Having perceived the connexions, he seeks the proof, the clean revelation in its simplest form, never doubting that somewhere writing in the chaos is the unique elegance, the precise, airy structure, defined, swift-lined, and indestructible.
Lillian Morrison Poet as MathematicianTheorems and their proofs lie at the heart of mathematics. In speaking of the “purely aesthetic” qualities of theorems and proofs in A Mathematician's Apology [Hardy, 1969], G. H. Hardy wrote that in beautiful proofs “there is a very high degree of unexpectedness, combined with inevitability and economy.” These will be the charming proofs appearing in this book.
The aim of this book is to present a collection of remarkable proofs in elementary mathematics (numbers, geometry, inequalities, functions, origami, tilings, …) that are exceptionally elegant, full of ingenuity, and succinct. By means of a surprising argument or a powerful visual representation, we hope the charming proofs in our collection will invite readers to enjoy the beauty of mathematics, to share their discoveries with others, and to become involved in the process of creating new proofs.
The remarkable Hungarian mathematician Paul Erdős (1913–1996) was fond of saying that God has a transfinite Book that contains the best possible proofs of all mathematical theorems, proofs that are elegant and perfect. The highest compliment Erdős could pay to a colleague's work was to say “It's straight from The Book.”
To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.