google ScholarPubMed
Jänne, PABaldini, EH.Patterns of failure following surgical resection for malignant pleural mesotheliomaThorac Surg Clin 2004 14 567CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×