Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-m42fx Total loading time: 0 Render date: 2024-07-19T18:04:17.984Z Has data issue: false hasContentIssue false

7 - Neuromuscular Structures and Microtubules as Targets

Published online by Cambridge University Press:  11 August 2009

Tag E. Mansour
Affiliation:
Stanford University, California
Get access

Summary

Parasites' ability to control their motility in their specific natural location in the host is critical to their survival. For example, Ascaris living in the small intestine of the host mammal have to move very vigorously to maintain their position and avoid expulsion with the flow of the intestinal contents. Any interference with coordination of the parasites' movements could result in their being carried to the large intestine, an environment that is hostile to Ascaris survival. Certain antiparasitic agents owe their effect to a selective inhibition of the motility of the parasites. These drugs can eliminate intestinal parasites as a consequence of their interference with the motility needed to maintain the parasites' position in the host.

Neuromuscular Physiology of Nematodes

Because of its large size and ready availability Ascaris suum is generally used as a prototype organism representing nematodes. It is generally accepted that there is a close relationship between the neuromuscular morphology and physiology of the free-living nematode C. elegans and Ascaris. For this reason C. elegans is frequently used as a prototype organism for experiments that involve genetic analysis or molecular biological manipulation. However, Ascaris has larger cells that are easier to access for electrophysiological experiments, such as electrode voltage clamp recordings. Pharmacological preparations made from portions of an intact Ascaris were used to measure muscle contractility by Baldwin as early as 1943 (Baldwin, 1943).

Type
Chapter
Information
Chemotherapeutic Targets in Parasites
Contemporary Strategies
, pp. 156 - 188
Publisher: Cambridge University Press
Print publication year: 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abramson, S. N., Culver, P., Kline, T., Li, Y., Guest, P., Gutman, L. & Taylor, P. (1988). Lophotoxin and related coral toxins covalently label the alpha-subunit of the nicotinic acetylcholine receptor. J Biol Chem, 263(34), 18568–18573Google ScholarPubMed
Abramson, S. N., Li, Y., Culver, P. & Taylor, P. (1989). An analog of lophotoxin reacts covalently with Tyr190 in the alpha-subunit of the nicotinic acetylcholine receptor. J Biol Chem, 264(21), 12666–12672Google ScholarPubMed
Aceves, J., Erlij, D. & Martinez-Maranon, R. (1970). The mechanism of the paralysing action of tetramisole on Ascaris somatic muscle. Br J Pharmacol, 38(3), 602–607CrossRefGoogle ScholarPubMed
Ajuh, P. M. & Egwang, T. G. (1994). Cloning of a cDNA encoding a putative nicotinic acetylcholine receptor subunit of the human filarial parasite Onchocerca volvulus. Gene, 144(1), 127–129CrossRefGoogle ScholarPubMed
Alberts, B., Bray, D., Lewis, J., Raff, M., Roberts, K. Watson, J. D. (1994). Molecular Biology of the Cell (3rd ed.). New York: Garland Publishing
Arena, J. P., Liu, K. K., Paress, P. S., Frazier, E. G., Cully, D. F., Mrozik, H.Schaeffer, J. M. (1995). The mechanism of action of avermectins in Caenorhabditis elegans: Correlation between activation of glutamate-sensitive chloride current, membrane binding, and biological activity. J Parasitol, 81(2), 286–294CrossRefGoogle ScholarPubMed
Avery, L. (1993). Motor neuron M3 controls pharyngeal muscle relaxation timing in Caenorhabditis elegans. J Exp Biol, 175, 283–297Google ScholarPubMed
Avery, L.Horvitz, H. R. (1990). Effects of starvation and neuroactive drugs on feeding in Caenorhabditis elegans. J Exp Zool, 253(3), 263–270CrossRefGoogle ScholarPubMed
Baldwin, E. (1943). An in vitro method for the chemotherapeutic investigation of anthelmintic potency. Parasitology, 35, 89–111CrossRefGoogle Scholar
Baldwin, E.Moyle, V. (1949). A contribution to the physiology and pharmacology of Ascaris lumbricoides from the pig. Br J Pharmacol, 4, 145–152Google ScholarPubMed
Barker, L. R., Bueding, E.Timms, A. R. (1966). The possible role of acetylcholine in Schistosoma mansoni. Br J Pharmacol, 26(3), 656–665Google ScholarPubMed
Beech, R. N., Prichard, R. K. & Scott, M. E. (1994). Genetic variability of the beta-tubulin genes in benzimidazole-susceptible and -resistant strains of Haemonchus contortus. Genetics, 138(1), 103–110Google ScholarPubMed
Bennett, J. L. & Bueding, E. (1973). Uptake of 5-hydroxytryptamine by Schistosoma mansoni. Mol Pharmacol, 9(3), 311–319Google ScholarPubMed
Boray, J. (1986). Trematode infections of domestic animals. In W. Campbell & R. Rew (Eds.), Chemotherapy of Parasitic Diseases (pp. 401–425). New York: Plenum PressCrossRef
Borgers, M.DeNollin, S. (1975). Ultrastructural changes in Ascaris suum intestine after mebendazole treatment in vivo. J Parasitol, 61(1), 110–122CrossRefGoogle ScholarPubMed
Broeks, A., Janssen, H. W., Calafat, J.Plasterk, R. H. (1995). A P-glycoprotein protects Caenorhabditis elegans against natural toxins. EMBO J, 14(9), 1858–1866Google ScholarPubMed
Brown, H. D., Matzuk, A. R., Ilves, I. R., Perterson, L. H., Harris, S. A., Sarett, L. H., Egerton, J. R., Yakstis, J. J., Campbell, W. C. & Cuckler, A. C. (1961). Antiparasitic drugs. IV. 2-(4′-thiazolyl)-benzimidazole, a new anthelmintic. J Am Chem Soc, 83, 1764–1765CrossRefGoogle Scholar
Brownlee, D. J. & Fairweather, I. (1999). Exploring the neurotransmitter labyrinth in nematodes. Trends Neurosci, 22(1), 16–24CrossRefGoogle ScholarPubMed
Brownlee, D. J., Fairweather, I., Johnston, C. F., Smart, D., Shaw, C.Halton, D. W. (1993). Immunocytochemical demonstration of neuropeptides in the central nervous system of the roundworm, Ascaris suum (Nematoda: Ascaroidea). Parasitology, 106(Pt 3), 305–316CrossRefGoogle Scholar
Brownlee, D. J., Holden-Dye, L., Fairweather, I.Walker, R. J. (1995). The action of serotonin and the nematode neuropeptide KSAYMRFamide on the pharyngeal muscle of the parasitic nematode, Ascaris suum. Parasitology, 111(Pt 3), 379–384CrossRefGoogle ScholarPubMed
Brownlee, D. J., Holden-Dye, L.Walker, R. J. (1997). Actions of the anthelmintic ivermectin on the pharyngeal muscle of the parasitic nematode, Ascaris suum. Parasitology, 115(Pt 5), 553–561CrossRefGoogle ScholarPubMed
Buttle, G.Khayyal, M. (1962). Rapid hepatic shift of worms in mice infected with Schistosoma mansoni after a single injection of tartar emetic. Nature, 194 780–781Google ScholarPubMed
Campbell, W. C. (1985). Ivermectin: An update. Parasitol Today, 1, 10–16CrossRefGoogle ScholarPubMed
Campbell, W. C., Burg, R. W., Fisher, M. H. & Dybas, R. A. (1984). Pesticide Synthesis through Rational Approaches (Vol. 255). New York: Plenum Press
Chance, M. R. A.Mansour, T. E. (1949). A kymographic study of the action of drugs on the liver fluke (Fasciola hepatica). Br. J. Pharmacol, 4, 7–13Google Scholar
Chance, M. R. A.Mansour, T. E. (1953). A contribution to the pharmacology of movement in the liver fluke. Br. J. Pharmacol, 8, 134–138Google ScholarPubMed
Chevis, R. A. (1980). The speed of action of anthelmintics: Mebendazole. Vet Rec, 107(17), 398–399CrossRefGoogle ScholarPubMed
Cho, C. H. & Mettrick, D. F. (1982). Circadian variation in the distribution of Hymenolepis diminuta (Cestoda) and 5-hydroxytryptamine levels in the gastro-intestinal tract of the laboratory rat. Parasitology, 84(Pt 3), 431–441CrossRefGoogle ScholarPubMed
Cornish, R. A., Behm, C. A., Butler, R. W. & Bryant, C. (1977). The in vivo effects of rafoxanide on the energy metabolism of Fasciola hepatica. Int J Parasitol, 7(3), 217–220CrossRefGoogle ScholarPubMed
Cully, D. F., Vassilatis, D. K., Liu, K. K., Paress, P. S., Ploeg, L. H., Schaeffer, J. M. & Arena, J. P. (1994). Cloning of an avermectin-sensitive glutamate-gated chloride channel from Caenorhabditis elegans. Nature, 371(6499), 707–711CrossRefGoogle ScholarPubMed
Cully, D. F., Paress, P. S., Liu, K. K., Schaeffer, J. M. & Arena, J. P. (1996a). Identification of a Drosophila melanogaster glutamate-gated chloride channel sensitive to the antiparasitic agent avermectin. J Biol Chem, 271(33), 20187–20191CrossRefGoogle Scholar
Cully, D. F., Wilkinson, H., Vassilatis, D. K., Etter, A.Arena, J. P. (1996b). Molecular biology and electrophysiology of glutamate-gated chloride channels of invertebrates. Parasitology, 113 (Suppl), S191–S200CrossRefGoogle Scholar
Davis, R. E. (1998). Neurophysiology of glutamatergic signalling and anthelmintic action in Ascaris suum: Pharmacological evidence for a kainate receptor. Parasitology, 116(Pt 5), 471–486CrossRefGoogle ScholarPubMed
Davis, R. E. & Stretton, A. O. W. (1995). Neurotransmitters of Helminths. In J. J. Marr & M. Muller (Eds.), Biochemistry and Molecular Biology of Parasites (pp. 257–288). San Diego: Academic PressCrossRef
Davis, R. E. & Stretton, A. O. (1996). The motornervous system of Ascaris: Electrophysiology and anatomy of the neurons and their control by neuromodulators. Parasitology, 113(Suppl), S97–117CrossRefGoogle ScholarPubMed
Del Castillo, J., Mello, W.Morales, T. (1963). The physiologial role of acetylcholine in the neuromuscular system of Ascaris lumbricoides. Arch Int Physiol Biochim, 71, 741–757Google Scholar
Del Castillo, J., Mello, W. C. & Morales, T. (1964). Inhibitory action of gamma-aminobutyric acid (GABA) on Ascaris muscle. Experientia, 20(3), 141–143CrossRefGoogle ScholarPubMed
Dobson, R. J., LeJambre, L.Gill, J. H. (1996). Management of anthelmintic resistance: Inheritance of resistance and selection with persistent drugs. Int J Parasitol, 26(8–9), 993–1000CrossRefGoogle ScholarPubMed
Erspamer, V. (1954). Pharmacology of indolamine alkylamines. Pharmacol Rev, 6, 425–487Google Scholar
Estey, S. J. & Mansour, T. E. (1987). Nature of serotonin-activated adenylate cyclase during development of Schistosoma mansoni. Mol Biochem Parasitol, 26(1–2), 47–59CrossRefGoogle ScholarPubMed
Fairweather, I., Holmes, S. D. & Threadgold, L. T. (1984). Fasciola hepatica: Motility response to fasciolicides in vitro. Exp Parasitol, 57(3), 209–224CrossRefGoogle ScholarPubMed
Fetterer, R. H., Pax, R. A. & Bennett, J. L. (1977). Schistosoma mansoni: Direct method for simultaneous recording of electrical and motor activity. Exp Parasitol, 43(1), 286–294CrossRefGoogle ScholarPubMed
Fetterer, R. H., Pax, R. A. & Bennett, J. L. (1980). Praziquantel, potassium and 2,4-dinitrophenol: Analysis of their action on the musculature of Schistosoma mansoni. Eur J Pharmacol, 64(1), 31–38CrossRefGoogle ScholarPubMed
Fisher, M. H. (1986). Chemsitry of antinematodal agents. In C. C. Campbell & R. S. Rew (Eds.), Chemotherapy of Parasitic Deiseases (pp. 239–264). New York: Plenum PressCrossRef
Fleming, J. T., Baylis, H. A., Sattelle, D. B. & Lewis, J. A. (1996). Molecular cloning and in vitro expression of C. elegans and parasitic nematode ionotropic receptors. Parasitology, 113(Suppl), S175–190CrossRefGoogle ScholarPubMed
Friedman, P. A. & Platzer, E. G. (1980a). Interaction of anthelmintic benzimidazoles with Ascaris suum embryonic tubulin. Biochim Biophys Acta, 630(2), 271–278CrossRefGoogle Scholar
Friedman, P. A. & Platzer, E. G. (1980b). The molecular mechanism of action of benzimaidazoles in embyros of Ascaris suum. Paper presented at the 3rd International Symposium on: The Biochemistry of Parasites and Host-Parasite Relationships, Beerse, Belgium
Geary, T. G., Sims, S. M., Thomas, E. M., Vanover, L., Davis, J. P., Winterrowd, C. A., Klein, R. D., Ho, N. F. & Thompson, D. P. (1993). Haemonchus contortus: Ivermectin-induced paralysis of the pharynx. Exp Parasitol, 77(1), 88–96CrossRefGoogle ScholarPubMed
Greene, B. M., Taylor, H. R., Cupp, E. W., Murphy, R. P., White, A. T., Aziz, M. A., Schulz-Key, H., D'Anna, S. A., Newland, H. S., Goldschmidt, L. P.et al. (1985). Comparison of ivermectin and diethylcarbamazine in the treatment of onchocerciasis. N Engl J Med, 313(3), 133–138CrossRefGoogle ScholarPubMed
Guastella, J.Stretton, A. O. W. (1991). Distribution of H2 GABA uptake sites in the nematode Ascaris. J Comp Neurol, 307, 598–608CrossRefGoogle Scholar
Hamdan, F. F. & Ribeiro, P. (1999). Characterization of a stable form of tryptophan hydroxylase from the human parasite Schistosoma mansoni. J Biol Chem, 274(31), 21746–21754CrossRefGoogle ScholarPubMed
Horvitz, H. R., Chalfie, M.Trent, C., Sulston, J. E. & Evans, P. D. (1982). Serotonin and octopamine in the nematode Caenorhabditis elegans. Science, 216(4549), 1012–1014CrossRefGoogle ScholarPubMed
Huang, X., Duran, E., Diaz, F., Xiao, H., Messer, W. S. Jr. & Komuniecki, R. (1999). Alternative-splicing of serotonin receptor isoforms in the pharynx and muscle of the parasitic nematode, Ascaris suum. Mol Biochem Parasitol, 101(1–2), 95–106CrossRefGoogle ScholarPubMed
Johnson, C. & Stretton, A. (1980). Neural control of locomotion in Ascaris: Anatomy, electrophysiology and biochemistry, In B. M. Zuckerman (Ed.), Nematodes as Biological Models (Vol. II). New York: Academic PressCrossRef
Kao, P. N. & Karlin, A. (1986). Acetylcholine receptor binding site contains a disulfide cross-link between adjacent half-cystinyl residues. J Biol Chem, 261(18), 8085–8088Google ScholarPubMed
Karlin, A. & Akabas, M. H. (1995). Toward a structural basis for the function of nicotinic acetylcholine receptors and their cousins. Neuron, 15(6), 1231–1244CrossRefGoogle Scholar
Kwa, M. S., Veenstra, J. G., Dijk, M.Roos, M. H. (1995). Beta-tubulin genes from the parasitic nematode Haemonchus contortus modulate drug resistance in Caenorhabditis elegans. J Mol Biol, 246(4), 500–510CrossRefGoogle ScholarPubMed
Lacey, E. (1990). Mode of action of benzimidazoles. Parasitol Today, 6, 112–115CrossRefGoogle ScholarPubMed
Lacey, E. & Gill, J. H. (1994). Biochemistry of benzimidazole resistance. Acta Trop, 56(2–3), 245–262CrossRefGoogle ScholarPubMed
Laughton, D. L., Amar, M., Thomas, P., Towner, P., Harris, P., Lunt, G. G. & Wolstenholme, A. J. (1994). Cloning of a putative inhibitory amino acid receptor subunit from the parasitic nematode Haemonchus contortus. Receptors Channels, 2(2), 155–163Google ScholarPubMed
Lewis, J. A., Wu, C. H., Berg, H.Levine, J. H. (1980a). The genetics of levamisole resistance in the nematode Caenorhabditis elegans. Genetics, 95(4), 905–928Google Scholar
Lewis, J. A., Wu, C. H., Levine, J. H. & Berg, H. (1980b). Levamisole-resistant mutants of the nematode Caenorhabditis elegans appear to lack pharmacological acetylcholine receptors. Neuroscience, 5(6), 967–989CrossRefGoogle Scholar
Lubega, G. W. & Prichard, R. K. (1991). Interaction of benzimidazole anthelmintics with Haemonchus contortus tubulin: Binding affinity and anthelmintic efficacy. Exp Parasitol, 73(2), 203–213CrossRefGoogle ScholarPubMed
Mansour, T. & Stone, D. (1970). Biochemical effects of lysergic acid diethylamide on the liver fluke Fasciola hepatica. Biochem Pharmacol, 19, 1137–1145CrossRefGoogle Scholar
Mansour, T. E. (1957). The effect of lysergic acid diethylamide, 5-hydroxytryptamine, and related compounds on the liver fluke Fasciola hepatica. Br J Pharmacol, 12, 406–409Google ScholarPubMed
Mansour, T. E. (1964). The Pharmacology and Biochemistry of Parasitic Helminths (Vol. 3). New York: Academic PressCrossRef
Mansour, T. E. (1984). Serotonin receptors in parasitic worms. Adv Parasitol, 23, 1–6Google ScholarPubMed
Mansour, T. E., Lago, A. D. & Hawkins, J. L. (1957). Occurence and possible role of serotonin in Fasciola hepatica. Fed Proc, 16, 319Google Scholar
Maricq, A. V., Peckol, E., Driscoll, M.Bargmann, C. I. (1995). Mechanosensory signalling in C. elegans mediated by the GLR-1 glutamate receptor. Nature, 378(6552), 78–81 [Published erratum appears in Nature 1996, 379(6567), 749.]CrossRefGoogle Scholar
Marks, N. J., Halton, D. W., Maule, A. G., Brennan, G. P., Shaw, C., Southgate, V. R. & Johnston, C. F. (1995). Comparative analyses of the neuropeptide F (NPF)- and FMRFamide-related peptide (FaRP)-immunoreactivities in Fasciola hepatica and Schistosoma spp. Parasitology, 110(Pt 4), 371–381CrossRefGoogle ScholarPubMed
Martin, R. J. (1982). Electrophysiological effects of piperazine and diethylcarbamazine on Ascaris suum somatic muscle. Br J Pharmacol, 77(2), 255–265CrossRefGoogle ScholarPubMed
Martin, R. J. (1985). Gamma-Aminobutyric acid- and piperazine-activated single-channel currents from Ascaris suum body muscle. Br J Pharmacol, 84(2), 445–461CrossRefGoogle ScholarPubMed
Martin, R. J. (1996). An electrophysiological preparation of Ascaris suum pharyngeal muscle reveals a glutamate-gated chloride channel sensitive to the avermectin analogue, milbemycin D. Parasitology, 112(Pt 2), 247–252CrossRefGoogle ScholarPubMed
Martin, R. J., Robertson, A. P. & Bjorn, H. (1997). Target sites of anthelmintics. Parasitology, 114(Suppl), S111–124Google ScholarPubMed
Martin, R. J., Valkanov, M. A., Dale, V. M. E., Robertson, A. P. & Murray, I. (1996). Electrophysiology of Ascaris muscle and anti-nematodal drug action. Parasitology, 113(Suppl), S137–156CrossRefGoogle ScholarPubMed
Maule, A. G., Halton, D. W., Shaw, C.Johnston, C. F. (1993). The cholinergic, serotoninergic and peptidergic components of the nervous system of Moniezia expansa (Cestoda, Cyclophyllidea). Parasitology, 106(Pt 4), 429–440CrossRefGoogle Scholar
McNall, S. J. & Mansour, T. E. (1984). Desensitization of serotonin-stimulated adenylate cyclase in the liver fluke Fasciola hepatica. Biochem Pharmacol, 33(17), 2799–2805CrossRefGoogle ScholarPubMed
Mettrick, D. F. & Cho, C. H. (1981). Migration of Hymenolepis diminuta (Cestoda) and changes in 5-HT (serotonin) levels in the rat host following parenteral and oral 5-HT administration. Can J Physiol Pharmacol, 59(3), 281–286CrossRefGoogle ScholarPubMed
Norton, S. & DeBeer, E. J. (1957). Investigations on the action of piperazine on Ascaris lumbricoides. Am J Trop Med, 6, 889–905Google ScholarPubMed
Olde, B. & McCombie, W. R. (1997). Molecular cloning and functional expression of a serotonin receptor from Caenorhabditis elegans. J Mol Neurosci, 8(1), 53–62CrossRefGoogle ScholarPubMed
Pax, R. A., Day, T. A., Miller, C. L. & Bennett, J. L. (1996). Neuromuscular physiology and pharmacology of parasitic flatworms. Parasitology, 113(Suppl), S83–96CrossRefGoogle ScholarPubMed
Prichard, R. K. (1970). Mode of action of the anthelminthic thiabendazole in Haemonchus contortus. Nature, 228(272), 684–685CrossRefGoogle ScholarPubMed
Rahman, M. S., Cornish, R. A., Chevis, R. A. & Bryant, C. (1977). Metabolic changes in some helminths from sheep treated with mebendazole. N Z Vet J, 25(4), 79–83CrossRefGoogle ScholarPubMed
Richards, J. C., Behnke, J. M. & Duce, I. R. (1995). In vitro studies on the relative sensitivity to ivermectin of Necator americanus and Ancylostoma ceylanicum. Int J Parasitol, 25(10), 1185–1191CrossRefGoogle ScholarPubMed
Robertson, A. P., Bjorn, H. E. & Martin, R. J. (1999). Resistance to levamisole resolved at the single-channel level. FASEB J, 13(6), 749–760CrossRefGoogle ScholarPubMed
Rohrer, S. P., Birzin, E. T., Eary, C. H., Schaeffer, J. M. & Shoop, W. L. (1994). Ivermectin binding sites in sensitive and resistant Haemonchus contortus. J Parasitol, 80(3), 493–497CrossRefGoogle ScholarPubMed
Roos, M. (1990). The molecular nature of benzimidazole resistance in helminths. Parasitol Today, 6, 125–127CrossRefGoogle ScholarPubMed
Sangster, N. (1996). Pharmacology of anthelmintic resistance. Parasitology, 113, S201–216CrossRefGoogle ScholarPubMed
Sangster, N. C., Bannan, S. C., Weiss, A. S., Nulf, S. C., Klein, R. D. & Geary, T. G. (1999). Haemonchus contortus: Sequence heterogeneity of internucleotide binding domains from P-glycoproteins. Exp Parasitol, 91(3), 250–257CrossRefGoogle ScholarPubMed
Sano, M., Terada, M., Ishii, A. I., Kino, H.Anantaphruti, M. (1982). Studies on chemotherapy of parasitic helminths (V). Effects of niclosamide on the motility of various parasitic helminths. Experientia, 38(5), 547–549CrossRefGoogle ScholarPubMed
Segalat, L., Elkes, D. A. & Kaplan, J. M. (1995). Modulation of serotonin-controlled behaviors by Go in Caenorhabditis elegans. Science, 267(5204), 1648–1651. [See comments.]CrossRefGoogle ScholarPubMed
Smyth, J. (1994). Introduction to Animal Parasitology (3rd ed.). Cambridge: Cambridge University Press
Standen, O. (1953). Experimental schistosomiasis III. – Chemotherapy and mode of drug action. Ann Trop Med Parasitol, 47, 26–43CrossRefGoogle ScholarPubMed
Stretton, A. O., Fishpool, R. M., Southgate, E., Donmoyer, J. E., Walrond, J. P., Moses, J. E. & Kass, I. S. (1978). Structure and physiological activity of the motoneurons of the nematode Ascaris. Proc Natl Acad Sci USA, 75(7), 3493–3497CrossRefGoogle ScholarPubMed
Takemoto, T. (1978). Isolation and structural identification of naturally occurring excitatory amino acids. In E. G. McGeer, J. W. Olney & P. McGeer (Eds.), Kainic Acid as a Tool in Neurobiology (pp. 1–15). New York: Raven Press
Terada, M., Ishii, A. I., Kino, H.Sano, M. (1982). Studies on chemotherapy of parasitic helminths (VII). Effects of various cholinergic agents on the motility of Angiostrongylus cantonensis. Jpn J Pharmacol, 32(4), 633–642CrossRefGoogle ScholarPubMed
Thompson, D. P., Klein, R. D. & Geary, T. G. (1996). Prospects for rational approaches to anthelmintic discovery. Parasitology, 113(Suppl 3), S217–238CrossRefGoogle ScholarPubMed
Tornoe, C., Holden-Dye, L., Garland, C., Abramson, S. N., Fleming, J. T. & Sattelle, D. B. (1996). Lophotoxin-insensitive nematode nicotinic acetylcholine receptors. J Exp Biol, 199(Pt 10), 2161–2168Google ScholarPubMed
Tracy, J. W. & Webster, L. T. (1995). Drugs used in the chemotherapy of Helminthiasis. In J. G. Hardman & L. E. Limbird (Eds.), Goodman & Gilman's The Pharmacological Basis of Therapeutics (9th ed., pp. 1009–1026). New York: McGraw Hill
Unwin, N. (1993). Nicotinic acetylcholine receptor at 9 {Å} resolution. J Mol Biol, 229(4), 1101–1124CrossRefGoogle ScholarPubMed
Bossche, H. (1980). Peculiar targets in anthelmintic chemotherapy. Biochem Pharmacol, 29(14), 1981–1990CrossRefGoogle ScholarPubMed
Bossche, H.Nollin, S. (1973). Effects of mebendazole on the absorption of low molecular weight nutrients by Ascaris suum. Int J Parasitol, 3(3), 401–407CrossRefGoogle ScholarPubMed
Varady, M., Bjorn, H., Craven, J.Nansen, P. (1997). In vitro characterization of lines of Oesophagostomum dentatum selected or not selected for resistance to pyrantel, levamisole and ivermectin. Int J Parasitol, 27(1), 77–81CrossRefGoogle ScholarPubMed
Weiger, W. A. (1997). Serotonergic modulation of behaviour: A phylogenetic overview. Biol Rev Cambridge Phil Soc, 72(1), 61–95CrossRefGoogle ScholarPubMed
Wood, P. J. & Mansour, T. E. (1986). Schistosoma mansoni: Serotonin uptake and its drug inhibition. Exp Parasitol, 62(1), 114–119CrossRefGoogle ScholarPubMed
Xu, M., Molento, M., Blackhall, W., Ribeiro, P., Beech, R.Prichard, R. (1998). Ivermectin resistance in nematodes may be caused by alteration of P-glycoprotein homolog. Mol Biochem Parasitol, 91(2), 327–335CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×