Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-n9wrp Total loading time: 0 Render date: 2024-07-19T21:26:44.614Z Has data issue: false hasContentIssue false

8 - Targets in the Tegument of Flatworms

Published online by Cambridge University Press:  11 August 2009

Tag E. Mansour
Affiliation:
Stanford University, California
Get access

Summary

Trematodes and cestodes have their external surface covered with an unusual structure termed the tegument. In addition to protecting the parasite from adverse conditions in the host, it has many other functions. These include evasion of the host immune system, the absorption of certain nutrients and the excretion of some metabolic products, control of motility, and control of electrochemical and osmotic gradients. Studies on the structure and biochemistry of the tegument have lately been emphasized when it was discovered that the tegument is the main target for some important antischistosomal agents such as praziquantel and metrifonate.

Most of our information on the tegument in trematodes came from studies on the liver fluke Fasciola hepatica (Threadgold, 1963) and the blood fluke Schistosoma mansoni (Hockley, 1973; Hockley & McLaren, 1973; McLaren & Hockley, 1977). A recent comprehensive review on the teguments of cestodes and trematodes as well as the cuticle in nematodes is also recommended (Thompson & Geary, 1995). This chapter focuses on trematodes and cestodes.

Structure and Function of Schistosome Tegument

Figure 8.1 is a schematic diagram of the typical components of the dorsal tegument of an adult male S. mansoni determined from electron microscopic transmission (Hockley, 1973). The tegument consists of cytoplasmic syncytium 2–4 μm thick, which is a mass of dense granular material that contains no separate cells. The syncytial zone of the tegument is separated from the muscle layer and subtegumental cells by a membranous basal lamina, a regular trilaminate lipid bilayer.

Type
Chapter
Information
Chemotherapeutic Targets in Parasites
Contemporary Strategies
, pp. 189 - 214
Publisher: Cambridge University Press
Print publication year: 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abath, F. G.& Werkhauser, R. C. (1996). The tegument of Schistosoma mansoni: Functional and immunological features. Parasite Immunol, 18(1), 15–20CrossRefGoogle ScholarPubMed
Bennekou, P.(1993). The voltage-gated non-selective cation channel from human red cells is sensitive to acetylcholine. Biochim Biophys Acta, 1147(1), 165–167CrossRefGoogle ScholarPubMed
Bennett, M. W. & Caulfield, J. P. (1991). Specific binding of human low-density lipoprotein to the surface of schistosomula of Schistosoma mansoni and ingestion by the parasite. Am J Pathol, 138(5), 1173–1182Google ScholarPubMed
Blair, K. L., Bennett, J. L. & Pax, R. A. (1992). Praziquantel: Physiological evidence for its site(s) of action in magnesium-paralysed Schistosoma mansoni. Parasitology, 104(Pt 1), 59–66CrossRefGoogle ScholarPubMed
Boulanger, D., Warter, A., Trottein, F., Mauny, F., Bremond, P., Audibert, F., Couret, D., Kadri, S., Godin, C., Sellin, E.et al. (1995). Vaccination of patas monkeys experimentally infected with Schistosoma haematobium using a recombinant glutathione S-transferase cloned from S. mansoni. Parasite Immunol, 17(7), 361–369CrossRefGoogle ScholarPubMed
Brindley, P. J. & Sher, A. (1987). The chemotherapeutic effect of praziquantel against Schistosoma mansoni is dependent on host antibody response. J Immunol, 139(1), 215–220Google ScholarPubMed
Brindley, P. J. & Sher, A. (1990). Immunological involvement in the efficacy of praziquantel. Exp Parasitol, 71(2), 245–248CrossRefGoogle ScholarPubMed
Brindley, P. J., Strand, M., Norden, A. P. & Sher, A. (1989). Role of host antibody in the chemotherapeutic action of praziquantel against Schistosoma mansoni: Identification of target antigens. Mol Biochem Parasitol, 34(2), 99–108CrossRefGoogle ScholarPubMed
Bueding, E., Liu, C. L. & Rogers, S. H. (1972). Inhibition by metrifonate and dichlorvos of cholinesterases in schistosomes. Br J Pharmacol, 46(3), 480–487CrossRefGoogle ScholarPubMed
Camacho, M. & Agnew, A. (1995a). Glucose uptake rates by Schistosoma mansoni, S. haematobium, and S. bovis adults using a flow in vitro culture system. J Parasitol, 81(4), 637–640CrossRefGoogle Scholar
Camacho, M. & Agnew, A. (1995b). Schistosoma: Rate of glucose import is altered by acetylcholine interaction with tegumental acetylcholine receptors and acetylcholinesterase. Exp Parasitol, 81(4), 584–591CrossRefGoogle Scholar
Camacho, M., Alsford, S. & Agnew, A. (1996). Molecular forms of tegumental and muscle acetylcholinesterases of Schistosoma. Parasitology, 112(Pt 2), 199–204CrossRefGoogle ScholarPubMed
Camacho, M., Alsford, S., Jones, A. & Agnew, A. (1995). Nicotinic acetylcholine receptors on the surface of the blood fluke Schistosoma. Mol Biochem Parasitol, 71(1), 127–134CrossRef
Campbell, W. & Garcia, W. (1986). Trematode infections of man. In W. Campbell & R. Rew (Eds.), Chemotherapy of Parasitic Diseases (pp. 392–393). New York: PlenumCrossRef
Caulfield, J. P., Chiang, C. P., Yacono, P. W., Smith, L. A. & Golan, D. E. (1991). Low density lipoproteins bound to Schistosoma mansoni do not alter the rapid lateral diffusion or shedding of lipids in the outer surface membrane. J Cell Sci, 99(Pt 1), 167–173Google ScholarPubMed
Mendonca, R. L., Beck, E., Rumjanek, F. D. & Goffeau, A. (1995). Cloning and characterization of a putative calcium-transporting ATPase gene from Schistosoma mansoni. Mol Biochem Parasitol, 72(1–2), 129–139CrossRefGoogle ScholarPubMed
Doehring, E., Poggensee, U. & Feldmeier, H. (1986). The effect of metrifonate in mixed Schistosoma haematobium and Schistosoma mansoni infections in humans. Am J Trop Med Hyg, 35(2), 323–329CrossRefGoogle ScholarPubMed
Doenhoff, M. J., Modha, J. & Lambertucci, J. R. (1988). Anti-schistosome chemotherapy enhanced by antibodies specific for a parasite esterase. Immunology, 65(4), 507–510Google ScholarPubMed
el-Karaksy, H., Hassanein, B., Okasha, S., Behairy, B. & Gadallah, I. (1999). Human fascioliasis in Egyptian children: Successful treatment with triclabendazole. J Trop Pediatr, 45(3), 135–138CrossRefGoogle ScholarPubMed
Espinoza, B., Tarrab-Hazdai, R., Silman, I. & Arnon, R. (1988). Acetylcholinesterase in Schistosoma mansoni is anchored to the membrane via covalently attached phosphatidylinositol. Mol Biochem Parasitol, 29(2–3), 171–179CrossRefGoogle ScholarPubMed
Espinoza, B., Parizade, M., Ortega, E., Tarrab-Hazdai, R., Zilberg, D. & Arnon, R. (1995). Monoclonal antibodies against acetylcholinesterase of Schistosoma mansoni: Production and characterization. Hybridoma, 14(6), 577–586CrossRefGoogle ScholarPubMed
Fallon, P. G. & Doenhoff, M. J. (1994). Drug-resistant schistosomiasis: Resistance to praziquantel and oxamniquine induced in Schistosoma mansoni in mice is drug specific. Am J Trop Med Hyg, 51(1), 83–88CrossRefGoogle ScholarPubMed
Fallon, P. G., Fookes, R. E. & Wharton, G. A. (1996). Temporal differences in praziquantel- and oxamniquine-induced tegumental damage to adult Schistosoma mansoni: Implications for drug–antibody synergy. Parasitology, 112(Pt 1), 47–58CrossRefGoogle ScholarPubMed
Ferguson, M. A., Haldar, K. & Cross, G. A. (1985). Trypanosoma brucei variant surface glycoprotein has a sn-1,2-dimyristyl glycerol membrane anchor at its COOH terminus. J Biol Chem, 260(8), 4963–4968Google Scholar
Fetterer, R. H., Pax, R. A. & Bennett, J. L. (1980). Schistosoma mansoni: Characterization of the electrical potential from the tegument of adult males. Exp Parasitol, 49(3), 353–365CrossRefGoogle ScholarPubMed
Goudot-Crozel, V., Caillol, D., Djabali, M. & Dessein, A. J. (1989). The major parasite surface antigen associated with human resistance to schistosomiasis is a 37-kD glyceraldehyde-3P-dehydrogenase. J Exp Med, 170(6), 2065–2080CrossRefGoogle ScholarPubMed
Graham, M. K., McGeown, J. G. & Fairweather, I. (1999). Ionic mechanisms underlying spontaneous muscle contractions in the liver fluke, Fasciola hepatica. Am J Physiol, 277 (2 Pt 2), R374–383Google ScholarPubMed
Hall, T. M., Joseph, G. T. & Strand, M. (1995). Schistosoma mansoni: Molecular cloning and sequencing of the 200-kDa chemotherapeutic target antigen. Exp Parasitol, 80(2), 242–249CrossRefGoogle ScholarPubMed
Harn, D. A., Gu, W., Oligino, L. D., Mitsuyama, M., Gebremichael, A. & Richter, D. (1992). A protective monoclonal antibody specifically recognizes and alters the catalytic activity of schistosome triose-phosphate isomerase. J Immunol, 148(2), 562–567Google ScholarPubMed
Harris, A. R., Russell, R. J. & Charters, A. D. (1984). A review of schistosomiasis in immigrants in Western Australia, demonstrating the unusual longevity of Schistosoma mansoni. Trans R Soc Trop Med Hyg, 78(3), 385–388CrossRefGoogle ScholarPubMed
Hawn, T. R. & Strand, M. (1993). Detection and partial characterization of glycosylphosphatidylinositol-specific phospholipase activities from Fasciola hepatica and Schistosoma mansoni. Mol Biochem Parasitol, 59(1), 73–81CrossRefGoogle ScholarPubMed
Hockley, D. J. (1973). Ultrastructure of the tegument of Schistosoma. Adv Parasitol, 11, 233–305CrossRefGoogle ScholarPubMed
Hockley, D. J. & McLaren, D. J. (1973). Schistosoma mansoni: Changes in the outer membrane of the tegument during development from cercaria to adult worm. Int J Parasitol, 3(1), 13–25CrossRefGoogle ScholarPubMed
Hoffmann, K. F. & Strand, M. (1996). Molecular identification of a Schistosoma mansoni tegumental protein with similarity to cytoplasmic dynein light chains. J Biol Chem, 271(42), 26117–26123CrossRefGoogle ScholarPubMed
Hoffmann, K. F. & Strand, M. (1997). Molecular characterization of a 20.8-kDa Schistosoma mansoni antigen. Sequence similarity to tegumental associated antigens and dynein light chains. J Biol Chem, 272(23), 14509–14515CrossRefGoogle ScholarPubMed
Hrckova, G. & Velebny, S. (1997). Effect of praziquantel and liposome-incorporated praziquantel on peritoneal macrophage activation in mice infected with Mesocestoides corti tetrathyridia (Cestoda). Parasitology, 114(Pt 5), 475–482CrossRefGoogle Scholar
Hrckova, G., Velebny, S. & Corba, J. (1998). Effects of free and liposomized praziquantel on the surface morphology and motility of Mesocestoides vogae tetrathyridia (syn. M. corti; Cestoda: Cyclophyllidea) in vitro. Parasitol Res, 84(3), 230–238Google Scholar
Ismail, M., Botros, S., Metwally, A., William, S., Farghally, A., Tao, L. F., Day, T. A. & Bennett, J. L. (1999). Resistance to praziquantel: Direct evidence from Schistosoma mansoni isolated from Egyptian villagers. Am J Trop Med Hyg, 60(6), 932–935CrossRefGoogle ScholarPubMed
Jiang, J., Skelly, P. J., Shoemaker, C. B. & Caulfield, J. P. (1996). Schistosoma mansoni: The glucose transport protein SGTP4 is present in tegumental multilamellar bodies, discoid bodies, and the surface lipid bilayers. Exp Parasitol, 82(2), 201–210CrossRefGoogle ScholarPubMed
King, C. H. & Mahmoud, A. A. (1989). Drugs five years later: Praziquantel. Ann Intern Med, 110(4), 290–296CrossRefGoogle ScholarPubMed
King, S. M. & Patel-King, R. S. (1995). The M(r) = 8,000 and 11,000 outer arm dynein light chains from Chlamydomonas flagella have cytoplasmic homologues. J Biol Chem, 270(19), 11445–11452CrossRefGoogle Scholar
Lanar, D. E., Pearce, E. J., James, S. L. & Sher, A. (1986). Identification of paramyosin as schistosome antigen recognized by intradermally vaccinated mice. Science, 234(4776), 593–596CrossRefGoogle ScholarPubMed
Linder, E. & Thors, C. (1992). Schistosoma mansoni: Praziquantel-induced tegumental lesion exposes actin of surface spines and allows binding of actin depolymerizing factor, gelsolin. Parasitology, 105(Pt 1), 71–79CrossRefGoogle ScholarPubMed
Liu, J. L., Fontaine, J., Capron, A. & Grzych, J. M. (1996). Ultrastructural localization of Sm28 GST protective antigen in Schistosoma mansoni adult worms. Parasitology, 113 (Pt 4)(4), 377–391CrossRefGoogle ScholarPubMed
Mansour, J. M., McCrossan, M. V., Bickle, Q. D. & Mansour, T. E. (2000). Schistosoma mansoni phosphofructokinase: Immunolocalization in the tegument and immunogenicity. Parasitology, 120(Pt 5), 501–511CrossRefGoogle ScholarPubMed
Mansour, T. (1959). Studies on the carbohydrate metabolism of the liver fluke Fasciola hepatica. Biochim Biophys Acta, 34, 456–464CrossRefGoogle ScholarPubMed
Marshall, I. (1987). Experimental chemotherapy. In D. Rollinson & A. Simpson (Eds.), The Biology of Schistosomes (pp. 399–423). San Diego: Academic Press
Matsumoto, Y., Perry, G., Levine, R. J., Blanton, R., Mahmoud, A. A. & Aikawa, M. (1988). Paramyosin and actin in schistosomal teguments. Nature, 333(6168), 76–78CrossRefGoogle ScholarPubMed
McLaren, D. J. & Hockley, D. J. (1977). Blood flukes have a double outer membrane. Nature, 269(5624), 147–149CrossRefGoogle ScholarPubMed
Mehlhorn, H., Becker, B., Andrews, P., Thomas, H. & Frenkel, J. K. (1981). In vivo and in vitro experiments on the effects of praziquantel on Schistosoma mansoni. A light and electron microscopic study. Arzneimittelforschung, 31(3a), 544–554Google ScholarPubMed
Pajor, A. M., Hirayama, B. A., & Wright, E. M. (1992). Molecular biology approaches to comparative study of Na+/glucose cotransport. Am J Physiol, 263(3Pt 2), R 489–95Google ScholarPubMed
Pappas, P. (1988). The relative roles of the intestine and external surfaces in the nutrition of mongeneans, digeneans and nematodes. Parasitology, 96(Suppl), S105–121CrossRefGoogle Scholar
Parent, L., Supplisson, S., Loo, D. D. & Wright, E. M. (1992). Electrogenic properties of the cloned Na+/glucose cotransporter: II. A transport model under nonrapid equilibrium conditions. J Membr Biol, 125(1), 63–79. [Published erratum appears inJ Membr Biol 1992, 130(2), 203.]CrossRefGoogle Scholar
Redman, C., Robertson, A., Fallon, P., Modha, J., Kusel, M., Doenhoff, M. & Martin, R. (1996). Praziquantel: An urgent and exciting challenge. Parasitol Today, 12, 14–20CrossRefGoogle ScholarPubMed
Remold, H. G., Mednis, A., Hein, A. & Caulfield, J. P. (1988). Human monocyte-derived macrophages are lysed by schistosomula of Schistosoma mansoni and fail to kill the parasite after activation with interferon gamma. Am J Pathol, 131(1), 146–155Google ScholarPubMed
Richman, D. P. & Arnason, B. G. (1979). Nicotinic acetylcholine receptor: Evidence for a functionally distinct receptor on human lymphocytes. Proc Natl Acad Sci USA, 76(9), 4632–4635CrossRefGoogle ScholarPubMed
Rogers, S. & Bueding, E. (1975). Anatomical localization of glucose uptake by Schistosoma mansoni adults. Int J Parasitol, 3, 369–371CrossRefGoogle Scholar
Sabah, A. A., Fletcher, C., Webbe, G. & Doenhoff, M. J. (1985). Schistosoma mansoni: Reduced efficacy of chemotherapy in infected T-cell-deprived mice. Exp Parasitol, 60(3), 348–354CrossRefGoogle ScholarPubMed
Sauma, S. Y. & Strand, M. (1990). Identification and characterization of glycosylphosphatidylinositol-linked Schistosoma mansoni adult worm immunogens. Mol Biochem Parasitol, 38(2), 199–209CrossRefGoogle ScholarPubMed
Shaw, M. K. & Erasmus, D. A. (1983). Schistosoma mansoni: Dose-related tegumental surface changes after in vivo treatment with praziquantel. Z Parasitenkd, 69(5), 643–653CrossRefGoogle ScholarPubMed
Skelly, P. J. & Shoemaker, C. B. (1996). Rapid appearance and asymmetric distribution of glucose transporter SGTP4 at the apical surface of intramammalian-stage Schistosoma mansoni. Proc Natl Acad Sci USA, 93(8), 3642–3646CrossRefGoogle ScholarPubMed
Skelly, P. J. & Shoemaker, C. B. (2001). The Schistosoma mansoni host-interactive tegument forms from vesicle eruptions of a cyton network. Parasitology, 122(Pt 1), 67–73CrossRefGoogle ScholarPubMed
Skelly, P. J., Kim, J. W., Cunningham, J. & Shoemaker, C. B. (1994). Cloning, characterization, and functional expression of cDNAs encoding glucose transporter proteins from the human parasite Schistosoma mansoni. J Biol Chem, 269(6), 4247–4253Google ScholarPubMed
Stitt, A. W. & Fairweather, I. (1994). The effect of the sulphoxide metabolite of triclabendazole (‘Fasinex’) on the tegument of mature and immature stages of the liver fluke, Fasciola hepatica. Parasitology, 108(Pt 5), 555–567CrossRefGoogle Scholar
Stoitsova, S. R., Gorchilova, L. N. & Danek, J. (1992). Effects of three anthelmintics on the tegument of Hymenolepis fraterna (Cestoda). Parasitology, 104(Pt 1), 143–152CrossRefGoogle Scholar
Thompson, D. & Geary, T. (1995). The structure and function of helminth surfaces. In J. Marr & M. Muller (Eds.), Biochemistry and Molecular Biology of Parasites (pp. 203–232). San Diego: Academic PressCrossRef
Thompson, D. P., Pax, R. A. & Bennett, J. L. (1982). Microelectrode studies of the tegument and sub-tegumental compartments of male Schistosoma mansoni: An analysis of electrophysiological properties. Parasitology, 85(Pt 1), 163–178CrossRefGoogle ScholarPubMed
Threadgold, L. (1963). The tegument and associated structures of Fasciola hepatica. Quant J Microsc, 104, 505–512Google Scholar
Threadgold, L. (1984). Parasitic platyhelminths. In J. Bereiter-Hahn, A. Matoltsy, & K. Richards (Eds.), Biology of the Integument (pp. 132–191). Berlin: Springer-VerlagCrossRef
Vasconcelos, E. G., Ferreira, S. T., Carvalho, T. M. U., Souza, W., Kettlun, A. M., Mancilla, M., Valenzuela, M. A. & Verjovski-Almeida, S. (1996). Partial purification and immunohistochemical localization of ATP diphosphohydrolase from Schistosoma mansoni. Immunological cross- reactivities with potato apyrase and Toxoplasma gondii nucleoside triphosphate hydrolase. J Biol Chem, 271(36), 22139–22145CrossRefGoogle ScholarPubMed
Webster, M., Fulford, A., Braun, G., Ouma, J., Kariuki, H., Havercroft, J., Gachuhi, K., Sturrock, R., Butterworth, A. & Dunne, D. (1996). Human immunoglobulin E responses to a recombinant 22.6-kilodalton antigen from Schistosoma mansoni adult worms are associated with low intensities of reinfection after treatment. Infect Immun, 64, 4042–4046Google ScholarPubMed
WHO. (1992). Praziquantel shows unexpected failure in recent schistosomiasis outbreak. TDR News, 41, 2–3
WHO. (1997). Progress Report p121. Geneva: WHO, Division of Control of Tropical Diseases
Wolde Mussie, E., Vande Waa, J., Pax, R. A., Fetterer, R. & Bennett, J. L. (1982). Schistosoma mansoni: Calcium efflux and effects of calcium-free media on responses of the adult male musculature to praziquantel and other agents inducing contraction. Exp Parasitol, 53(2), 270–278CrossRefGoogle ScholarPubMed
Zhong, C., Skelly, P. J., Leaffer, D., Cohn, R. G., Caulfield, J. P. & Shoemaker, C. B. (1995). Immunolocalization of a Schistosoma mansoni facilitated diffusion glucose transporter to the basal, but not the apical, membranes of the surface syncytium. Parasitology, 110(Pt 4), 383–394CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×