Skip to main content Accessibility help
×
Hostname: page-component-7479d7b7d-q6k6v Total loading time: 0 Render date: 2024-07-11T06:27:17.164Z Has data issue: false hasContentIssue false

29 - Acute complications

from Part IV - Complications and supportive care

Published online by Cambridge University Press:  01 July 2010

Scott C. Howard
Affiliation:
Assistant Member, Department of Hematology/Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
Raul C. Ribeiro
Affiliation:
Member, Department of Hematology/Oncology, Director, International Outreach Program, St. Jude Children's Research Hospital, Memphis, TN, USA
Ching-Hon Pui
Affiliation:
Member and Director, Leukemia/Lymphoma Division, St. Jude Children's Research Hospital, American Cancer Society–F. M. Kirby Clinical Research Professor, Professor, Department of Pediatrics, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
Ching-Hon Pui
Affiliation:
St. Jude Children's Research Hospital, Memphis
Get access

Summary

Introduction

The most common cause of early treatment failure among patients with childhood leukemia is death due to acute complications of the leukemia itself or its initial treatment. Despite the increasing intensity of treatment for acute lymphoblastic leukemia (ALL) in children, improvements in supportive care have reduced the rate of death due to acute complications from 10% in the early 1970s to less than 2% in the 1990s, and these improvements have had an important impact on event-free survival estimates for these patients. In fact, studies of the Medical Research Council (MRC) found that the rate of treatment-related death among children with ALL decreased from 9% in the 1980s (UKALL VIII trial) to 2% in the 1990s (UKALL X and XI trials). Hence, the 6% improvement in the 5-year event-free survival estimate during the same period (from 55% to 61%) can be attributed largely to advances in supportive care. The rate of toxic death associated with therapy for acute myeloid leukemia (AML) and relapsed ALL has also decreased over time but remains unacceptably high at 10% or greater in many studies. In countries with limited resources, death from toxicity accounts for more cases of treatment failure than does relapse in both AML and ALL.

Acute complications include “early” complications (those occurring within the first 2 weeks of therapy) and “on-therapy” complications (those occurring after the first 2 weeks of therapy). “Late” complications are those occurring after recovery from the final dose of chemotherapy (Table 29.1).

Type
Chapter
Information
Childhood Leukemias , pp. 709 - 749
Publisher: Cambridge University Press
Print publication year: 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Pui, C. H. & Evans, W. E.Acute lymphoblastic leukemia. N Engl J Med, 1998; 339: 605–15.CrossRefGoogle ScholarPubMed
Pui, C. H.Acute lymphoblastic leukemia. Pediatr Clin North Am, 1997; 44: 831–46.CrossRefGoogle ScholarPubMed
Hargrave, D. R., , Hann I. I., Richards, S. M., et al.Progressive reduction in treatment-related deaths in Medical Research Council childhood lymphoblastic leukaemia trials from 1980 to 1997 (UKALL Ⅷ, X and Ⅺ). Br J Haematol, 2001; 112: 293–9.CrossRefGoogle Scholar
Simone, J. V., Verzosa, M. S., & Rudy, J. A.Initial features and prognosis in 363 children with acute lymphocytic leukemia. Cancer, 1975; 36: 2099–108.CrossRefGoogle ScholarPubMed
Chessells, J. M., Harrison, G., Richards, S. M., et al.Failure of a new protocol to improve treatment results in paediatric lymphoblastic leukaemia: lessons from the UK Medical Research Council trials UKALL X and UKALL Ⅺ. Br J Haematol, 2002; 118: 445–55.CrossRefGoogle ScholarPubMed
Hann, I., Vora, A., Harrison, G., et al.Determinants of outcome after intensified therapy of childhood lymphoblastic leukaemia: results from Medical Research Council United Kingdom acute lymphoblastic leukaemia Ⅺ protocol. Br J Haematol, 2001; 113: 103–14.CrossRefGoogle ScholarPubMed
Goldsby, R. E., Perkins, S. L., Virshup, D. M., Brothman, A. R., & Bruggers, C. S.Lymphoblastic lymphoma and excessive toxi city from chemotherapy: an unusual presentation for Fanconi anemia. J Pediatr Hematol Oncol, 1999; 21: 240–3.CrossRefGoogle Scholar
Morland, B. J. & Shaw, P. J.Induction toxicity of a modified Memorial Sloan-Kettering-New York II Protocol in children with relapsed acute lymphoblastic leukemia: a single institution study. Med Pediatr Oncol, 1996; 27: 139–44.3.0.CO;2-F>CrossRefGoogle ScholarPubMed
Creutzig, U., Ritter, J., Zimmermann, M., et al.Improved treatment results in high-risk pediatric acute myeloid leukemia patients after intensification with high-dose cytarabine and mitoxantrone: results of Study Acute Myeloid Leukemia-Berlin-Frankfurt-Münster 93. J Clin Oncol, 2001; 19: 2705–13.CrossRefGoogle ScholarPubMed
Metzger, M. L., Howard, S. C., Fu, L. C., et al.Outcome of childhood leukaemia in resource-poor countries. Lancet, 2003; 362: 706–8.CrossRefGoogle ScholarPubMed
Gomez-Almaguer, D., Ruiz-Arguelles, G. J., & Ponce-de-Leon, S.Nutritional status and socio-economic conditions as prognostic factors in the outcome of therapy in childhood acute lymphoblastic leukemia. Int J Cancer Suppl, 1998; 11: 52–5.3.0.CO;2-3>CrossRefGoogle ScholarPubMed
Viana, M. B., Murao, M., Ramos, G., et al.Malnutrition as a prognostic factor in lymphoblastic leukaemia: a multivariate analysis. Arch Dis Child, 1994; 71: 304–10.CrossRefGoogle ScholarPubMed
Sala, A., Pencharz, P., & Barr, R. D.Children, cancer, and nutrition – a dynamic triangle in review. Cancer, 2004; 100: 677–87.CrossRefGoogle Scholar
Barr, R. D.Nutrition, cancer, and children. Nutrition, 2002; 18: 434–5.CrossRefGoogle Scholar
Pedrosa, F., Bonilla, M., Liu, A., et al.Effect of malnutrition at the time of diagnosis on the survival of children treated for cancer in El Salvador and Northern Brazil. J Pediatr Hematol Oncol, 2000; 22: 502–5.CrossRefGoogle ScholarPubMed
Ribeiro, R. C. & Bonilla, M.A leukaemia treatment programme in El Salvador. Lancet, 2000; 356 (Suppl.): S7.CrossRefGoogle ScholarPubMed
Bonilla, M., Moreno, N., Marina, N., et al.Acute lymphoblastic leukemia in a developing country: preliminary results of a nonrandomized clinical trial in El Salvador. J Pediatr Hematol Oncol, 2000; 22: 495–501.CrossRefGoogle Scholar
Thomas, X., Fiere, D., & Archimbaud, E.Influence of increased body mass index on drug toxicity in patients with acute promyelocytic leukemia. Leukemia, 1998; 12: 1503–6.CrossRefGoogle ScholarPubMed
Baker, S. D., Verweij, J., Rowinsky, E. K., et al.Role of body surface area in dosing of investigational anticancer agents in adults, 1991–2001. J Natl Cancer Inst, 2002; 94: 1883–8.CrossRefGoogle ScholarPubMed
Egorin, M. J.Horseshoes, hand grenades, and body-surface area-based dosing: aiming for a target. J Clin Oncol, 2003; 21: 182–3.CrossRefGoogle ScholarPubMed
Felici, A., Verweij, J., & Sparreboom, A.Dosing strategies for anticancer drugs: the good, the bad and body-surface area. Eur J Cancer, 2002; 38: 1677–84.CrossRefGoogle ScholarPubMed
Gibson, S. & Numa, A.The importance of metabolic rate and the folly of body surface area calculations. Anaesthesia, 2003; 58: 50–5.CrossRefGoogle ScholarPubMed
Miller, A. A.Body surface area in dosing anticancer agents: scratch the surface !J Natl Cancer Inst, 2002; 94: 1822–3.CrossRefGoogle Scholar
Smorenburg, C. H., Sparreboom, A., Bontenbal, M., et al.Randomized cross-over evaluation of body-surface area-based dosing versus flat-fixed dosing of paclitaxel. J Clin Oncol, 2003; 21: 197–202.CrossRefGoogle ScholarPubMed
Schuler, U.Cautious arguments in favor of body surface area-based dosing. J Clin Oncol, 2002; 20: 4270–1.CrossRefGoogle ScholarPubMed
Sawyer, M. & Ratain, M. J.Body surface area as a determinant of pharmacokinetics and drug dosing. Invest New Drugs, 2001; 19: 171–7.CrossRefGoogle ScholarPubMed
Sandler, D. P. & Ross, J. A.Epidemiology of acute leukemia in children and adults. Semin Oncol, 1997; 24: 3–16.Google ScholarPubMed
Kearns, G. L., Abdel-Rahman, S. M., Alander, S. W., et al.Developmental pharmacology – drug disposition, action, and therapy in infants and children. N Engl J Med, 2003; 349: 1157–67.CrossRefGoogle ScholarPubMed
Avramis, V. I., Weinberg, K. I., Sato, J. K., et al.Pharmacology studies of 1-beta-D-arabinofuranosylcytosine in pediatric patients with leukemia and lymphoma after a biochemically optimal regimen of loading bolus plus continuous infusion of the drug. Cancer Res, 1989; 49: 241–7.Google ScholarPubMed
Biondi, A., Cimino, G., Pieters, R., & Pui, C. H.Biological and therapeutic aspects of infant leukemia. Blood, 2000; 96: 24–33.Google ScholarPubMed
McLeod, H. L., Relling, M. V., Crom, W. R., et al.Disposition of antineoplastic agents in the very young child. Br J Cancer Suppl, 1992; 18: S23–9.Google ScholarPubMed
Crom, W. R., Relling, M. V., Christensen, M. L., Rivera, G. K., & Evans, W. E.Age-related differences in hepatic drug clearance in children: studies with lorazepam and antipyrine. Clin Pharmacol Ther, 1991; 50: 132–40.CrossRefGoogle ScholarPubMed
Relling, M. V., Crom, W. R., Pieper, J. A., et al.Hepatic drug clearance in children with leukemia: changes in clearance of model substrates during remission-induction therapy. Clin Pharmacol Ther, 1987; 41: 651–60.CrossRefGoogle ScholarPubMed
Woods, W. G., O'Leary, M., & Nesbit, M. E.Life-threatening neuropathy and hepatotoxicity in infants during induction therapy for acute lymphoblastic leukemia. J Pediatr, 1981; 98: 642–5.CrossRefGoogle ScholarPubMed
Stapleton, F. B., Strother, D. R., Roy, S. III, et al.Acute renal failure at onset of therapy for advanced stage Burkitt lymphoma and B cell acute lymphoblastic lymphoma. Pediatrics, 1988; 82: 863–9.Google ScholarPubMed
Gregory, R. E., Pui, C. H., & Crom, W. R.Raised plasma methotrexate concentrations following intrathecal administration in children with renal dysfunction. Leukemia, 1991; 5: 999–1003.Google ScholarPubMed
Gillies, J., Hung, K. A., Fitzsimons, E., & Soutar, R.Severe vincristine toxicity in combination with itraconazole. Clin Lab Haematol, 1998; 20: 123–4.CrossRefGoogle ScholarPubMed
Jeng, M. R., & Feusner, J.Itraconazole-enhanced vincristine neurotoxicity in a child with acute lymphoblastic leukemia. Pediatr Hematol Oncol, 2001; 18: 137–42.CrossRefGoogle Scholar
Vanier, K. L., Mattiussi, A. J., & Johnston, D. L.Interaction of all-trans-retinoic acid with fluconazole in acute promyelocytic leukemia. J Pediatr Hematol Oncol, 2003; 25: 403–4.CrossRefGoogle ScholarPubMed
Garre, M. L., Relling, M. V., Kalwinsky, D., et al.Pharmacokinetics and toxicity of methotrexate in children with Down syndrome and acute lymphocytic leukemia. J Pediatr, 1987; 111: 606–12.CrossRefGoogle ScholarPubMed
Kalwinsky, D. K., Raimondi, S. C., Bunin, N. J., et al.Clinical and biological characteristics of acute lymphocytic leukemia in children with Down syndrome. Am J Med Genet Suppl, 1990; 7: 267–71.Google ScholarPubMed
Tamminga, R. Y., Dolsma, W. V., Leeuw, J. A., & Kampinga, H. H.Chemo- and radiosensitivity testing in a patient with ataxia telangiectasia and Hodgkin disease. Pediatr Hematol Oncol, 2002; 19: 163–71.CrossRefGoogle Scholar
Chen, R. L., Wang, P. J., Hsu, Y. H., Chang, P. Y., & Fang, J. S.Severe lung fibrosis after chemotherapy in a child with ataxia-telangiectasia. J Pediatr Hematol Oncol, 2002; 24: 77–9.CrossRefGoogle Scholar
Heller, P., Best, W. R., Nelson, R. B., & Becktel, J.Clinical implications of sickle-cell trait and glucose-6-phosphate dehydrogenase deficiency in hospitalized black male patients. N Engl J Med, 1979; 300: 1001–5.CrossRefGoogle ScholarPubMed
Valaes, T.Severe neonatal jaundice associated with glucose-6-phosphate dehydrogenase deficiency: pathogenesis and global epidemiology. Acta Paediatr Suppl, 1994; 394: 58–76.CrossRefGoogle ScholarPubMed
Tanphaichitr, V. S., Mahasandana, C., Suvatte, V., et al.Prevalence of hemoglobin E, alpha-thalassemia and glucose-6-phosphate dehydrogenase deficiency in 1,000 cord bloods studied in Bangkok. Southeast Asian J Trop Med Public Health, 1995; 26(Suppl. 1): 271–4.Google ScholarPubMed
Mehta, A., Mason, P. J., & Vulliamy, T. J.Glucose-6-phosphate dehydrogenase deficiency. Baillieres Best Pract Res Clin Haematol, 2000; 13: 21–38.CrossRefGoogle ScholarPubMed
Sklar, G. E.Hemolysis as a potential complication of acetaminophen overdose in a patient with glucose-6-phosphate dehydrogenase deficiency. Pharmacotherapy, 2002; 22: 656–8.CrossRefGoogle Scholar
Pui, C. H.Rasburicase: a potent uricolytic agent. Expert Opin Pharmacother, 2002; 3: 433–52.CrossRefGoogle ScholarPubMed
Relling, M. V., Hancock, M. L., Rivera, G. K., et al.Mercapto purine therapy intolerance and heterozygosity at the thiopurine S-methyltransferase gene locus. J Natl Cancer Inst, 1999; 91: 2001–8.CrossRefGoogle Scholar
McLeod, H. L., Coulthard, S., Thomas, A. E., et al.Analysis of thiopurine methyltransferase variant alleles in childhood acute lymphoblastic leukaemia. Br J Haematol, 1999; 105: 696–700.CrossRefGoogle ScholarPubMed
McLeod, H. L., Krynetski, E. Y., Relling, M. V., & Evans, W. E.Genetic polymorphism of thiopurine methyltransferase and its clinical relevance for childhood acute lymphoblastic leukemia. Leukemia, 2000; 14: 567–72.CrossRefGoogle ScholarPubMed
Lantz, B., Adolfsson, J., Lagerlof, B., & Reizenstein, P.Causes of death in leukemia and lymphoma with modern treatment. Acta Haematol, 1980; 63: 61–7.CrossRefGoogle ScholarPubMed
Attarbaschi, A., Mann, G., Dworzak, M., et al.Mediastinal mass in childhood T-cell acute lymphoblastic leukemia: significance and therapy response. Med Pediatr Oncol, 2002; 39: 558–65.CrossRefGoogle ScholarPubMed
Varma, S., Varma, N., Dhar, S., et al.Cytodiagnosis of granulocytic sarcoma presenting as superior vena cava syndrome in acute myeloblastic leukemia. A case report. Acta Cytol, 1992; 36: 371–2.Google ScholarPubMed
Liu, H. W., Wong, K. L., Chan, T. Y., Lau, C. C., & Liang, R.Super ior vena cava syndrome: a rare presenting feature of acute myeloid leukemia. Acta Haematol, 1988; 79: 213–16.CrossRefGoogle Scholar
Ahn, J. Y., Choi, E. W., Kang, S. H., & Kim, Y. R.Isolated meningeal chloroma (granulocytic sarcoma) in a child with acute lymphoblastic leukemia mimicking a falx meningioma. Childs Nerv Syst, 2002; 18: 153–6.CrossRefGoogle Scholar
Nijland, E., Wuisman, P., Royen, B., Veerman, A., & Diest, P. van. Vertebral chloroma in a 1 1/2-year-old boy with no evidence of leukemia. Med Pediatr Oncol, 2001; 36: 341–2.3.0.CO;2-S>CrossRefGoogle Scholar
Frohna, B. J. & Quint, D. J.Granulocytic sarcoma (chloroma) causing spinal cord compression. Neuroradiology, 1993; 35: 509–11.CrossRefGoogle ScholarPubMed
Pui, C. H., Dahl, G. V., Hustu, H. O., & Murphy, S. B.Epidural spinal cord compression as the initial finding in childhood acute leukemia and non-Hodgkin lymphoma. J Pediatr, 1985; 106: 788–92.CrossRefGoogle ScholarPubMed
Ribeiro, R. C. & Pui, C. H.The clinical and biological correlates of coagulopathy in children with acute leukemia. J Clin Oncol, 1986; 4: 1212–18.CrossRefGoogle ScholarPubMed
Einzig, A. I., Dutcher, J. P., & Wiernik, P. H.Life-threatening hyperleukocytosis and pulmonary compromise after priming with recombinant human granulocyte-macrophage colony-stimulating factor in a patient with acute myelomonocytic leukemia. J Clin Oncol, 1995; 13: 304–5.CrossRefGoogle Scholar
Asano, T., Fukuda, Y., Katsube, Y., et al.Infantile acute monocytic leukemia with tumor formation in the skin expressing adhesion molecules as seen by electronmicroscopy. Leuk Lymphoma, 1996; 23: 173–9.CrossRefGoogle ScholarPubMed
Kamps, W. A., Bokkerink, J. P., Hahlen, K, et al.Intensive treatment of children with acute lymphoblastic leukemia according to ALL-BFM-86 without cranial radiotherapy: results of Dutch Childhood Leukemia Study Group Protocol ALL-7 (1988–1991). Blood, 1999; 94: 1226–36.Google Scholar
Schrappe, M., Reiter, A., , Zimmermann M., et al.Long-term results of four consecutive trials in childhood ALL performed by the ALL-BFM study group from 1981 to 1995. Berlin-Frankfurt-Münster. Leukemia, 2000; 14: 2205–22.CrossRefGoogle Scholar
Jones, D. P., Mahmoud, H., & Chesney, R. W.Tumor lysis syndrome: pathogenesis and management. Pediatr Nephrol, 1995; 9: 206–12.CrossRefGoogle ScholarPubMed
Altman, A.Acute tumor lysis syndrome. Semin Oncol, 2001; 28(Suppl. 5): 3–8.CrossRefGoogle ScholarPubMed
Sallan, S.Management of acute tumor lysis syndrome. Semin Oncol, 2001; 28(Suppl. 5): 9–12.CrossRefGoogle ScholarPubMed
Cohen, L. F., Balow, J. E., Magrath, I. T., Poplack, D. G., & Ziegler, J. L.Acute tumor lysis syndrome. A review of 37 patients with Burkitt's lymphoma. Am J Med, 1980; 68: 486–91.CrossRefGoogle ScholarPubMed
CRC Handbook of Chemistry and Physics (Boca Raton, FL: CRC Press, 2002).
Grases, F., Villacampa, A. I., Sohnel, O., Konigsberger, E., & May, P. M.Phosphate composition of precipitates from urine-like liquors. Crystal Res Technol, 1997; 32: 707–15.CrossRefGoogle Scholar
Konigsberger, E., Wang, Z. H., Seidel, J., & Wolf, G.Solubility and dissolution enthalpy of xanthine. J Chem Thermodynamics, 2001; 33: 1–9.CrossRefGoogle Scholar
Konigsberger, E. & Konigsberger, L. C.Thermodynamic modeling of crystal deposition in humans. Pure Appl Chem, 2001; 73: 785–97.CrossRefGoogle Scholar
Streit, J., Tran-Ho, L. C., & Konigsberger, E.Solubility of the three calcium oxalate hydrates in sodium chloride solutions and urine-like liquors. Monatshefte fur Chemie, 1998; 129: 1225–36.Google Scholar
Konigsberger, E. & Wang, Z. H.Solubility of uric acid in salt solutions and artificial urine. Monatshefte fur Chemie, 1999; 130: 1067–73.CrossRefGoogle Scholar
Klinenberg, J. R., Goldfinger, S. E., & Seegmiller, J. E.The effect iveness of the xanthine oxidase inhibitor allopurinol in the treatment of gout. Ann Intern Med, 1965; 62: 639–47.CrossRefGoogle Scholar
Mir, M. A.Renal excretion of uric acid and its relation to relapse and remission in acute myeloid leukaemia. Nephron, 1977; 19: 69–80.CrossRefGoogle ScholarPubMed
Pui, C. H., Roy, S. III., & Noe, H. N.Urolithiasis in childhood acute leukemia and non-Hodgkin's lymphoma. J Urol, 1986; 136: 1052–4.CrossRefGoogle Scholar
Potter, J. L. & Silvidi, A. A.Xanthine lithiasis, nephrocalcinosis, and renal failure in a leukemia patient treated with allopurinol. Clin Chem, 1987; 33: 2314–16.Google Scholar
Andreoli, S. P., Clark, J. H., McGuire, W. A., & Bergstein, J. M.Purine excretion during tumor lysis in children with acute lymphocytic leukemia receiving allopurinol: relationship to acute renal failure. J Pediatr, 1986; 109: 292–8.CrossRefGoogle ScholarPubMed
O'Regan, S., Carson, S., Chesney, R. W., & Drummond, K. N.Electrolyte and acid-base disturbances in the management of leukemia. Blood, 1977; 49: 345–53.Google ScholarPubMed
Sakarcan, A. & Quigley, R.Hyperphosphatemia in tumor lysis syndrome: the role of hemodialysis and continuous veno-venous hemofiltration. Pediatr Nephrol, 1994; 8: 351–3.CrossRefGoogle ScholarPubMed
Vachvanichsanong, P., Maipang, M., Dissaneewate, P., Wongchanchailert, M., & Laosombat, V.Severe hyperphosphatemia following acute tumor lysis syndrome. Med Pediatr Oncol, 1995; 24: 63–6.CrossRefGoogle ScholarPubMed
Zusman, J., Brown, D. M., & Nesbit, M. E.Hyperphosphatemia, hyperphosphaturia and hypocalcemia in acute lymphoblastic leukemia. N Engl J Med, 1973; 289: 1335–40.CrossRefGoogle ScholarPubMed
Kabisch, H., Niggemann, B., & Winkler, K.Extreme hyperphosphatemia with hypocalcemia within the scope of cell lysis syndrome in a child with T-ALL. Onkologie, 1989; 12: 64–8.Google Scholar
Milionis, H. J. & Elisaf, M. S.Severe life-threatening hyperphosphatemia associated with tumor lysis in a patient with acute lymphoblastic leukemia. Am J Hematol, 1999; 60: 252.3.0.CO;2-C>CrossRefGoogle Scholar
Jordan, G. W.Serum calcium and phosphorus abnormalities in leukemia. Am J Med, 1966; 41: 381–90.CrossRefGoogle ScholarPubMed
Dunlay, R. W., Camp, M. A., Allon, M., et al.Calcitriol in prolonged hypocalcemia due to the tumor lysis syndrome. Ann Intern Med, 1989; 110: 162–4.CrossRefGoogle ScholarPubMed
Freedman, D. B., Shannon, M., Dandona, P., Prentice, H. G., & Hoffbrand, A. V.Hypoparathyroidism and hypocalcaemia during treatment for acute leukaemia. Br Med J (Clin Res Ed), 1982; 284: 700–2.CrossRefGoogle ScholarPubMed
Jones, D. P., Stapleton, F. B., Kalwinsky, D., et al.Renal dysfunction and hyperuricemia at presentation and relapse of acute lymphoblastic leukemia. Med Pediatr Oncol, 1990; 18: 283–6.CrossRefGoogle ScholarPubMed
Wu, X., Wakamiya, M., Vaishnav, S., et al.Hyperuricemia and urate nephropathy in urate oxidase-deficient mice. Proc Natl Acad Sci U S A, 1994; 91: 742–6.CrossRefGoogle ScholarPubMed
Pui, C. H., Mahmoud, H. H., Wiley, J. M., et al.Recombin ant urate oxidase for the prophylaxis or treatment of hyperuricemia in patients with leukemia or lymphoma. J Clin Oncol, 2001; 19: 697–704.CrossRefGoogle ScholarPubMed
Goldman, S. C., Holcenberg, J. S., Finklestein, J. Z., et al.A randomized comparison between rasburicase and allopurinol in children with lymphoma or leukemia at high risk for tumor lysis. Blood, 2001; 97: 2998–3003.CrossRefGoogle ScholarPubMed
, Annemans L., , Moeremans K., , Lamotte M., et al.Pan-European multicentre economic evaluation of recombinant urate oxidase (rasburicase) in prevention and treatment of hyperuricaemia and tumour lysis syndrome in haematological cancer patients. Support Care Cancer, 2003; 11: 249–57.Google Scholar
Navolanic, P. M., Pui, C. H., Larson, R. A., et al.Elitek-rasburicase: an effective means to prevent and treat hyper uricemia associated with tumor lysis syndrome, a Meeting Report, Dallas, Texas, January 2002. Leukemia, 2003; 17: 499–514.CrossRefGoogle Scholar
Pui, C. H., Jeha, S., Irwin, D., & Camitta, B.Recombinant urate oxidase (rasburicase) in the prevention and treatment of malignancy-associated hyperuricemia in pediatric and adult patients: results of a compassionate-use trial. Leukemia, 2001; 15: 1505–9.CrossRefGoogle ScholarPubMed
Bleyer, A. J., Burke, S. K., Dillon, M., et al.A comparison of the calcium-free phosphate binder sevelamer hydrochloride with calcium acetate in the treatment of hyperphosphatemia in hemodialysis patients. Am J Kidney Dis, 1999; 33: 694–701.CrossRefGoogle ScholarPubMed
Malluche, H. H. & Monier-Faugere, M. C.Hyperphosphatemia: pharmacologic intervention yesterday, today and tomorrow. Clin Nephrol, 2000; 54: 309–17.Google ScholarPubMed
Alkhuja, S. & Ulrich, H.Acute renal failure from spontaneous acute tumor lysis syndrome: a case report and review. Ren Fail, 2002; 24: 227–32.CrossRefGoogle ScholarPubMed
Agha-Razii, M., Amyot, S. L., Pichette, V., et al.Continuous veno-venous hemodiafiltration for the treatment of spontaneous tumor lysis syndrome complicated by acute renal failure and severe hyperuricemia. Clin Nephrol, 2000; 54: 59–63.Google ScholarPubMed
Steinberg, S. M., Galen, M. A., Lazarus, J. M., et al.Hemodialysis for acute anuric uric acid nephropathy. Am J Dis Child, 1975; 129: 956–8.Google ScholarPubMed
Crowley, J. J., Knight, L., & Charan, N.Lysis pneumonopathy associated with the use of fludarabine phosphate. West J Med, 1994; 161: 597–9.Google ScholarPubMed
Muggia, F. M. & Heinemann, H. O.Hypercalcemia associated with neoplastic disease. Ann Intern Med, 1970; 73: 281–90.CrossRefGoogle ScholarPubMed
Young, G. & Shende, A.Use of pamidronate in the management of acute cancer-related hypercalcemia in children. Med Pediatr Oncol, 1998; 30: 117–21.3.0.CO;2-L>CrossRefGoogle ScholarPubMed
McKay, C. & Furman, W. L.Hypercalcemia complicating childhood malignancies. Cancer, 1993; 72: 256–60.3.0.CO;2-D>CrossRefGoogle ScholarPubMed
Muler, J. H., Valdez, R., Hayes, C., & Kaminski, M. S.Acute megakaryocytic leukemia presenting as hypercalcemia with skeletal lytic lesions. Eur J Haematol, 2002; 68: 392–6.CrossRefGoogle ScholarPubMed
Lima, M., Coutinho, J., Bernardo, L., et al.Philadelphia-positive T-cell acute lymphoblastic leukemia with polymyositis, migratory polyarthritis and hypercalcemia following a chronic myeloid leukemia. Ann Hematol, 2002; 81: 174–7.CrossRefGoogle ScholarPubMed
Hino, M., Yamane, T., Ohta, K., et al.Bone resorption associated with uncoupling of osteoclastic and osteoblastic activities in adult T cell leukemia with hypercalcemia: case report. Ann Hematol, 2001; 80: 426–9.CrossRefGoogle ScholarPubMed
Chisholm, M. A., Mulloy, A. L., & Taylor, A. T.Acute management of cancer-related hypercalcemia. Ann Pharmacother, 1996; 30: 507–13.CrossRefGoogle ScholarPubMed
Pui, C. H., Behm, F. G., Singh, B., et al.Heterogeneity of presenting features and their relation to treatment outcome in 120 children with T-cell acute lymphoblastic leukemia. Blood, 1990; 75: 174–9.Google ScholarPubMed
Cone, A. M. & Stott, S.Intermittent airway obstruction during anaesthesia in a patient with an undiagnosed anterior mediastinal mass. Anaesth Intensive Care, 1994; 22: 204–6.Google Scholar
McMahon, C. C., Rainey, L., Fulton, B., & Conacher, I. D.Central airway compression. Anaesthetic and intensive care consequences. Anaesthesia, 1997; 52: 158–62.CrossRefGoogle ScholarPubMed
Chang, S. C., Chang, H. I., Shiao, G. M., & Perng, R. P.Effect of body position on gas exchange in patients with unilateral central airway lesions. Down with the good lung ?Chest, 1993; 103: 787–91.CrossRefGoogle ScholarPubMed
Narang, S., Harte, B. H., & Body, S. C.Anesthesia for patients with a mediastinal mass. Anesthesiol Clin North Am, 2001; 19: 559–79.CrossRefGoogle ScholarPubMed
Shamberger, R. C.Preanesthetic evaluation of children with anterior mediastinal masses. Semin Pediatr Surg, 1999; 8: 61–8.CrossRefGoogle ScholarPubMed
Shamberger, R. C., Holzman, R. S., Griscom, N. T., et al.Prospective evaluation by computed tomography and pulmonary function tests of children with mediastinal masses. Surgery, 1995; 118: 468–71.CrossRefGoogle ScholarPubMed
Diacon, A. H. & Bolliger, C. T.Functional evaluation before and after interventional bronchoscopy in patients with malignant central airway obstruction. Monaldi Arch Chest Dis, 2001; 56: 67–73.Google ScholarPubMed
Furst, S. R., Burrows, P. E., & Holzman, R. S.General anesthesia in a child with a dynamic, vascular anterior mediastinal mass. Anesthesiology, 1996; 84: 976–9.CrossRefGoogle Scholar
Frawley, G., Low, J., & Brown, T. C.Anaesthesia for an anter ior mediastinal mass with ketamine and midazolam infusion. Anaesth Intensive Care, 1995; 23: 610–2.Google Scholar
Asai, T. & Stacey, M.Averting disaster in the management of the patient with a mediastinal mass. Anaesth Intensive Care, 1993; 21: 886–7.Google ScholarPubMed
Mathew, P. M., Prangnell, D. R., Cole, A. J., et al.Clinical, haematological, and radiological features of children presenting with lymphoblastic mediastinal masses. Med Pediatr Oncol, 1980; 8: 193–204.CrossRefGoogle ScholarPubMed
Savage, S. A., Young, G., & Reaman, G. H.Catheter-directed thrombolysis in a child with acute lymphoblastic leukemia and extensive deep vein thrombosis. Med Pediatr Oncol, 2000; 34: 215–17.3.0.CO;2-F>CrossRefGoogle Scholar
Mitchell, L. G., Sutor, A. H., & Andrew, M.Hemostasis in childhood acute lymphoblastic leukemia: coagulopathy induced by disease and treatment. Semin Thromb Hemost, 1995; 21: 390–401.CrossRefGoogle ScholarPubMed
Mitchell, L. G.A prospective cohort study determining the prevalence of thrombotic events in children with acute lymphoblastic leukemia and a central venous line who are treated with L-asparaginase. Cancer, 2003; 97: 508–16.CrossRefGoogle Scholar
Tornebohm, E., Lockner, D., & Paul, C.A retrospective ana lysis of bleeding complications in 438 patients with acute leukaemia during the years 1972–1991. Eur J Haematol, 1993; 50: 160–7.CrossRefGoogle Scholar
Pui, C. H., Chesney, C. M., Weed, J., & Jackson, C. W.Altered von Willebrand factor molecule in children with thrombosis following asparaginase-prednisone-vincristine therapy for leukemia. J Clin Oncol, 1985; 3: 1266–72.CrossRefGoogle ScholarPubMed
Athale, U. H. & Chan, A. K.Thrombosis in children with acute lymphoblastic leukemia: Part III. Pathogenesis of thrombosis in children with acute lymphoblastic leukemia: effects of host environment. Thromb Res, 2003; 111: 321–7.CrossRefGoogle ScholarPubMed
Athale, U. H. & Chan, A. K.Thrombosis in children with acute lymphoblastic leukemia: Part I. Epidemiology of thrombosis in children with acute lymphoblastic leukemia. Thromb Res, 2003; 111: 125–31.CrossRefGoogle ScholarPubMed
Athale, U. H. & Chan, A. K.Thrombosis in children with acute lymphoblastic leukemia: Part II. Pathogenesis of thrombosis in children with acute lymphoblastic leukemia: effects of the disease and therapy. Thromb Res, 2003; 111: 199–212.CrossRefGoogle ScholarPubMed
Wilde, J. T. & Davies, J. M.Haemostatic problems in acute leukaemia. Blood Rev, 1990; 4: 245–51.CrossRefGoogle ScholarPubMed
Goad, K. E. & Gralnick, H. R.Coagulation disorders in cancer. Hematol Oncol Clin North Am, 1996; 10: 457–84.CrossRefGoogle Scholar
Wehmeier, A., Sudhoff, T., & Meierkord, F.Relation of platelet abnormalities to thrombosis and hemorrhage in chronic myeloproliferative disorders. Semin Thromb Hemost, 1997; 23: 391–402.CrossRefGoogle ScholarPubMed
Tallman, M. S. & Nabhan, C.Management of acute promyelocytic leukemia. Curr Oncol Rep, 2002; 4: 381–9.CrossRefGoogle ScholarPubMed
Falanga, A. & Barbui, T.Coagulopathy of acute promyelocytic leukemia. Acta Haematol, 2001; 106: 43–51.CrossRefGoogle ScholarPubMed
Rodeghiero, F.The coagulopathy of acute promyelocytic leukemia. Haemostasis, 2001; 31(Suppl.1): 49–51.Google ScholarPubMed
Testi, A. M., Biondi, A., Lo, C. F., et al.GIMENA-AIEOPAIDA protocol for the treatment of newly diagnosed acute promyelocytic leukemia (APL) in children. Blood, 2005; 106: 447–53.CrossRefGoogle ScholarPubMed
Goldberg, M. A., Ginsburg, D., Mayer, R. J., et al.Is heparin administration necessary during induction chemotherapy for patients with acute promyelocytic leukemia ?Blood, 1987; 69: 187–91.Google ScholarPubMed
Bennett, B., Booth, N. A., Croll, A., & Dawson, A. A.The bleeding disorder in acute promyelocytic leukaemia: fibrinolysis due to u-PA rather than defibrination. Br J Haematol, 1989; 71: 511–17.CrossRefGoogle ScholarPubMed
Tallman, M. S. & Kwaan, H. C.Reassessing the hemostatic disorder associated with acute promyelocytic leukemia. Blood, 1992; 79: 543–53.Google ScholarPubMed
Dombret, H., Scrobohaci, M. L., Daniel, M. T., et al.In vivo thrombin and plasmin activities in patients with acute promyelocytic leukemia (APL): effect of all-trans retinoic acid (ATRA) therapy. Leukemia, 1995; 9: 19–24.Google ScholarPubMed
Sakata, Y., Murakami, T., Noro, A., Mori, K., & Matsuda, M.The specific activity of plasminogen activator inhibitor-1 in disseminated intravascular coagulation with acute promyelocytic leukemia. Blood, 1991; 77: 1949–57.Google ScholarPubMed
Dombret, H., Fenaux, P., Soignet, S. L., & Tallman, M. S.Established practice in the treatment of patients with acute promyleocytic leukemia and the introduction of arsenic trioxide as a novel therapy. Semin Hematol, 2002; 39(Suppl. 1): 8–13.CrossRefGoogle ScholarPubMed
Tallman, M. S.Arsenic trioxide: its role in acute promyelocytic leukemia and potential in other hematologic malignancies. Blood Rev, 2001; 15: 133–42.CrossRefGoogle ScholarPubMed
Tallman, M. S., Andersen, J. W., Schiffer, C. A., et al.All-trans retinoic acid in acute promyelocytic leukemia: long-term outcome and prognostic factor analysis from the North American Intergroup protocol. Blood, 2002; 100: 4298–302.CrossRefGoogle ScholarPubMed
Tallman, M. S., Nabhan, C., Feusner, J. H., & Rowe, J. M.Acute promyelocytic leukemia: evolving therapeutic strategies. Blood, 2002; 99: 759–67.CrossRefGoogle ScholarPubMed
Fenaux, P., Chomienne, C., & Degos, L.All-trans retinoic acid and chemotherapy in the treatment of acute promyelocytic leukemia. Semin Hematol, 2001; 38: 13–25.CrossRefGoogle ScholarPubMed
Fenaux, P., Le Deley, M. C., Castaigne, S., et al.Effect of all transretinoic acid in newly diagnosed acute promyelocytic leukemia. Results of a multicenter randomized trial. European APL 91 Group. Blood, 1993; 82: 3241–9.Google ScholarPubMed
Falanga, A., Consonni, R., Marchetti, M., et al.Cancer pro coagulant and tissue factor are differently modulated by all-trans-retinoic acid in acute promyelocytic leukemia cells. Blood, 1998; 92: 143–51.Google Scholar
Saito, T., Koyama, T., Nagata, K., Kamiyama, R., & Hirosawa, S.Anticoagulant effects of retinoic acids on leukemia cells. Blood, 1996; 87: 657–65.Google ScholarPubMed
Falanga, A., Iacoviello, L., Evangelista, V., et al.Loss of blast cell procoagulant activity and improvement of hemostatic variables in patients with acute promyelocytic leukemia administered all-trans-retinoic acid. Blood, 1995; 86: 1072–81.Google ScholarPubMed
Tallman, M. S., Andersen, J. W., Schiffer, C. A., et al.All-trans-retinoic acid in acute promyelocytic leukemia. N Engl J Med, 1997; 337: 1021–8.CrossRefGoogle ScholarPubMed
Tallman, M. S.Therapy of acute promyelocytic leukemia: all-trans retinoic acid and beyond. Leukemia, 1998; 12(Suppl.1): S37–40.Google ScholarPubMed
Dombret, H., Scrobohaci, M. L., Ghorra, P., et al.Coagulation disorders associated with acute promyelocytic leukemia: corrective effect of all-trans retinoic acid treatment. Leukemia, 1993; 7: 2–9.Google ScholarPubMed
Rodeghiero, F., Avvisati, G., Castaman, G., Barbui, T., & Mandelli, F.Early deaths and anti-hemorrhagic treatments in acute promyelocytic leukemia. A GIMEMA retrospective study in 268 consecutive patients. Blood, 1990; 75: 2112–17.Google ScholarPubMed
Rodeghiero, F. & Castaman, G.The pathophysiology and treatment of hemorrhagic syndrome of acute promyelocytic leukemia. Leukemia, 1994; 8(Suppl. 2): S20–6.Google ScholarPubMed
Tallman, M. S., Andersen, J. W., Schiffer, C. A., et al.Clinical description of 44 patients with acute promyelocytic leukemia who developed the retinoic acid syndrome. Blood, 2000; 95: 90–5.Google ScholarPubMed
Frankel, S. R. & Powell, B. L.Current approaches to acute promyelocytic leukemia. Cancer Treat Res, 1999; 99: 125–53.CrossRefGoogle ScholarPubMed
Bick, R. L.Disseminated intravascular coagulation: a review of etiology, pathophysiology, diagnosis, and management: guidelines for care. Clin Appl Thromb Hemost, 2002; 8: 1–31.CrossRefGoogle Scholar
Butenas, S. & Mann, K. G.Blood coagulation. Biochemistry (Mosc), 2002; 67: 3–12.CrossRefGoogle ScholarPubMed
Golino, P., Ragni, M., Cimmino, G., & Forte, L.Role of tissue factor pathway inhibitor in the regulation of tissue factor-dependent blood coagulation. Cardiovasc Drug Rev, 2002; 20: 67–80.CrossRefGoogle ScholarPubMed
Tallman, M. S.Deciphering the pathogenesis of coagulation dysfunction in leukemia. Leuk Res, 1996; 20: 13–16.CrossRefGoogle ScholarPubMed
Sampson, M. T. & Kakkar, A. K.Coagulation proteases and human cancer. Biochem Soc Trans, 2002; 30: 201–7.CrossRefGoogle ScholarPubMed
Tanaka, M. & Yamanishi, H.The expression of tissue factor antigen and activity on the surface of leukemic cells. Leuk Res, 1993; 17: 103–11.CrossRefGoogle ScholarPubMed
Hair, G. A., Padula, S., Zeff, R., et al.Tissue factor expression in human leukemic cells. Leuk Res, 1996; 20: 1–11.CrossRefGoogle ScholarPubMed
Gordon, S. G.Cancer cell procoagulants and their role in malignant disease. Semin Thromb Hemost, 1992; 18: 424–33.CrossRefGoogle ScholarPubMed
Gordon, S. G.Cancer procoagulant. Methods Enzymol, 1994; 244: 568–83.CrossRefGoogle ScholarPubMed
Joseph, L., Fink, L. M., & Hauer-Jensen, M.Cytokines in coagulation and thrombosis: a preclinical and clinical review. Blood Coagul Fibrinolysis, 2002; 13: 105–16.CrossRefGoogle ScholarPubMed
Bevilacqua, M. P., Pober, J. S., Majeau, G. R., et al.Recombin ant tumor necrosis factor induces procoagulant activity in cultured human vascular endothelium: characterization and comparison with the actions of interleukin 1. Proc Natl Acad Sci U S A, 1986; 83: 4533–7.CrossRefGoogle Scholar
Clauss, M., Gerlach, M., Gerlach, H., et al.Vascular permeability factor: a tumor-derived polypeptide that induces endothelial cell and monocyte procoagulant activity, and promotes monocyte migration. J Exp Med, 1990; 172: 1535–45.CrossRefGoogle ScholarPubMed
Chang, K. S., Wang, G., Freireich, E. J., et al.Specific expression of the annexin Ⅷ gene in acute promyelocytic leukemia. Blood, 1992; 79: 1802–10.Google ScholarPubMed
Pui, C. H., Chesney, C. M., Bergum, P. W., Jackson, C. W., & Rapaport, S. I.Lack of pathogenetic role of proteins C and S in thrombosis associated with asparaginase-prednisone-vincristine therapy for leukaemia. Br J Haematol, 1986; 64: 283–90.CrossRefGoogle Scholar
Raimondi, S. C., Frestedt, J. L., Pui, C. H., et al.Acute lymphoblastic leukemias with deletion of 11q23 or a novel inversion (11)(p13q23) lack MLL gene rearrangements and have favorable clinical features. Blood, 1995; 86: 1881–6.Google ScholarPubMed
Loke, J. & Duffy, T. P.Normal arterial oxygen saturation with the ear oximeter in patients with leukemia and leukocytosis. Cancer, 1984; 53: 1767–9.3.0.CO;2-E>CrossRefGoogle ScholarPubMed
Shapiro, A. D., Clarke, S. L., Christian, J. M., Odom, L. F. & Hathaway, W. E.Thrombosis in children receiving L-asparaginase. Determining patients at risk. Am J Pediatr Hematol Oncol, 1993; 15: 400–5.Google ScholarPubMed
Mitchell, L., Hoogendoorn, H., Giles, A. R., Vegh, P., & Andrew, M.Increased endogenous thrombin generation in children with acute lymphoblastic leukemia: risk of thrombotic complications in L'Asparaginase-induced antithrombin III deficiency. Blood, 1994; 83: 386–91.Google ScholarPubMed
Wahrenbrock, M., Borsig, L., Le, D., Varki, N., & Varki, A.Selectin-mucin interactions as a probable molecular explanation for the association of Trousseau syndrome with mucinous adenocarcinomas. J Clin Invest, 2003; 112: 853–62.CrossRefGoogle ScholarPubMed
Wermes, C., Fleischhack, G., Junker, R., et al.Cerebral venous sinus thrombosis in children with acute lymphoblastic leukemia carrying the MTHFR TT677 genotype and further prothrombotic risk factors. Klin Padiatr, 1999; 211: 211–14.CrossRefGoogle ScholarPubMed
Nowak-Gottl, U., Wermes, C., Junker, R., et al.Prospective evaluation of the thrombotic risk in children with acute lymphoblastic leukemia carrying the MTHFR TT 677 genotype, the prothrombin G20210A variant, and further prothrombotic risk factors. Blood, 1999; 93: 1595–9.Google ScholarPubMed
Nowak-Gottl, U., Heinecke, A.Kries, R., et al.Thrombotic events revisited in children with acute lymphoblastic leukemia: impact of concomitant Escherichia coli asparaginase/prednisone administration. Thromb Res, 2001; 103: 165–72.CrossRefGoogle ScholarPubMed
Musa, M. O., Al Fair, F., Al Mohareb, F., Al Saeed, H., & Aljurf, M.Cryoprecipitate-induced mesenteric venous thrombosis during L-asparaginase therapy for acute lymphoblastic leukaemia. Leuk Lymphoma, 2001; 40: 429–31.CrossRefGoogle ScholarPubMed
Sutor, A. H., Mall, V., & Thomas, K. B.Bleeding and thrombosis in children with acute lymphoblastic leukaemia, treated according to the ALL-BFM-90 protocol. Klin Padiatr, 1999; 211: 201–4.CrossRefGoogle ScholarPubMed
Chim, C. S. & Ooi, C. G.The irreplaceable image: cerebral leukostasis manifesting as multifocal intracerebral hemorrhage. Haematologica, 2001; 86: 1231.Google ScholarPubMed
Stucki, A., Rivier, A. S., Gikic, M., et al.Endothelial cell activation by myeloblasts: molecular mechanisms of leukostasis and leukemic cell dissemination. Blood, 2001; 97: 2121–9.CrossRefGoogle ScholarPubMed
Kaminsky, D. A., Hurwitz, C. G., & Olmstead, J. I.Pulmonary leukostasis mimicking pulmonary embolism. Leuk Res, 2000; 24: 175–8.CrossRefGoogle ScholarPubMed
Porcu, P., Cripe, L. D., Ng, E. W., et al.Hyperleukocytic leukemias and leukostasis: a review of pathophysiology, clinical presentation and management. Leuk Lymphoma, 2000; 39: 1–18.CrossRefGoogle ScholarPubMed
Wurthner, J. U., Kohler, G., Behringer, D., et al.Leukostasis followed by hemorrhage complicating the initiation of chemotherapy in patients with acute myeloid leukemia and hyperleukocytosis: a clinicopathologic report of four cases. Cancer, 1999; 85: 368–74.3.0.CO;2-X>CrossRefGoogle ScholarPubMed
Nowacki, P., Fryze, C., Zdziarska, B., et al.Central nervous system leukostasis in patients with leukemias and lymphomas. Folia Neuropathol, 1995; 33: 59–65.Google ScholarPubMed
Lowe, E. J., Pui, C. H., Hancock, M. L., et al.Early complications in children with acute lymphoblastic leukemia presenting with hyperleukocytosis. Pediatr Blood Cancer, 2005; 45: 10–5.CrossRefGoogle ScholarPubMed
Creutzig, U., Ritter, J., Budde, M., Sutor, A., & Schellong, G.Early deaths due to hemorrhage and leukostasis in childhood acute myelogenous leukemia. Associations with hyperleukocytosis and acute monocytic leukemia. Cancer, 1987; 60: 3071–9.3.0.CO;2-Y>CrossRefGoogle ScholarPubMed
Bodey, G. P., Powell, R. D. Jr., Hersh, E. M., Yeterian, A., & Freireich, E. J.Pulmonary complications of acute leukemia. Cancer, 1966; 19: 781–93.3.0.CO;2-U>CrossRefGoogle ScholarPubMed
Lester, T. J., Johnson, J. W., & Cuttner, J.Pulmonary leukostasis as the single worst prognostic factor in patients with acute myelocytic leukemia and hyperleukocytosis. Am J Med, 1985; 79: 43–8.CrossRefGoogle ScholarPubMed
Roath, S. & Davenport, P.Leucocyte numbers and quality: their effect on viscosity. Clin Lab Haematol, 1991; 13: 255–62.CrossRefGoogle ScholarPubMed
Soares, F. A., Landell, G. A., & Cardoso, M. C.Pulmonary leukostasis without hyperleukocytosis: a clinicopathologic study of 16 cases. Am J Hematol, 1992; 40: 28–32.CrossRefGoogle ScholarPubMed
Ventura, G. J., Hester, J. P., Smith, T. L., & Keating, M. J.Acute myeloblastic leukemia with hyperleukocytosis: risk factors for early mortality in induction. Am J Hematol, 1988; 27: 34–7.CrossRefGoogle ScholarPubMed
Bunin, N. J. & Pui, C. H.Differing complications of hyperleukocytosis in children with acute lymphoblastic or acute nonlymphoblastic leukemia. J Clin Oncol, 1985; 3: 1590–5.CrossRefGoogle ScholarPubMed
Krance, R. A., Hurwitz, C. A., Head, D. R., et al.Experience with 2-chlorodeoxyadenosine in previously untreated children with newly diagnosed acute myeloid leukemia and myelodysplastic diseases. J Clin Oncol, 2001; 19: 2804–11.CrossRefGoogle ScholarPubMed
Chillar, R. K., Belman, M. J., & Farbstein, M.Explanation for apparent hypoxemia associated with extreme leukocytosis: leukocytic oxygen consumption. Blood, 1980; 55: 922–4.Google ScholarPubMed
Szyper-Kravitz, M., Strahilevitz, J., Oren, V., & Lahav, M.Pulmonary leukostasis: role of perfusion lung scan in diagnosis and follow up. Am J Hematol, 2001; 67: 136–8.CrossRefGoogle ScholarPubMed
Eguiguren, J. M., Schell, M. J., Crist, W. M., Kunkel, K., & Rivera, G. K.Complications and outcome in childhood acute lymphoblastic leukemia with hyperleukocytosis. Blood, 1992; 79: 871–5.Google ScholarPubMed
Nelson, S. C., Bruggers, C. S., Kurtzberg, J., & Friedman, H. S.Management of leukemic hyperleukocytosis with hydration, urinary alkalinization, and allopurinol. Are cranial irradiation and invasive cytoreduction necessary ?Am J Pediatr Hematol Oncol, 1993; 15: 351–5.Google ScholarPubMed
Bunin, N. J., Kunkel, K., & Callihan, T. R.Cytoreductive procedures in the early management in cases of leukemia and hyperleukocytosis in children. Med Pediatr Oncol, 1987; 15: 232–5.CrossRefGoogle ScholarPubMed
Del Vasto, F., Caldore, M., Russo, F., Bertuccioli, A., & Pellegrini, F.Exchange transfusion in leukemia with hyperleukocytosis. J Pediatr, 1982; 100: 1000.CrossRefGoogle ScholarPubMed
Flasshove, M., Schuette, J., Sauerwein, W., Hoeffken, K., & Seeber, S.Pulmonary and cerebral irradiation for hyperleukocytosis in acute myelomonocytic leukemia. Leukemia, 1994; 8: 1792.Google ScholarPubMed
Wald, B. R., Heisel, M. A., & Ortega, J. A.Frequency of early death in children with acute leukemia presenting with hyperleukocytosis. Cancer, 1982; 50: 150–3.3.0.CO;2-A>CrossRefGoogle ScholarPubMed
Dearth, J., Salter, M., Wilson, E., Kelly, D., & Crist, W.Early death in acute leukemia in children. Med Pediatr Oncol, 1983; 11: 225–8.CrossRefGoogle ScholarPubMed
George, S. L., Fernbach, D. J., & Lee, E. T.Early deaths in newly diagnosed cases of pediatric acute leukemia: a Southwest Oncology Group Study. Cancer, 1978; 42: 781–6.3.0.CO;2-P>CrossRefGoogle ScholarPubMed
Schiffer, C. A., Sanel, F. T., Stechmiller, B. K., & Wiernik, P. H.Functional and morphologic characteristics of the leukemic cells of a patient with acute monocytic leukemia: correlation with clinical features. Blood, 1975; 46: 17–26.Google ScholarPubMed
Tobelem, G., Jacquillat, C., Chastang, C., et al.Acute monoblastic leukemia: a clinical and biologic study of 74 cases. Blood, 1980; 55: 71–6.Google ScholarPubMed
Budde, R.Enzyme and immunohistochemical studies on acute monocytic leukemia (FAB M5): proposal for a new immunohistochemical subclassification. Acta Haematol, 1996; 95: 102–6.CrossRefGoogle ScholarPubMed
Glasser, L.Functional differentiation in acute monoblastic leukemia. Am J Clin Pathol, 1981; 75: 122–5.CrossRefGoogle ScholarPubMed
Furth, R., & Zwet, T. L.. Cytochemical, functional, and proliferative characteristics of promonocytes and monocytes from patients with monocytic leukemia. Blood, 1983; 62: 298–304.Google ScholarPubMed
Jourdan, E., Dombret, H., Glaisner, S., et al.Unexpected high incidence of intracranial subdural haematoma during intensive chemotherapy for acute myeloid leukaemia with a monoblastic component. Br J Haematol, 1995; 89: 527–30.CrossRefGoogle ScholarPubMed
Resnitzky, P. & Shaft, D.Distinct lysozyme content in different subtypes of acute myeloid leukaemic cells: an ultrastructural immunogold study. Br J Haematol, 1994; 88: 357–63.CrossRefGoogle ScholarPubMed
Mok, C. C., Tam, S. C., & Kwong, Y. L.Pseudonephrotic syndrome caused by lysozymuria. Ann Intern Med, 1994; 121: 818.CrossRefGoogle ScholarPubMed
Berger, M., Motta, C., Boiret, N., et al.Membrane fluidity and adherence to extracellular matrix components are related to blast cell count in acute myeloid leukemia. Leuk Lymphoma, 1994; 15: 297–302.CrossRefGoogle ScholarPubMed
Pruzanski, W. & Platts, M. E.Serum and urinary proteins, lysozyme (muramidase), and renal dysfunction in mono- and myelomonocytic leukemia. J Clin Invest, 1970; 49: 1694–708.CrossRefGoogle Scholar
Pickering, T. G. & Catovsky, D.Hypokalaemia and raised lysozyme levels in acute myeloid leukaemia. Q J Med, 1973; 42: 677–82.Google ScholarPubMed
Robak, T., Wrzesien-Kus, A., Lech-Maranda, E., Kowal, M., & Dmoszynska, A.Combination regimen of cladribine (2-chlorodeoxyadenosine), cytarabine and G-CSF (CLAG) as induction therapy for patients with relapsed or refractory acute myeloid leukemia. Leuk Lymphoma, 2000; 39: 121–9.CrossRefGoogle ScholarPubMed
Perez-Zincer, F., Juturi, J. V., Hsi, E. D., et al.A pulmonary syndrome in patients with acute myelomonocytic leukemia and inversion of chromosome 16. Leuk Lymphoma, 2003; 44: 103–9.CrossRefGoogle ScholarPubMed
Chiang, C. C., Begley, S., & Henderson, S. O.Central retinal vein occlusion due to hyperviscosity syndrome. J Emerg Med, 2000; 18: 23–6.CrossRefGoogle ScholarPubMed
Coppell, J.Consider ‘hyperviscosity syndrome’ in unexplained breathlessness. Acta Haematol, 2000; 104: 52–3.CrossRefGoogle ScholarPubMed
Kwaan, H. C. & Bongu, A.The hyperviscosity syndromes. Semin Thromb Hemost, 1999; 25: 199–208.CrossRefGoogle ScholarPubMed
Wells, R.Syndromes of hyperviscosity. N Engl J Med, 1970; 283: 183–6.CrossRefGoogle ScholarPubMed
Gertz, M. A. & Kyle, R. A.Hyperviscosity syndrome. J Intensive Care Med, 1995; 10: 128–41.CrossRefGoogle ScholarPubMed
Forconi, S., Pieragalli, D., Guerrini, M., Galigani, C., & Cappelli, R.Primary and secondary blood hyperviscosity syndromes, and syndromes associated with blood hyperviscosity. Drugs, 1987; 33(Suppl. 2): 19–26.CrossRefGoogle ScholarPubMed
Lichtman, M. A., Heal, J., & Rowe, J. M.Hyperleukocytic leukaemia: rheological and clinical features and management. Baillieres Clin Haematol, 1987; 1: 725–46.CrossRefGoogle ScholarPubMed
Lichtman, M. A. & Rowe, J. M.Hyperleukocytic leukemias: rheological, clinical, and therapeutic considerations. Blood, 1982; 60: 279–83.Google ScholarPubMed
Brown, M. M. & Marshall, J.Regulation of cerebral blood flow in response to changes in blood viscosity. Lancet, 1985; 1: 604–9.CrossRefGoogle ScholarPubMed
Chae, S. W., Cho, J. H., Lee, J. H., Kang, H. J., & Hwang, S. J.Sudden hearing loss in chronic myelogenous leukaemia implicating the hyperviscosity syndrome. J Laryngol Otol, 2002; 116: 291–3.CrossRefGoogle ScholarPubMed
Resende, L. S., Coradazzi, A. L., Rocha-Junior, C., Zanini, J. M., & Niero-Melo, L.Sudden bilateral deafness from hyperleukocytosis in chronic myeloid leukemia. Acta Haematol, 2000; 104: 46–9.CrossRefGoogle ScholarPubMed
Ogata, N., Ida, H., Takahashi, K., Fukuchi, T., & Uyama, M.Occult retinal pigment epithelial detachment in hyperviscosity syndrome. Ophthalmic Surg Lasers, 2000; 31: 248–52.Google ScholarPubMed
Dobberstein, H., Solbach, U., Weinberger, A., & Wolf, S.Correlation between retinal microcirculation and blood viscosity in patients with hyperviscosity syndrome. Clin Hemorheol Microcirc, 1999; 20: 31–5.Google ScholarPubMed
Corless, J. A., Allsup, D. J., Deeble, T. J., & Delaney, J. C.A pulmonary mass and hyperviscosity. Postgrad Med J, 2000; 76: 582– 7.CrossRefGoogle ScholarPubMed
Price, R. A.Histopathology of CNS leukemia and complications of therapy. Am J Pediatr Hematol Oncol, 1979; 1: 21–30.Google ScholarPubMed
Peterson, B. A., Brunning, R. D., Bloomfield, C. D., et al.Central nervous system involvement in acute nonlymphocytic leukemia. A prospective study of adults in remission. Am J Med, 1987; 83: 464–70.CrossRefGoogle ScholarPubMed
Webb, D. K., Harrison, G., Stevens, R. F., et al.Relationships between age at diagnosis, clinical features, and outcome of therapy in children treated in the Medical Research Council AML 10 and 12 trials for acute myeloid leukemia. Blood, 2001; 98: 1714–20.CrossRefGoogle Scholar
Kobayashi, Y., Takahashi, S., Mizuno, T., et al.Acute promyelocytic leukemia with central nervous system leukemia – a report of two cases. Gan No Rinsho, 1988; 34: 1153–8.Google ScholarPubMed
Byrd, J. C., Edenfield, W. J., Shields, D. J., & Dawson, N. A.Extramedullary myeloid cell tumors in acute nonlymphocytic leukemia: a clinical review. J Clin Oncol, 1995; 13: 1800–6.CrossRefGoogle ScholarPubMed
Hoogerbrugge, P. M. & Hagenbeek, A.Leptomeningeal infiltration in rat models for human acute myelocytic and lymphocytic leukemia. Leuk Res, 1985; 9: 1397–404.CrossRefGoogle ScholarPubMed
Stucki, A., Cordey, A. S., Monai, N., et al.Cleaved L-selectin concentrations in meningeal leukaemia. Lancet, 1995; 345: 286–9.CrossRefGoogle ScholarPubMed
Price, R. A. & Johnson, W. W.The central nervous system in childhood leukemia. I. The arachnoid. Cancer, 1973; 31: 520–33.3.0.CO;2-2>CrossRefGoogle ScholarPubMed
Gajjar, A., Harrison, P. L., Sandlund, J. T., et al.Traumatic lumbar puncture at diagnosis adversely affects outcome in childhood acute lymphoblastic leukemia. Blood, 2000; 96: 3381–4.Google ScholarPubMed
Sajjad, Z., Haq, N., & Kandula, V.Case report: granulocytic sarcoma (GS) presenting as acute cord compression in a previously undiagnosed patient. Clin Radiol, 1997; 52: 69–71.CrossRefGoogle Scholar
Wide, J. M. & Curtis, J.Granulocytic sarcoma as a cause of cord compression. Clin Radiol, 1997; 52: 803.CrossRefGoogle ScholarPubMed
Fitoz, S., Atasoy, C., Yavuz, K., et al.Granulocytic sarcoma. Cranial and breast involvement. Clin Imaging, 2002; 26: 166–9.CrossRefGoogle ScholarPubMed
Nikolic, B., Feigenbaum, F., Abbara, S., Martuza, R. L., & Schellinger, D.CT changes of an intracranial granulocytic sarcoma on short-term follow-up. AJR Am J Roentgenol, 2003; 180: 78–80.CrossRefGoogle ScholarPubMed
Ooi, G. C., Chim, C. S., Khong, P. L., et al.Radiologic manifestations of granulocytic sarcoma in adult leukemia. AJR Am J Roentgenol, 2001; 176: 1427–31.CrossRefGoogle ScholarPubMed
Pui, M. H., Fletcher, B. D., & Langston, J. W.Granulocytic sarcoma in childhood leukemia: imaging features. Radiology, 1994; 190: 698–702.CrossRefGoogle ScholarPubMed
Sauter, C. & Jacky, E.Images in clinical medicine. Chloroma in acute myelogenous leukemia. N Engl J Med, 1998; 338: 969.CrossRefGoogle ScholarPubMed
Neiman, R. S., Barcos, M., Berard, C., et al.Granulocytic sarcoma: a clinicopathologic study of 61 biopsied cases. Cancer, 1981; 48: 1426–37.3.0.CO;2-G>CrossRefGoogle ScholarPubMed
Davey, F. R., Olson, S., Kurec, A. S., et al.The immunophenotyping of extramedullary myeloid cell tumors in paraffin-embedded tissue sections. Am J Surg Pathol, 1988; 12: 699–707.CrossRefGoogle ScholarPubMed
Takaue, Y., Culbert, S. J., Baram, T., Cork, A., & Trujillo, J. M.Therapeutic modalities for central nervous system involvement by granulocytic sarcoma (chloroma) in children with acute nonlymphocytic leukemia. J Neurooncol, 1987; 4: 371–81.CrossRefGoogle ScholarPubMed
Trousseau, A.Phlegmasia alba dolens. Clinique Medicale de L'Hotel-Dieu de Paris. (London: New Sydenham Society, 1865).Google Scholar
Blann, A. D. & Lip, G. Y.Virchow's triad revisited: the import ance of soluble coagulation factors, the endothelium, and platelets. Thromb Res, 2001; 101: 321–7.CrossRefGoogle Scholar
Colovic, M., Miljic, P., Colovic, N., Jankovic, G., & Stojkovic, M.Reversible portal vein thrombosis complicating induction therapy of acute promyelocytic leukemia. Thromb Res, 2001; 101: 101–3.CrossRefGoogle ScholarPubMed
Torromeo, C., Latagliata, R., Avvisati, G., Petti, M. C., & Mandelli, F.Intraventricular thrombosis during all-trans retinoic acid treatment in acute promyelocytic leukemia. Leukemia, 2001; 15: 1311–13.CrossRefGoogle ScholarPubMed
Ho, C. L., Chen, C. Y., Chen, Y. C., & Chao, T. Y.Cerebral dural sinus thrombosis in acute lymphoblastic leukemia with early diagnosis by fast fluid-attenuated inversion recovery (FLAIR) MR image: a case report and review of the literature. Ann Hematol, 2000; 79: 90–4.CrossRefGoogle ScholarPubMed
Miljic, P., Milosevic-Jovicic, N., Antunovic, P., et al.Recurrent venous thrombosis in a patient with chronic lymphocytic leukemia and acquired protein S deficiency. Haematologia (Budap), 2000; 30: 51–4.CrossRefGoogle Scholar
Kankirawatana, S., Veerakul, G., Sanpakit, K., et al.Thrombotic complications during induction chemotherapy of acute childhood lymphoblastic leukemia. J Med Assoc Thai, 2002; 85 (Suppl. 2): S549–57.Google ScholarPubMed
Malnick, S. D., Ben David, D., Shtalrid, M., et al.Acute femoral artery thrombosis associated with functional protein C deficiency as the presenting manifestation of acute monocytic leukemia. South Med J, 1998; 91: 663–4.CrossRefGoogle ScholarPubMed
Kaste, S. C., Gronemeyer, S. A., Hoffer, F. A., Mandrell, B. N., & Wilimas, J. A.Pilot study of noninvasive detection of venous occlusions from central venous access devices in children treated for acute lymphoblastic leukemia. Pediatr Radiol, 1999; 29: 570–4.CrossRefGoogle ScholarPubMed
Male, C., Chait, P., Andrew, M., et al.Central venous line-related thrombosis in children: association with central venous line location and insertion technique. Blood, 2003; 101: 4273–8.CrossRefGoogle ScholarPubMed
Freytes, C. O.Thromboembolic complications related to indwelling central venous catheters in children. Curr Opin Oncol, 2003; 15: 289–92.CrossRefGoogle ScholarPubMed
Fratino, G., Molinari, A. C., Parodi, S., et al.Central venous catheter-related complications in children with oncological/ hematological diseases: an observational study of 418 devices. Ann Oncol, 2005; 16: 648–54.CrossRefGoogle ScholarPubMed
Eckhof-Donovan, S., Schwamborn, D., Korholz, D., et al.Thrombosis in children with acute lymphoblastic leukemia treated with the COALL protocol. Klin Padiatr, 1994; 206: 327–30.CrossRefGoogle ScholarPubMed
Ott, N., Ramsay, N. K., Priest, J. R., et al.Sequelae of thrombotic or hemorrhagic complications following L-asparaginase therapy for childhood lymphoblastic leukemia. Am J Pediatr Hematol Oncol, 1988; 10: 191–5.CrossRefGoogle ScholarPubMed
Pihko, H., Tyni, T., Virkola, K., et al.Transient ischemic cerebral lesions during induction chemotherapy for acute lymphoblastic leukemia. J Pediatr, 1993; 123: 718–24.CrossRefGoogle ScholarPubMed
Halton, J. M., Mitchell, L. G., Vegh, P., Eves, M., & Andrew, M. E.Fresh frozen plasma has no beneficial effect on the hemostatic system in children receiving L-asparaginase. Am J Hematol, 1994; 47: 157–61.CrossRefGoogle ScholarPubMed
Pastore, D., Specchia, G., Mele, G., et al.Typhlitis complicating induction therapy in adult acute myeloid leukemia. Leuk Lymphoma, 2002; 43: 911–14.CrossRefGoogle ScholarPubMed
McCarville, M. B., Adelman, C. S., Li, C., et al.Typhlitis in childhood cancer. Cancer, 2005; 104: 380–7.CrossRefGoogle ScholarPubMed
Arnaout, M. K., Radomski, K. M., Srivastava, D. K., et al.Treatment of childhood acute myelogenous leukemia with an intensive regimen (AML-87) that individualizes etoposide and cytarabine dosages: short- and long-term effects. Leukemia, 2000; 14: 1736–42.CrossRefGoogle ScholarPubMed
Woods, W. G., Kobrinsky, N., Buckley, J. D., et al.Timed-sequential induction therapy improves postremission outcome in acute myeloid leukemia: a report from the Children's Cancer Group. Blood, 1996; 87: 4979–89.Google ScholarPubMed
Creutzig, U., Ritter, J., Zimmermann, M., et al.Idarubicin improves blast cell clearance during induction therapy in children with AML: results of study AML-BFM 93. AML-BFM Study Group. Leukemia, 2001; 15: 348–54.CrossRefGoogle ScholarPubMed
Hutchinson, R. J., Gaynon, P. S., Sather, H., et al.Intensification of therapy for children with lower-risk acute lymphoblastic leukemia: long-term follow-up of patients treated on Children's Cancer Group Trial 1881. J Clin Oncol, 2003; 21: 1790–7.CrossRefGoogle ScholarPubMed
Rask, C., Albertioni, F., Schroder, H., & Peterson, C.Oral mucositis in children with acute lymphoblastic leukemia after high-dose methotrexate treatment without delayed elimination of methotrexate: relation to pharmacokinetic parameters of methotrexate. Pediatr Hematol Oncol, 1996; 13: 359–67.CrossRefGoogle ScholarPubMed
Rask, C., Albertioni, F., Bentzen, S. M., Schroeder, H., & Peterson, C.Clinical and pharmacokinetic risk factors for high-dose methotrexate-induced toxicity in children with acute lymphoblastic leukemia – a logistic regression analysis. Acta Oncol, 1998; 37: 277–84.CrossRefGoogle ScholarPubMed
Nachman, J. B., Sather, H. N., Sensel, M. G., et al.Augmented post-induction therapy for children with high-risk acute lymphoblastic leukemia and a slow response to initial therapy. N Engl J Med, 1998; 338: 1663–71.CrossRefGoogle Scholar
Moe, P. J.Methotrexate and oral mucositis. Pediatr Hematol Oncol, 1996; 13: 313–14.CrossRefGoogle ScholarPubMed
Albertioni, F., Rask, C., Schroeder, H., & Peterson, C.Monitoring of methotrexate and 7-hydroxymethotrexate in saliva from children with acute lymphoblastic leukemia receiving high-dose consolidation treatment: relation to oral mucositis. Anticancer Drugs, 1997; 8: 119–24.CrossRefGoogle ScholarPubMed
Montecucco, C., Caporali, R., Rossi, S., & Porta, C.Allopurinol mouthwashes in methotrexate-induced stomatitis. Arthritis Rheum, 1994; 37: 777–8.CrossRefGoogle ScholarPubMed
Relling, M. V., Fairclough, D., Ayers, D., et al.Patient characteristics associated with high-risk methotrexate concentrations and toxicity. J Clin Oncol, 1994; 12: 1667–72.CrossRefGoogle ScholarPubMed
Dodd, M. J., Larson, P. J., Dibble, S. L., et al.Randomized clinical trial of chlorhexidine versus placebo for prevention of oral mucositis in patients receiving chemotherapy. Oncol Nurs Forum, 1996; 23: 921–7.Google ScholarPubMed
Wymenga, A. N., Graaf, W. T., Hofstra, L. S., et al.Phase I study of transforming growth factor-beta3 mouthwashes for prevention of chemotherapy-induced mucositis. Clin Cancer Res, 1999; 5: 1363–8.Google ScholarPubMed
Mantovani, G., Massa, E., Astara, G., et al.Phase II clinical trial of local use of GM-CSF for prevention and treatment of chemotherapy- and concomitant chemoradiotherapy-induced severe oral mucositis in advanced head and neck cancer patients: an evaluation of effectiveness, safety and costs. Oncol Rep, 2003; 10: 197–206.Google ScholarPubMed
Giles, F. J., Miller, C. B., Hurd, D. D., et al.A phase III, randomized, double-blind, placebo-controlled, multinational trial of iseganan for the prevention of oral mucositis in patients receiving stomatotoxic chemotherapy (PROMPT-CT trial). Leuk Lymphoma, 2003; 44: 1165–72.CrossRefGoogle Scholar
Awidi, A., Homsi, U., Kakail, R. I., et al.Double-blind, placebo-controlled cross-over study of oral pilocarpine for the prevention of chemotherapy-induced oral mucositis in adult patients with cancer. Eur J Cancer, 2001; 37: 2010–4.CrossRefGoogle ScholarPubMed
Cheng, K. K., Molassiotis, A., Chang, A. M., Wai, W. C., & Cheung, S. S.Evaluation of an oral care protocol intervention in the prevention of chemotherapy-induced oral mucositis in paediatric cancer patients. Eur J Cancer, 2001; 37: 2056–63.CrossRefGoogle ScholarPubMed
Bensadoun, R. J., Magne, N., Marcy, P. Y., & Demard, F.Chemotherapy- and radiotherapy-induced mucositis in head and neck cancer patients: new trends in pathophysiology, prevention and treatment. Eur Arch Otorhinolaryngol, 2001; 258: 481–7.CrossRefGoogle ScholarPubMed
Foncuberta, M. C., Cagnoni, P. J., Brandts, C. H., et al.Topical transforming growth factor-beta3 in the prevention or alleviation of chemotherapy-induced oral mucositis in patients with lymphomas or solid tumors. J Immunother, 2001; 24: 384–8.CrossRefGoogle ScholarPubMed
Knox, J. J., Puodziunas, A. L., & Feld, R.Chemotherapy-induced oral mucositis. Prevention and management. Drugs Aging, 2000; 17: 257–67.CrossRefGoogle ScholarPubMed
Clarkson, J. E., Worthington, H. V., & Eden, O. B.Prevention of oral mucositis or oral candidiasis for patients with cancer receiving chemotherapy (excluding head and neck cancer). Cochrane Database Syst Rev, 2000; 2: CD000978.Google Scholar
Worthington, H. V. & Clarkson, J. E.Prevention of oral mucositis and oral candidiasis for patients with cancer treated with chemotherapy: cochrane systematic review. J Dent Educ, 2002; 66: 903–11.Google ScholarPubMed
Berkovitch, M., Matsui, D., Zipursky, A., et al.Hepatotoxicity of 6-mercaptopurine in childhood acute lymphocytic leukemia: pharmacokinetic characteristics. Med Pediatr Oncol, 1996; 26: 85–9.3.0.CO;2-Q>CrossRefGoogle ScholarPubMed
King, P. D. & Perry, M. C.Hepatotoxicity of chemotherapy. Oncologist, 2001; 6: 162–76.CrossRefGoogle ScholarPubMed
Rask, C., Albertioni, F., Bentzen, S. M., Schroeder, H., & Peterson, C.Clinical and pharmacokinetic risk factors for high-dose methotrexate-induced toxicity in children with acute lymphoblastic leukemia – a logistic regression analysis. Acta Oncol, 1998; 37: 277–84.CrossRefGoogle ScholarPubMed
Goodman, Z. D.Drug hepatotoxicity. Clin Liver Dis, 2002; 6: 381–97.CrossRefGoogle ScholarPubMed
Lee, W. M.Drug-induced hepatotoxicity. N Engl J Med, 2003; 349: 474–85.CrossRefGoogle ScholarPubMed
Evans, W. E., Relling, M. V., Rodman, J. H., et al.Conventional compared with individualized chemotherapy for childhood acute lymphoblastic leukemia. N Engl J Med, 1998; 338: 499–505.CrossRefGoogle ScholarPubMed
Weber, B. L., Tanyer, G., Poplack, D. G., et al.Transient acute hepatotoxicity of high-dose methotrexate therapy during childhood. NCI Monogr, 1987; 5: 207–12.Google Scholar
Garrington, T., Bensard, D., Ingram, J. D., & Silliman, C. C.Successful management with octreotide of a child with L-asparaginase induced hemorrhagic pancreatitis. Med Pediatr Oncol, 1998; 30: 106–9.3.0.CO;2-M>CrossRefGoogle ScholarPubMed
Benifla, M. & Weizman, Z.Acute pancreatitis in childhood: analysis of literature data. J Clin Gastroenterol, 2003; 37: 169–72.CrossRefGoogle ScholarPubMed
Sahu, S., Saika, S., Pai, S. K., & Advani, S. H.L-asparaginase (Leunase) induced pancreatitis in childhood acute lymphoblastic leukemia. Pediatr Hematol Oncol, 1998; 15: 533–8.CrossRefGoogle ScholarPubMed
Charan, V. D., Desai, N., Singh, A. P., & Choudhry, V. P.Diabetes mellitus and pancreatitis as a complication of L-asparaginase therapy. Indian Pediatr, 1993; 30: 809–10.Google ScholarPubMed
Teng, H. W., Bai, L. Y., Chao, T. C., Wang, W. S., & Chen, P. M.Acute pancreatitis during all-trans-retinoic acid treatment for acute promyelocytic leukemia in a patient without overt hypertriglyceridemia. Jpn J Clin Oncol, 2005; 35: 94–6.CrossRefGoogle Scholar
Mantadakis, E., Anagnostatou, N., Smyrnaki, P., et al.Life-threatening hypercalcemia complicated by pancreatitis in a child with acute lymphoblastic leukemia. J Pediatr Hematol Oncol, 2005; 27: 288–92.CrossRefGoogle Scholar
McGrail, L. H., Sehn, L. H., Weiss, R. B., et al.Pancreatitis during therapy of acute myeloid leukemia: cytarabine related ?Ann Oncol, 1999; 10: 1373–6.CrossRefGoogle ScholarPubMed
Steinherz, P. G.Transient, severe hyperlipidemia in patients with acute lymphoblastic leukemia treated with prednisone and asparaginase. Cancer, 1994; 74: 3234–9.3.0.CO;2-1>CrossRefGoogle ScholarPubMed
Haskell, C. M., Canellos, G. P., Leventhal, B. G., et al.L-asparaginase: therapeutic and toxic effects in patients with neoplastic disease. N Engl J Med, 1969; 281: 1028–34.CrossRefGoogle ScholarPubMed
Bostrom, B. C., Sensel, M. R., Sather, H. N., et al.Dexamethasone versus prednisone and daily oral versus weekly intravenous mercaptopurine for patients with standard-risk acute lymphoblastic leukemia: a report from the Children's Cancer Group. Blood, 2003; 101: 3809–17.CrossRefGoogle ScholarPubMed
Lange, B. J., Bostrom, B. C., Cherlow, J. M., et al.Double-delayed intensification improves event-free survival for children with intermediate-risk acute lymphoblastic leukemia: a report from the Children's Cancer Group. Blood, 2002; 99: 825–33.CrossRefGoogle ScholarPubMed
Karsenti, D., Viguier, J., Bourlier, P., et al.Enteral nutrition during acute pancreatitis: feasibility study of a self-propelling spiral distal end jejunal tube. Gastroenterol Clin Biol, 2003; 27: 614–17.Google ScholarPubMed
Al Omran, M., Groof, A., & Wilke, D.Enteral versus parenteral nutrition for acute pancreatitis. Cochrane Database Syst Rev, 2003; 1: CD002837.CrossRefGoogle Scholar
McClave, S. A.Nutritional support in acute pancreatitis. Nestle Nutr Workshop Ser Clin Perform Programme, 2003; 8: 207–15.CrossRefGoogle ScholarPubMed
Zhao, G., Wang, C. Y., Wang, F., & Xiong, J. X.Clinical study on nutrition support in patients with severe acute pancreatitis. World J Gastroenterol, 2003; 9: 2105–8.CrossRefGoogle ScholarPubMed
Koniver, G. A. & Scott, J. E.Pancreatitis with pseudocyst: a complication of L-asparaqinase therapy for leukemia. Del Med J, 1978; 50: 330–2.Google ScholarPubMed
Ranson, J. H., Rifkind, K. M., Roses, D. F., et al.Prognostic signs and the role of operative management in acute pancreatitis. Surg Gynecol Obstet, 1974; 139: 69–81.Google ScholarPubMed
Halonen, K. I., Leppaniemi, A. K., Lundin, J. E., et al.Predicting fatal outcome in the early phase of severe acute pancreatitis by using novel prognostic models. Pancreatology, 2003; 3: 309–15.CrossRefGoogle ScholarPubMed
Blamey, S. L., Imrie, C. W., O'Neill, J., Gilmour, W. H., & Carter, D. C.Prognostic factors in acute pancreatitis. Gut, 1984; 25: 1340–6.CrossRefGoogle ScholarPubMed
Pui, C. H.Toward optimal central nervous system-directed treatment in childhood acute lymphoblastic leukemia. J Clin Oncol, 2003; 21: 179–81.CrossRefGoogle ScholarPubMed
Conter, V., Arico, M., Valsecchi, M. G., et al.Extended intrathecal methotrexate may replace cranial irradiation for prevention of CNS relapse in children with intermediate-risk acute lymphoblastic leukemia treated with Berlin-Frankfurt-Münster-based intensive chemotherapy. The Associazione Italiana di Ematologia ed Oncologia Pediatrica. J Clin Oncol, 1995; 13: 2497–502.CrossRefGoogle ScholarPubMed
Pui, C. H., Mahmoud, H. H., Rivera, G. K., et al.Early intensification of intrathecal chemotherapy virtually eliminates central nervous system relapse in children with acute lymphoblastic leukemia. Blood, 1998; 92: 411–15.Google ScholarPubMed
Kamps, W. A., Bokkerink, J. P., Hakvoort-Cammel, F. G. A. J., et al.BFM oriented treatment for children with acute lymphoblastic leukemia without cranial irradiation and treatment reduction for standard risk patients; results of DCLSG protocol ALL-8 (1991–1996). Leukemia, 2002; 16: 1099–111.CrossRefGoogle Scholar
Clarke, M., Gaynon, P., Hann, I., et al.CNS-directed therapy for childhood acute lymphoblastic leukemia: Childhood ALL Collaborative Group overview of 43 randomized trials. J Clin Oncol, 2003; 21: 1798–809.CrossRefGoogle Scholar
Hertzberg, H., Huk, W. J., Ueberall, M. A., et al.CNS late effects after ALL therapy in childhood. Part I: neuroradiological findings in long-term survivors of childhood ALL – an evaluation of the interferences between morphology and neuropsychological performance. The German Late Effects Working Group. Med Pediatr Oncol, 1997; 28: 387–400.3.0.CO;2-C>CrossRefGoogle ScholarPubMed
Mahoney, D. H. Jr., Shuster, J. J., Nitschke, R., et al.Acute neurotoxicity in children with B-precursor acute lymphoid leukemia: an association with intermediate-dose intravenous methotrexate and intrathecal triple therapy – a Pediatric Oncology Group study. J Clin Oncol, 1998; 16: 1712–22.CrossRefGoogle ScholarPubMed
Uberall, M. A., Wenzel, D., Hertzberg, H., et al.CNS late effects after ALL therapy in childhood. Part II: conventional EEG recordings in asymptomatic long-term survivors of childhood ALL – an evaluation of the interferences between neurophysiology, neurology, psychology, and CNS morphology. German Late Effects Working Group. Med Pediatr Oncol, 1997; 29: 121–31.3.0.CO;2-I>CrossRefGoogle Scholar
Keidan, I., Bielorei, B., Berkenstadt, H., et al.Prospective evaluation of clinical and laboratory effects of intrathecal chemotherapy on children with acute leukemia. J Pediatr Hematol Oncol, 2005; 27: 307–10.CrossRefGoogle ScholarPubMed
Iuvone, L., Mariotti, P., Colosimo, C., et al.Long-term cognitive outcome, brain computed tomography scan, and magnetic resonance imaging in children cured for acute lymphoblastic leukemia. Cancer, 2002; 95: 2562–70.CrossRefGoogle ScholarPubMed
Mennes, M., Stiers, P., Vandenbussche, E., et al.Attention and information processing in survivors of childhood acute lymphoblastic leukemia treated with chemotherapy only. Pediatr Blood Cancer, 2005; 44: 478–86.CrossRefGoogle ScholarPubMed
Kingma, A., Dommelen, R. I., Mooyaart, E. L., et al.Slight cognitive impairment and magnetic resonance imaging abnormalities but normal school levels in children treated for acute lymphoblastic leukemia with chemotherapy only. J Pediatr, 2001; 139: 413–20.CrossRefGoogle ScholarPubMed
Bakshi, R., Bates, V. E., Mechtler, L. L., Kinkel, P. R., & Kinkel, W. R.Occipital lobe seizures as the major clinical manifestation of reversible posterior leukoencephalopathy syndrome: magnetic resonance imaging findings. Epilepsia, 1998; 39: 295–9.CrossRefGoogle ScholarPubMed
Rao, R. D., Swanson, J. W., Dejesus, R. S., Hunt, C. H., & Tefferi, A.Methotrexate induced seizures associated with acute reversible magnetic resonance imaging (MRI) changes in a patient with acute lymphoblastic leukemia. Leuk Lymphoma, 2002; 43: 1333–6.CrossRefGoogle Scholar
Kishi, S., Griener, J., Cheng, C., et al.Homocysteine, pharmacogenetics, and neurotoxicity in children with leukemia. J Clin Oncol, 2003; 21: 3084–91.CrossRefGoogle ScholarPubMed
Demopoulos, A. & DeAngelis, L. M.Neurologic complications of leukemia. Curr Opin Neurol, 2002; 15: 691–9.CrossRefGoogle ScholarPubMed
Mahoney, D. H. Jr., Shuster, J., Nitschke, R., et al.Intermediate-dose intravenous methotrexate with intravenous mercapto purine is superior to repetitive low-dose oral methotrexate with intravenous mercaptopurine for children with lower-risk B-lineage acute lymphoblastic leukemia: a Pediatric Oncology Group phase III trial. J Clin Oncol, 1998; 16: 246–54.CrossRefGoogle Scholar
Spencer, M. D.Leukoencephalopathy after CNS prophylaxis for acute lymphoblastic leukaemia. Pediatr Rehabil, 1998; 2: 33–9.CrossRefGoogle ScholarPubMed
Relling, M. V., Pui, C. H., Sandlund, J. T., et al.Adverse effect of anticonvulsants on efficacy of chemotherapy for acute lymphoblastic leukaemia. Lancet, 2000; 356: 285–90.CrossRefGoogle ScholarPubMed
Baker, D. K., Relling, M. V., Pui, C. H., et al.Increased teniposide clearance with concomitant anticonvulsant therapy. J Clin Oncol, 1992; 10: 311–15.CrossRefGoogle ScholarPubMed
Khan, R. B., Hunt, D. L., & Thompson, S. J.Gabapentin to control seizures in children undergoing cancer treatment. J Child Neurol, 2004; 19: 97–101.CrossRefGoogle ScholarPubMed
Reddick, W. E., Glass, J. O., Langston, J. W., & Helton, K. J.Quantitative MRI assessment of leukoencephalopathy. Magn Reson Med, 2002; 47: 912–20.CrossRefGoogle ScholarPubMed
Wilson, D. A., Nitschke, R., Bowman, M. E., et al.Transient white matter changes on MR images in children undergoing chemotherapy for acute lymphocytic leukemia: correlation with neuropsychologic deficiencies. Radiology, 1991; 180: 205–9.CrossRefGoogle ScholarPubMed
Henderson, R. D., Rajah, T., Nicol, A. J., & Read, S. J.Poster ior leukoencephalopathy following intrathecal chemotherapy with MRA-documented vasospasm. Neurology, 2003; 60: 326–8.CrossRefGoogle Scholar
Hoelzer, D.Leukoencephalopathy after the intrathecal administration of cytostatics in acute lymphatic leukemia. Dtsch Med Wochenschr, 1994; 119: 1637.Google ScholarPubMed
Sakamaki, H., Onozawa, Y., Yano, Y., et al.Disseminated necrotizing leukoencephalopathy following irradiation and methotrexate therapy for central nervous system infiltration of leukemia and lymphoma. Radiat Med, 1993; 11: 146–53.Google ScholarPubMed
Cohen, Y., Lossos, A., & Polliack, A.Neurotoxicity with leukoencephalopathy after a single intravenous high dose of methotrexate in a patient with lymphoma. Acta Haematol, 2002; 107: 185–6.CrossRefGoogle Scholar
Vaughn, D. J., Jarvik, J. G., Hackney, D., Peters, S., & Stadtmauer, E. A.High-dose cytarabine neurotoxicity: MR findings during the acute phase. AJNR Am J Neuroradiol, 1993; 14: 1014–16.Google ScholarPubMed
Schrappe, M., Beck, J., Brandeis, W. E., et al.Treatment of acute lymphoblastic leukemia in childhood and adolescence: results of the multicenter therapy study ALL-BFM 81. Klin Padiatr, 1987; 199: 133–50.CrossRefGoogle ScholarPubMed
Riehm, H., Reiter, A., Schrappe, M., et al.Corticosteroid-dependent reduction of leukocyte count in blood as a prognostic factor in acute lymphoblastic leukemia in childhood (therapy study ALL-BFM 83). Klin Padiatr, 1987; 199: 151–60.CrossRefGoogle Scholar
Janka, G. E., Winkler, K., Jurgens, H., et al.Acute lymphoblastic leukemia in childhood: the COALL studies. Klin Padiatr, 1986; 198: 171–7.CrossRefGoogle ScholarPubMed
Reddick, W. E., White, H. A., Glass, J. O., et al.Developmental model relating white matter volume to neurocognitive deficits in pediatric brain tumor survivors. Cancer, 2003; 97: 2512–19.CrossRefGoogle ScholarPubMed
Pavlakis, S. G., Frank, Y., & Chusid, R.Hypertensive encephalopathy, reversible occipitoparietal encephalopathy, or reversible posterior leukoencephalopathy: three names for an old syndrome. J Child Neurol, 1999; 14: 277–81.CrossRefGoogle ScholarPubMed
Hinchey, J., Chaves, C., Appignani, B., et al.A reversible posterior leukoencephalopathy syndrome. N Engl J Med, 1996; 334: 494–500.CrossRefGoogle ScholarPubMed
Ay, H., Buonanno, F. S., Schaefer, P. W., et al.Posterior leukoencephalopathy without severe hypertension: utility of diffusion-weighted MRI. Neurology, 1998; 51: 1369–76.CrossRefGoogle ScholarPubMed
Suminoe, A., Matsuzaki, A., Kira, R., et al.Reversible poster ior leukoencephalopathy syndrome in children with cancers. J Pediatr Hematol Oncol, 2003; 25: 236–9.CrossRefGoogle Scholar
Kinoshita, T., Moritani, T., Shrier, D. A., et al.Diffusion-weighted MR imaging of posterior reversible leukoencephalopathy syndrome. A pictorial essay. Clin Imaging, 2003; 27: 307–15.CrossRefGoogle ScholarPubMed
Celik, O. & Hascalik, S.Reversible posterior leukoencephalopathy in eclampsia. Int J Gynaecol Obstet, 2003; 82: 67–9.CrossRefGoogle ScholarPubMed
Garg, R. K.Postpartum posterior leukoencephalopathy syndrome. J Assoc Physicians India, 2003; 51: 211–13.Google ScholarPubMed
Marano, E., Scuteri, N., Vacca, G., & Orefice, G.HELLP syndrome with reversible posterior leukoencephalopathy. Neurol Sci, 2003; 24: 82–4.Google ScholarPubMed
Heckmann, J. G., Lang, C. J., Ganslandt, O., Tomandl, B., & Neundorfer, B.Reversible leukoencephalopathy due to vitamin B12 deficiency in an acromegalic patient. J Neurol, 2003; 250: 366–8.CrossRefGoogle Scholar
Henderson, J. N., Noetzel, M. J., McKinstry, R. C., et al.Reversible posterior leukoencephalopathy syndrome and silent cerebral infarcts are associated with severe acute chest syndrome in children with sickle cell disease. Blood, 2003; 101: 415–19.CrossRefGoogle ScholarPubMed
Fruhauf, N. R., Koeppen, D. S., Saner, F. H., et al.Late onset of tacrolimus-related posterior leukoencephalopathy after living donor liver transplantation. Liver Transpl, 2003; 9: 983–5.CrossRefGoogle ScholarPubMed
Greenwood, M. J., Dodds, A. J., Garricik, R., & Rodriguez, M.Posterior leukoencephalopathy in association with the tumour lysis syndrome in acute lymphoblastic leukaemia – a case with clinicopathological correlation. Leuk Lymphoma, 2003; 44: 719–21.CrossRefGoogle ScholarPubMed
Heo, K., Park, S. A., Lee, J. Y., Lee, B. I., & Lee, S. K.Post-transfusion posterior leukoencephalopathy with cytotoxic and vasogenic edema precipitated by vasospasm. Cerebrovasc Dis, 2003; 15: 230–3.CrossRefGoogle ScholarPubMed
Sueblinvong, T., Noophun, P., Pataradool, K., et al.Posterior leukoencephalopathy following cisplatin, bleomycin and vinblastine therapy for germ cell tumor of the ovary. J Obstet Gynaecol Res, 2002; 28: 99–103.CrossRefGoogle ScholarPubMed
Rathi, B., Azad, R. K., Vasudha, N., et al.L-asparaginase-induced reversible posterior leukoencephalopathy syndrome in a child with acute lymphoblastic leukemia. Pediatr Neurosurg, 2002; 37: 203–5.CrossRefGoogle Scholar
Kieslich, M., Porto, L., Lanfermann, H., et al.Cerebrovascular complications of L-asparaginase in the therapy of acute lymphoblastic leukemia. J Pediatr Hematol Oncol, 2003; 25: 484–7.CrossRefGoogle ScholarPubMed
Belgaumi, A. F., Al-Bakrah, M., Al-Mahr, M., et al.Dexamethasone-associated toxicity during induction chemotherapy for childhood acute lymphoblastic leukemia is augmented by concurrent use of daunomycin. Cancer, 2003; 97: 2898–903.CrossRefGoogle ScholarPubMed
Prindull, G., Weigel, W., Jentsch, E., Enderle, A., & Willert, H. G.Aseptic osteonecrosis in children treated for acute lymphoblastic leukemia and aplastic anemia. Eur J Pediatr, 1982; 139: 48–51.CrossRefGoogle ScholarPubMed
Burger, B., Beier, R., Zimmermann, M., et al.Osteonecrosis: a treatment related toxicity in childhood acute lymphoblastic leukemia (ALL) – experiences from trial ALL-BFM 95. Pediatr Blood Cancer, 2005; 44: 220–5.CrossRefGoogle ScholarPubMed
Relling, M. V., Yang, W., Das, S., et al.Pharmacogenetic risk factors for osteonecrosis of the hip among children with leukemia. J Clin Oncol, 2004; 22: 3930–6.CrossRefGoogle ScholarPubMed
Felix, C., Blatt, J., Goodman, M. A., & Medina, J.Avascular necrosis of bone following combination chemotherapy for acute lymphocytic leukemia. Med Pediatr Oncol, 1985; 13: 269–72.CrossRefGoogle ScholarPubMed
Bomelburg, T., Lengerke, H. J. von, & Ritter, J.Incidence of aseptic osteonecrosis following the therapy of childhood leukemia. Hamatol Bluttransfus, 1990; 33: 577–9.Google ScholarPubMed
Strauss, A. J., Su, J. T., Dalton, V. M., et al.Bony morbidity in children treated for acute lymphoblastic leukemia. J Clin Oncol, 2001; 19: 3066–72.CrossRefGoogle ScholarPubMed
Murphy, R. G. & Greenberg, M. L.Osteonecrosis in pediatric patients with acute lymphoblastic leukemia. Cancer, 1990; 65: 1717–21.3.0.CO;2-B>CrossRefGoogle ScholarPubMed
Mattano, L. A. Jr., Sather, H. N., Trigg, M. E., & Nachman, J. B.Osteonecrosis as a complication of treating acute lymphoblastic leukemia in children: a report from the Children's Cancer Group. J Clin Oncol, 2000; 18: 3262–72.CrossRefGoogle ScholarPubMed
Ribeiro, R. C., Fletcher, B. D., Kennedy, W., et al.Magnetic resonance imaging detection of avascular necrosis of the bone in children receiving intensive prednisone therapy for acute lymphoblastic leukemia or non-Hodgkin lymphoma. Leukemia, 2001; 15: 891–7.CrossRefGoogle ScholarPubMed
Mattano, L. A. Jr., Sather, H. N., Trigg, M. E., & Nachman, J. B.Osteonecrosis as a complication of treating acute lymphoblastic leukemia in children: a report from the Children's Cancer Group. J Clin Oncol, 2000; 18: 3262–72.CrossRefGoogle ScholarPubMed
Ojala, A. E., Paakko, E., Lanning, F. P., & Lanning, M.Osteonecrosis during the treatment of childhood acute lymphoblastic leukemia: a prospective MRI study. Med Pediatr Oncol, 1999; 32: 11–17.3.0.CO;2-F>CrossRefGoogle ScholarPubMed
Arlet, J.Nontraumatic avascular necrosis of the femoral head. Past, present, and future. Clin Orthop, 1992; 277: 12–21.Google Scholar
Atkinson, K., Cohen, M., & Biggs, J.Avascular necrosis of the femoral head secondary to corticosteroid therapy for graft-versus-host disease after marrow transplantation: effective therapy with hip arthroplasty. Bone Marrow Transplant, 1987; 2: 421–6.Google ScholarPubMed
Chang, C. C., Greenspan, A., & Gershwin, M. E.Osteonecrosis: current perspectives on pathogenesis and treatment. Semin Arthritis Rheum, 1993; 23: 47–69.CrossRefGoogle ScholarPubMed
Fisher, D. E. & Bickel, W. H.Corticosteroid-induced avascular necrosis. A clinical study of seventy-seven patients. J Bone Joint Surg Am, 1971; 53: 859–73.CrossRefGoogle ScholarPubMed
Hanif, I., Mahmoud, H. & Pui, C. H.Avascular femoral head necrosis in pediatric cancer patients. Med Pediatr Oncol, 1993; 21: 655–60.CrossRefGoogle ScholarPubMed
Bradway, J. K. & Morrey, B. F.The natural history of the silent hip in bilateral atraumatic osteonecrosis. J Arthroplasty, 1993; 8: 383–7.CrossRefGoogle ScholarPubMed
Jacobs, B.Epidemiology of traumatic and nontraumatic osteonecrosis. Clin Orthop, 1978; 130: 51–67.Google Scholar
Ohzono, K., Saito, M., Sugano, N., Takaoka, K., & Ono, K.The fate of nontraumatic avascular necrosis of the femoral head. A radiologic classification to formulate prognosis. Clin Orthop, 1992; 277: 73–8.Google Scholar
Bozic, K. J., Zurakowski, D., & Thornhill, T. S.Survivorship ana lysis of hips treated with core decompression for nontraumatic osteonecrosis of the femoral head. J Bone Joint Surg (Am), 1999; 81: 200–9.CrossRefGoogle Scholar
Houpt, J. B., Pritzker, K. P., Alpert, B., Greyson, N. D., & Gross, A. E.Natural history of spontaneous osteonecrosis of the knee (SONK): a review. Semin Arthritis Rheum, 1983; 13: 212–27.CrossRefGoogle ScholarPubMed
Mattano, L. A. Jr., Sather, H. N., Trigg, M. E., & Nachman, J. B.Osteonecrosis as a complication of treating acute lymphoblastic leukemia in children: a report from the Children's Cancer Group. J Clin Oncol, 2000; 18: 3262–72.CrossRefGoogle ScholarPubMed
Mattano, L. A. Jr., Sather, H., La, M. K., Nachman, J. B., & Seibel, N. L.Modified dexamethasone reduces the incidence of treatment-related osteonecrosis in children and adolescents with higher risk acute lymphoblastic leukemia: A report of CCG-1961. Blood, 2003; 102: 221a.Google Scholar
Howard, S. C. & Pui, C. H.Endocrine complications in pediatric patients with acute lymphoblastic leukemia. Blood Rev, 2002; 16: 225–43.CrossRefGoogle ScholarPubMed
Oeffinger, K. C., Mertens, A. C., Sklar, C. A., et al.Obesity in adult survivors of childhood acute lymphoblastic leukemia: a report from the Childhood Cancer Survivor Study. J Clin Oncol, 2003; 21: 1359–65.CrossRefGoogle ScholarPubMed
Mayer, E. I., Reuter, M., Dopfer, R. E., & Ranke, M. B.Energy expenditure, energy intake and prevalence of obesity after therapy for acute lymphoblastic leukemia during childhood. Horm Res, 2000; 53: 193–9.Google ScholarPubMed
Nicholson, R. G. & Feldman, W.Hyponatremia in association with vincristine therapy. Can Med Assoc J, 1972; 106: 356–7.Google ScholarPubMed
Stuart, M. J., Cuaso, C., Miller, M., & Oski, F. A.Syndrome of recurrent increased secretion of antidiuretic hormone following multiple doses of vincristine. Blood, 1975; 45: 315–20.Google ScholarPubMed
Robertson, G. L., Bhoopalam, N., & Zelkowitz, L. J.Vincristine neurotoxicity and abnormal secretion of antidiuretic hormone. Arch Intern Med, 1973; 132: 717–20.CrossRefGoogle ScholarPubMed
Kebaili, K., Bertrand, Y., Foray, P., et al.A rare cause of hyponatremia during introductory treatment of acute lymphoblastic leukemia in an infant: inappropriate secretion of atrial natriuretic factor ?Arch Pediatr, 1994; 1: 898–902.Google Scholar
Sathiapalan, R. K., Al-Nasser, A., El-Solh, H., Al-Mohsen, I., & Al-Jumaah, S.Vincristine-itraconazole interaction: cause for increasing concern. J Pediatr Hematol Oncol, 2002; 24: 591.CrossRefGoogle ScholarPubMed
Kamaluddin, M., McNally, P., Breatnach, F., et al.Potentiation of vincristine toxicity by itraconazole in children with lymphoid malignancies. Acta Paediatr, 2001; 90: 1204–7.CrossRefGoogle ScholarPubMed
Bohme, A., Ganser, A., & Hoelzer, D.Aggravation of vincristine-induced neurotoxicity by itraconazole in the treatment of adult ALL. Ann Hematol, 1995; 71: 311–12.CrossRefGoogle ScholarPubMed
Demura, R.The role of antidiuretic hormone in hyponatremia in adrenal insufficiency – is the guideline for the diagnosis of syndrome of inappropriate secretion of the antidiuretic hormone appropriate ?Intern Med, 1999; 38: 382–3.CrossRefGoogle Scholar
Kamoi, K., Tamura, T., Tanaka, K., Ishibashi, M., & Yamaji, T.Hyponatremia and osmoregulation of thirst and vasopressin secretion in patients with adrenal insufficiency. J Clin Endocrinol Metab, 1993; 77: 1584–8.Google ScholarPubMed
Spital, A.Hyponatremia in adrenal insufficiency: review of pathogenetic mechanisms. South Med J, 1982; 75: 581–5.CrossRefGoogle ScholarPubMed
Krutisch, G. & Valentin, A.Comatose state due to severe hyponatremia in a patient with the syndrome of inappropriate antidiuretic hormone secretion. Intensive Care Med, 2001; 27: 944.CrossRefGoogle Scholar
Kloster, R., Borresen, H. C., & Hoff-Olsen, P.Sudden death in two patients with epilepsy and the syndrome of inappropriate antidiuretic hormone secretion (SIADH). Seizure, 1998; 7: 419–20.CrossRefGoogle Scholar
Haycock, G. B.The syndrome of inappropriate secretion of antidiuretic hormone. Pediatr Nephrol, 1995; 9: 375–81.CrossRefGoogle ScholarPubMed
Omari, A., Kormas, N., & Field, M.Delayed onset of central pontine myelinolysis despite appropriate correction of hyponatraemia. Intern Med J, 2002; 32: 273–4.CrossRefGoogle ScholarPubMed
Lampl, C. & Yazdi, K.Central pontine myelinolysis. Eur Neurol, 2002; 47: 3–10.CrossRefGoogle ScholarPubMed
Carpentieri, U. & Balch, M. T.Hyperglycemia associated with the therapeutic use of L-asparaginase: possible role of insulin receptors. J Pediatr, 1978; 93: 775–8.CrossRefGoogle ScholarPubMed
Baillargeon, J., Langevin, A. M., Mullins, J., et al.Transient hyperglycemia in Hispanic children with acute lymphoblastic leukemia. Pediatr Blood Cancer, 2005; Feb. 7 [Epub ahead of print] PMID: 15700246.CrossRefGoogle ScholarPubMed
Cetin, M., Yetgin, S., Kara, A., et al.Hyperglycemia, ketoacid osis and other complications of L-asparaginase in children with acute lymphoblastic leukemia. J Med, 1994; 25(3–4): 219–29.Google Scholar
Iyer, R. S., Rao, S. R., Pai, S., Advani, S. H., & Magrath, I. T.L-asparaginase related hyperglycemia. Indian J Cancer, 1993; 30: 72–6.Google ScholarPubMed
Pui, C. H., Burghen, G. A., Bowman, W. P., & Aur, R. J.Risk factors for hyperglycemia in children with leukemia receiving L-asparaginase and prednisone. J Pediatr, 1981; 99: 46–50.CrossRefGoogle ScholarPubMed
Ridgway, D., Neerhout, R. C., & Bleyer, A.Attenuation of asparaginase-induced hyperglycemia after substitution of the Erwinia carotovora for the Escherichia coli enzyme preparation. Cancer, 1989; 63: 561–3.3.0.CO;2-0>CrossRefGoogle ScholarPubMed
Lavine, R. L., & DiCinto, D. M.L-Asparaginase diabetes mellitus in rabbits: differing effects of two different schedules of L-asparaginase administration. Horm Metab Res, 1984; 16(Suppl. 1): 92–6.CrossRefGoogle ScholarPubMed
Silverman, L. B., Gelber, R. D., Dalton, V. K., Asselin, B. L., Barr, R. D., Clavell, L. A., et al.Improved outcome for children with acute lymphoblastic leukemia: results of Dana-Farber Consortium Protocol 91–01. Blood, 2001; 97: 1211–18.CrossRefGoogle ScholarPubMed
Silverman, L. B., Declerck, L., Gelber, R. D., et al.Results of Dana-Farber Cancer Institute Consortium protocols for children with newly diagnosed acute lymphoblastic leukemia (1981–1995). Leukemia, 2000; 14: 2247–56.CrossRefGoogle Scholar
Harms, D. O. & Janka-Schaub, G. E.Co-operative study group for childhood acute lymphoblastic leukemia (COALL): long-term follow-up of trials 82, 85, 89 and 92. Leukemia, 2000; 14: 2234–9.CrossRefGoogle Scholar
Ziino, O., Russo, D., Orlando, M. A., et al.Symptomatic hypoglycemia in children receiving oral purine analogues for treatment of childhood acute lymphoblastic leukemia. Med Pediatr Oncol, 2002; 39: 32–4.CrossRefGoogle ScholarPubMed
Halonen, P., Salo, M. K. & Makipernaa, A.Fasting hypoglycemia is common during maintenance therapy for childhood acute lymphoblastic leukemia. J Pediatr, 2001; 138: 428–31.CrossRefGoogle ScholarPubMed
Artavia-Loria, E., Chaussain, J. L., Bougneres, P. F. & Job, J. C.Frequency of hypoglycemia in children with adrenal insufficiency. Acta Endocrinol Suppl (Copenh), 1986; 279: 275–8.Google ScholarPubMed
Giona, F., Annino, L., Donato, P., & Ermini, M.Gonadal, adrenal, androgen and thyroid functions in adults treated for acute lymphoblastic leukemia. Haematologica, 1994; 79: 141–7.Google ScholarPubMed
Krasner, A. S.Glucocorticoid-induced adrenal insufficiency. JAMA, 1999; 282: 671–6.CrossRefGoogle ScholarPubMed
Rosmond, R., Chagnon, Y. C., Holm, G., et al.A glucocorticoid receptor gene marker is associated with abdominal obesity, leptin, and dysregulation of the hypothalamic-pituitary- adrenal axis. Obes Res, 2000; 8: 211–18.CrossRefGoogle ScholarPubMed
Kuperman, H., Damiani, D., Chrousos, G. P., et al.Evaluation of the hypothalamic-pituitary-adrenal axis in children with leukemia before and after 6 weeks of high-dose glucocorticoid therapy. J Clin Endocrinol Metab, 2001; 86: 2993–6.CrossRefGoogle ScholarPubMed
Felner, E. I., Thompson, M. T., Ratliff, A. F., White, P. C., & Dickson, B. A.Time course of recovery of adrenal function in children treated for leukemia. J Pediatr, 2000; 137: 21–4.CrossRefGoogle ScholarPubMed
Petersen, K. B., Muller, J., Rasmussen, M., & Schmiegelow, K.Impaired adrenal function after glucocorticoid therapy in children with acute lymphoblastic leukemia. Med Pediatr Oncol, 2003; 41: 110–4.CrossRefGoogle ScholarPubMed
Cooper, M. S. & Stewart, P. M.Corticosteroid insufficiency in acutely ill patients. N Engl J Med, 2003; 348: 727–34.CrossRefGoogle ScholarPubMed
August, G. P.Treatment of adrenocortical insufficiency. Pediatr Rev, 1997; 18: 59–62.CrossRefGoogle ScholarPubMed
Agwu, J. C., Spoudeas, H., Hindmarsh, P. C., Pringle, P. J., & Brook, C. G.Tests of adrenal insufficiency. Arch Dis Child, 1999; 80: 330–3.CrossRefGoogle ScholarPubMed
Zaloga, G. P.Sepsis-induced adrenal deficiency syndrome. Crit Care Med, 2001; 29: 688–90.CrossRefGoogle ScholarPubMed
Zaloga, G. P. & Marik, P.Hypothalamic-pituitary-adrenal insufficiency. Crit Care Clin, 2001; 17: 25–41.CrossRefGoogle ScholarPubMed
Leman, P.Addison's disease. Hydrocortisone should be started immediately adrenal insufficiency is considered. BMJ, 1996; 313: 427.CrossRefGoogle ScholarPubMed
Graber, A. L., Ney, R. L., Nicholson, W. E., Island, D. P., & Liddle, G. W.Natural history of pituitary-adrenal recovery following long-term suppression with corticosteroids. J Clin Endocrinol Metab, 1965; 25: 11–16.CrossRefGoogle ScholarPubMed
Coursin, D. B. & Wood, K. E.Corticosteroid supplementation for adrenal insufficiency. JAMA, 2002; 287: 236–40.CrossRefGoogle ScholarPubMed
Jeffcoate, W.Assessment of corticosteroid replacement therapy in adults with adrenal insufficiency. Ann Clin Biochem, 1999; 36: 151–7.CrossRefGoogle ScholarPubMed
Meacham, L. R., Mazewski, C., & Krawiecki, N.Mechanism of transient adrenal insufficiency with megestrol acetate treatment of cachexia in children with cancer. J Pediatr Hematol Oncol, 2003; 25: 414–17.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Acute complications
    • By Scott C. Howard, Assistant Member, Department of Hematology/Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA, Raul C. Ribeiro, Member, Department of Hematology/Oncology, Director, International Outreach Program, St. Jude Children's Research Hospital, Memphis, TN, USA, Ching-Hon Pui, Member and Director, Leukemia/Lymphoma Division, St. Jude Children's Research Hospital, American Cancer Society–F. M. Kirby Clinical Research Professor, Professor, Department of Pediatrics, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
  • Edited by Ching-Hon Pui
  • Book: Childhood Leukemias
  • Online publication: 01 July 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511471001.030
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Acute complications
    • By Scott C. Howard, Assistant Member, Department of Hematology/Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA, Raul C. Ribeiro, Member, Department of Hematology/Oncology, Director, International Outreach Program, St. Jude Children's Research Hospital, Memphis, TN, USA, Ching-Hon Pui, Member and Director, Leukemia/Lymphoma Division, St. Jude Children's Research Hospital, American Cancer Society–F. M. Kirby Clinical Research Professor, Professor, Department of Pediatrics, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
  • Edited by Ching-Hon Pui
  • Book: Childhood Leukemias
  • Online publication: 01 July 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511471001.030
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Acute complications
    • By Scott C. Howard, Assistant Member, Department of Hematology/Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA, Raul C. Ribeiro, Member, Department of Hematology/Oncology, Director, International Outreach Program, St. Jude Children's Research Hospital, Memphis, TN, USA, Ching-Hon Pui, Member and Director, Leukemia/Lymphoma Division, St. Jude Children's Research Hospital, American Cancer Society–F. M. Kirby Clinical Research Professor, Professor, Department of Pediatrics, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
  • Edited by Ching-Hon Pui
  • Book: Childhood Leukemias
  • Online publication: 01 July 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511471001.030
Available formats
×