Skip to main content Accessibility help
×
Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-25T20:31:09.922Z Has data issue: false hasContentIssue false

2 - Central simple algebras and Galois descent

Published online by Cambridge University Press:  07 August 2017

Philippe Gille
Affiliation:
Institut Camille Jordan, Lyon
Tamás Szamuely
Affiliation:
Alfréd Rényi Institute of Mathematics, Hungarian Academy of Sciences, Budapest
Get access

Summary

In this chapter we treat the basic theory of central simple algebras from a modern viewpoint. The main point we would like to emphasize is that, as a consequence of Wedderburn's theorem, we may characterize central simple algebras as those finite-dimensional algebras which become isomorphic to some full matrix ring over a finite extension of the base field. We then show that this extension can in fact be chosen to be a Galois extension, which enables us to exploit a powerful theory in our further investigations, that of Galois descent. Using descent we can give elegant treatments of such classical topics as the construction of reduced norms or the Skolem–Noether theorem. The main invariant concerning central simple algebras is the Brauer group, which classifies all finite-dimensional central division algebras over a field. Using Galois descent, we shall identify it with a certain first cohomology set equipped with an abelian group structure.

The foundations of the theory of central simple algebras go back to the great algebraists of the dawn of the twentieth century; we merely mention here the names of Wedderburn, Dickson and Emmy Noether. The Brauer group appears in the pioneering paper of the young Richard Brauer [1]. Though Galois descent had been implicitly used by algebraists in the early years of the twentieth century and Châtelet had considered special cases in connection with Diophantine equations, it was AndréWeil who first gave a systematic treatment with applications to algebraic geometry in mind (Weil [2]). The theory in the form presented below was developed by Jean-Pierre Serre, and finally found a tantalizing generalization in the general descent theory of Grothendieck ([1], [2]).

Wedderburn's theorem

Let k be a field. We assume throughout that all k-algebras under consideration are finite dimensional over k. A k-algebra A is called simple if it has no (two-sided) ideal other than 0 and A. Recall moreover from the previous chapter that A is central if its centre equals k.

Here are the basic examples of central simple algebras.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×