Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-17T21:37:06.518Z Has data issue: false hasContentIssue false

9 - Terrestrial green algae: systematics, biogeography and expected responses to climate change

from Section 2 - Adaptation, speciation and extinction

Published online by Cambridge University Press:  16 May 2011

F. Rindi
Affiliation:
Università Politecnica delle Marche, Ancona, Italy
Trevor R. Hodkinson
Affiliation:
Trinity College, Dublin
Michael B. Jones
Affiliation:
Trinity College, Dublin
Stephen Waldren
Affiliation:
Trinity College, Dublin
John A. N. Parnell
Affiliation:
Trinity College, Dublin
Get access

Summary

Abstract

Terrestrial green microalgae are among the most widespread and evolutionarily diverse organisms inhabiting terrestrial environments. In the last 30 years, ultrastructural and molecular data have led to important insights into the evolution of these organisms. It has become clear that terrestrial green algae are a highly polyphyletic group originating from the colonisation of terrestrial environments by many separate lineages of aquatic algae, both freshwater and marine. Such diversity implies great differences in physiological and biochemical attributes, with the consequence that different taxa are expected to exhibit different responses to climatic changes. Elevated carbon dioxide (CO2), variations in rainfall and humidity and increased photosynthetically active radiation (PAR) and ultraviolet (UV) radiation are the aspects of global change that will most likely affect terrestrial green algae. The published information on impacts of global change is largely based on short-term studies, which have examined the immediate response of algae to experimental manipulation of climatic parameters. However, recent experimental long-term studies have shown that green microalgae evolve in response to climatic change, and the physiological responses of algal strains in present-day conditions might not reflect the responses of the same strains in future climate scenarios.

Introduction

As generally defined, the term algae includes all photosynthetic eukaryotes with the exception of land plants (Brodie and Zuccarello, 2007; Delwiche, 2007). Members of this highly diverse, non-monophyletic set of organisms occur in any habitat in which sufficient photon irradiance for photosynthesis is available, and they contribute to global primary production to an extent which may reach 50% (Beardall and Raven, 2004).

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abe, K., Nishimura, N. and Hirano, M. (1999). Simultaneous production of beta-carotene, vitamin E and vitamin C by the aerial microalga Trentepohlia aurea. Journal of Applied Phycology, 11, 331–336.CrossRefGoogle Scholar
Agardh, C. A. (1824). Systema algarum. Lund: Berling.Google Scholar
Aptroot, A. and Herk, C. M. (2007). Further evidence of the effects of global warming on lichens, particularly those with Trentepohlia phycobionts. Environmental Pollution, 146, 293–298.CrossRefGoogle ScholarPubMed
Beardall, J. and Giordano, M. (2002). Ecological implications of microalgal and cyanobacterial CO2 concentrating mechanisms, and their regulation. Functional Plant Biology, 29, 335–347.CrossRefGoogle Scholar
Beardall, J. and Raven, J. A. (2004). The potential effects of global climate change on microalgal photosynthesis, growth and ecology. Phycologia, 43, 26–40.CrossRefGoogle Scholar
Bell, G. and Collins, S. (2008). Adaptation, extinction and global change. Evolutionary Applications, 1, 3–16.CrossRefGoogle ScholarPubMed
Bertsch, A. (1966). CO2 Gaswechsel der Grünalge Apatococcus lobatus. Planta, 70, 46–72.CrossRefGoogle Scholar
Broady, P. A. (1996). Diversity, distribution and dispersal of Antarctic terrestrial algae. Biodiversity and Conservation, 5, 1307–1335.CrossRefGoogle Scholar
Brodie, J. and Zuccarello, G. C. (2007). Systematics of the species rich algae: red algal classification, phylogeny and speciation. In Reconstructing the Tree of Life: Taxonomy and Systematics of Species Rich Taxa, ed. Hodkinson, T. R. and Parnell, J. A. N.. Systematics Association Special Volume 72. Boca Raton, FL:CRC Press, pp. 317–330.Google Scholar
Buchheim, M. A., Buchheim, J. A., Carlson, T. and Kugrens, P. (2002). Phylogeny of Lobocharacium (Chlorophyceae) and allies: a study of 18S and 26S rDNA data. Journal of Phycology, 38, 376–383.CrossRefGoogle Scholar
Callaghan, T. V., Björn, L. O., Chernov, Y. et al. (2004). Biodiversity, distributions and adaptations of Arctic species in the context of environmental change. Ambio, 33, 404–417.CrossRefGoogle ScholarPubMed
Cardon, Z. G., Gray, D. W. and Lewis, L. A. (2008). The green algal underground: evolutionary secrets of desert cells. Bioscience, 58, 114–122.CrossRefGoogle Scholar
Chapman, R. L. and Waters, D. A. (2001). Lichenization of the Trentepohliales: complex algae and odd relationships. In Symbiosis, ed. Seckbach, J.. Dordrecht: Kluwer, pp. 361–371.Google Scholar
Chen, P. C. and Lai, C. L. (1996). Physiological adaptation during cell dehydration and rewetting of a newly-isolated Chlorella species. Physiologia Plantarum, 96, 453–457.CrossRefGoogle Scholar
Cockell, C. S. and Knowland, J. (1999). Ultraviolet radiation screening compounds. Biological Reviews, 74, 311–345.CrossRefGoogle ScholarPubMed
Collins, S. and Bell, G. (2004). Phenotypic consequences of 1,000 generations of selection at elevated CO2 in a green alga. Nature, 431, 566–569.CrossRefGoogle Scholar
Collins, S. and Bell, G. (2006). Evolution of natural algal populations at elevated CO2. Ecology Letters, 9, 129–135.CrossRefGoogle ScholarPubMed
Collins, S., Sültemeyer, D. and Bell, G. (2006a). Changes in C uptake in populations of Chlamydomonas reinhardtii selected at high CO2. Plant, Cell and Environment, 29, 1812–1819.CrossRefGoogle Scholar
Collins, S., Sültemeyer, D. and Bell, G. (2006b). Rewinding the tape: selection of algae adapted to high CO2 at current and Pleistocene levels of CO2. Evolution, 60, 1392–1401.CrossRefGoogle ScholarPubMed
Del Campo, J. A., Moreno, J., Rodriguez, H. et al. (2000). Carotenoid content of chlorophycean microalgae: factors determining lutein accumulation in Muriellopsis sp. Chlorophyta. Journal of Biotechnology, 76, 51–59.CrossRefGoogle ScholarPubMed
Delwiche, C. F. (2007). Algae in the warp and weave of life: bound by plastids. In Unravelling the Algae: the Past, Present and Future of Algal Systematics, ed. Brodie, J. and Lewis, J.. Systematics Association Special Volume 75. Boca Raton, FL: CRC Press, pp. 7–20.Google Scholar
Eliáš, M., Neustupa, J. and Škaloud, P. (2008). Elliptochloris bilobata var. corticola var. nov. (Trebouxiophyceae, Chlorophyta), a novel subaerial coccal green alga. Biologia, 63, 791–798.CrossRefGoogle Scholar
Ettl, H. and Gärtner, G. (1995). Syllabus der Boden-, Luft- und Flechtenalgen. Stuttgart: Gustav Fischer Verlag.Google Scholar
Falkowski, P. G. and Oliver, M. J. (2007). Mix and match: how climate selects phytoplankton. Nature Reviews Microbiology, 5, 813–819.CrossRefGoogle ScholarPubMed
Falkowski, P. G., Katz, M. E., Knowll, A. H. et al. (2004). The evolution of modern eukaryotic phytoplankton. Science, 305, 354–360.CrossRefGoogle ScholarPubMed
Fenchel, T. and Finlay, B. J. (2003). Is microbial diversity fundamentally different from biodiversity of larger animals and plants?European Journal of Protistology, 39, 486–490.CrossRefGoogle Scholar
Finkel, Z. V., Katz, M. E., Wright, J. D., Schofield, O. M. E. and Falkowski, P. G. (2005). Climatically driven macroevolutionary patterns in the size of marine diatoms over the Cenozoic. Proceedings of the National Academy of Sciences of the USA, 102, 8927–8932.CrossRefGoogle ScholarPubMed
Finkel, Z. V., Sebbo, J., Feist-Burkhardt, S. et al. (2007). A universal driver of macroevolutionary change in the size of marine phytoplankton over the Cenozoic. Proceedings of the National Academy of Sciences of the USA, 104, 20416–20420.CrossRefGoogle ScholarPubMed
Finlay, B. J. (2002). Global dispersal of free-living microbial eukaryote species. Science, 296, 1061–1063.CrossRefGoogle ScholarPubMed
Flechtner, V. R. (2007). North American microbiotic soil crust communities: diversity despite challenge. In Algae and Cyanobacteria in Extreme Environments, ed. Seckbach, J.. Dordrecht: Springer, pp. 539–551.Google Scholar
Foissner, W. (2006). Biogeography and dispersal of micro-organisms: a review emphasizing protests. Acta Protozoologica, 45, 111–136.Google Scholar
Foissner, W. (2008). Protist diversity and distribution: some basic considerations. Biodiversity and Conservation, 17, 235–242.CrossRefGoogle Scholar
Friedl, T. (1995). Inferring taxonomic positions and testing genus level assignments in coccoid green lichen algae: a phylogenetic analysis of 18S ribosomal RNA sequences from Dictyochloropsis reticulata and from members of the genus Myrmecia (Chlorophyta, Trebouxiophyceae cl. nov.). Journal of Phycology, 31, 632–639.CrossRefGoogle Scholar
Friedl, T. and O' Kelly, C. J. (2002). Phylogenetic relationships of green algae assigned to the genus Planophila (Chlorophyta): evidence from 18S rDNA sequence data and ultrastructure. European Journal of Phycology, 37, 373–384.CrossRefGoogle Scholar
Friedl, T. and Zeltner, C. (1994). Assessing the relationships of some coccoid green lichen algae and the Microthamniales (Chlorophyta) with 18S gene sequence comparisons. Journal of Phycology, 30, 500–506.CrossRefGoogle Scholar
Good, B. H. and Chapman, R. L. (1978). The ultrastructure of Phycopeltis (Chroolepidaceae: Chlorophyta). 1. Sporopollenin in the cell walls. American Journal of Botany, 65, 27–33.CrossRefGoogle Scholar
Gray, D. W., Lewis, L. A. and Cardon, Z. G. (2007). Photosynthetic recovery following desiccation of desert green algae (Chlorophyta) and their aquatic relatives. Plant, Cell and Environment, 30, 1240–1255.CrossRef
Häubner, N., Schumann, R. and Karsten, U. (2006). Aeroterrestrial algae growing in biofilms on facades: response to temperature and water stress. Microbial Ecology, 51, 285–293.CrossRefGoogle Scholar
Hodkinson, T. R. and Parnell, J. A. N. (2007). Introduction to the systematics of species rich groups. In Reconstructing the Tree of Life: Taxonomy and Systematics of Species Rich Taxa, ed. Hodkinson, T. R. and Parnell, J. A. N.. Systematics Association Special Volume 72. Boca Raton, FL: CRC Press, pp. 3–20.Google Scholar
Hoyer, K., Karsten, U., Sawall, T. and Wiencke, C. (2001). Photoprotective substances in Antarctic macroalgae and their variation with respect to depth, distribution, different tissues and developmental stages. Marine Ecology Progress Series, 211, 117–129.CrossRefGoogle Scholar
Hughes, K. A. (2006). Solar UV-B radiation, associated with ozone depletion, inhibits the Antarctic terrestrial microalga Stichococcus bacillaris. Polar Biology, 29, 327–336.CrossRefGoogle Scholar
Huss, V. A. R., Frank, C., Hartmann, E. C. et al. (1999). Biochemical taxonomy and molecular phylogeny of the genus Chlorella sensu lato (Chlorophyta). Journal of Phycology, 35, 587–598.CrossRefGoogle Scholar
John, D. M. (1988). Algal growths on buildings: a general review and methods of treatment. Biodeterioration Abstracts, 2, 81–102.Google Scholar
John, D. M. (2002). Orders Chaetophorales, Klebsormidiales, Microsporales, Ulotrichales. In The Freshwater Algal Flora of the British Isles, ed. John, D. M., Whitton, B. A. and Brook, A. J.. Cambridge: Cambridge University Press, pp. 433–468.Google Scholar
Karsten, U., Friedl, T., Schumann, R., Hoyer, K. and Lembcke, S. (2005). Mycosporine-like amino acids and phylogenies in green algae: Prasiola and its relatives from the Trebouxiophyceae (Chlorophyta). Journal of Phycology, 41, 557–566.CrossRefGoogle Scholar
Karsten, U., Lembcke, S. and Schumann, R. (2007a). The effects of ultraviolet radiation on photosynthetic performance, growth, and sunscreen compounds in aeroterrestrial biofilm algae isolated from building facades. Planta, 225, 991–1000.CrossRefGoogle ScholarPubMed
Karsten, U., Schumann, R. and Mostaert, A. S. (2007b). Aeroterrestrial algae growing on man-made surfaces: what are the secrets of their ecological success? In Algae and Cyanobacteria in Extreme Environments, ed. Seckbach, J.. Dordrecht: Springer, pp. 583–597.Google Scholar
Krienitz, L., Hegewald, E. H., Hepperle, D. et al. (2004). Phylogenetic relationship of Chlorella and Parachlorella gen. nov. (Chlorophyta, Trebouxiophyceae). Phycologia, 43, 529–542.CrossRefGoogle Scholar
Kützing, F. T. (1843). Phycologia generalis. Leipzig: F. A. Brockhaus.Google Scholar
Lewis, L. A. (2007). Chlorophyta on land: independent lineages of green eukaryotes from arid lands. In Algae and Cyanobacteria in Extreme Environments, ed. Seckbach, J.. Dordrecht: Springer, pp. 571–582.Google Scholar
Lewis, L. A. and Flechtner, V. R. (2002). Green algae (Chlorophyta) of desert microbiotic crusts: diversity of North American taxa. Taxon, 51, 443–451.CrossRefGoogle Scholar
Lewis, L. A. and Lewis, P. O. (2005). Unearthing the molecular phylodiversity of desert soil green algae (Chlorophyta). Systematic Biology, 54, 936–947.CrossRefGoogle Scholar
Lewis, L. A. and McCourt, R. M. (2004). Green algae and the origin of land plants. American Journal of Botany, 91, 1535–1556.CrossRefGoogle ScholarPubMed
Lewis, L. A., Wilcox, L. W., Fuerst, P. A. and Floyd, G. L. (1992). Concordance of molecular and ultrastructural data in the study of zoosporic green algae. Journal of Phycology, 28, 375–380.CrossRefGoogle Scholar
Linnaeus, C. (1753). Species plantarum, Vol II. Stockholm.Google Scholar
Linnaeus, C. (1759). Systema naturae per regna tria naturae, Vol II. Stockholm.Google Scholar
López-Bautista, J. M., Waters, D. A. and Chapman, R. L. (2002). The Trentepohliales revisited. Constancea, 83. ucjeps.berkeley.edu/constancea/83/lopez_etal/trentepohliales.html.Google Scholar
López-Bautista, J. M., Rindi, F. and Casamatta, D. (2007). The systematics of subaerial algae. In Algae and Cyanobacteria in Extreme Environments, ed. Seckbach, J.. Dordrecht: Springer, pp. 601–617.Google Scholar
Lud, D., Buma, A. G. J., Poll, W., Moerdijk, T. C. W. and Huiskes, H. L. (2001). DNA damage and photosynthetic performance in the Antarctic terrestrial alga Prasiola crispa ssp. antarctica (Chlorophyta) under manipulated UV-radiation. Journal of Phycology, 37, 459–467.CrossRefGoogle Scholar
Luo, W., Pflugmacher, S., Pröschold, T., Walz, N. and Krienitz, L. (2006). Genotype versus phenotype variability in Chlorella and Micractinium (Chlorophyta, Trebouxiophyceae). Protist, 157, 315–333.CrossRefGoogle Scholar
Masojidek, J., Kopecky, J., Koblizek, M. and Torzillo, G. (2004). The xanthophyll cycle in green algae (Chlorophyta): its role in the photosynthetic apparatus. Plant Biology, 6, 342–349.CrossRefGoogle ScholarPubMed
Mattox, K. R. and Stewart, K. D. (1984). Classification of the green algae: a concept based on comparative cytology. In The Systematics of the Green Algae, ed. Irvine, D. E. G. and John, D. M.. London: Academic Press, pp. 29–72.Google Scholar
Mikhailyuk, T. I., Sluiman, H. J., Massalski, A. et al. (2008). New streptophyte green algae from terrestrial habitats and an assessment of the genus Interfilum (Klebsormidiophyceae, Streptophyta). Journal of Phycology, 44, 1586–1603.CrossRefGoogle Scholar
Miller, K. G., Kominz, M. A., Browning, J. V. et al. (2005). The Phanerozoic record of global sea-level change. Science, 310, 1293–1298.CrossRefGoogle ScholarPubMed
Miyachi, S., Iwasaki, I. and Shiraiwa, Y. (2003). Historical perspective on microalgal and cyanobacterial acclimation to low- and extremely high-CO2 conditions. Photosynthesis Research, 77, 139–153.CrossRefGoogle Scholar
Nägeli, C. (1849). Gattungen einzelliger Algen, physiologisch und systematisch bearbeitet. Neue Denkschriften der Allgemeine Schweizerischen Gesellschaft für die Gesammten Naturwissenschaften, 10, 1–139.Google Scholar
Neustupa, J. (2005). Investigations on the genus Phycopeltis (Trentepohliaceae, Chlorophyta) from South-East Asia, including the description of two new species. Cryptogamie Algologie, 26, 229–242.Google Scholar
Neustupa, J. and Šejnohová, L. (2003). Marvania aerophytica sp. nov., a new subaerial tropical green alga. Biologia, 58, 503–507.Google Scholar
Neustupa, J. and Škaloud, P. (2008). Diversity of subaerial algae and cyanobacteria on tree bark in tropical mountain habitats. Biologia, 63, 806–812.CrossRefGoogle Scholar
Nienow, J. A. (1996). Ecology of subaerial algae. Nova HedwigiaBeiheft, 112, 537–552.Google Scholar
Novis, P. M. (2006). Taxonomy of Klebsormidium (Klebsormidiales, Charophyceae) in New Zealand streams and the significance of low-pH habitats. Phycologia, 45, 293–301.CrossRefGoogle Scholar
Ong, B. L., Lim, M. and Wee, Y. C. (1992). Effects of desiccation and illumination on photosynthesis and pigmentation of an edaphic population of Trentepohlia odorata (Chlorophyta). Journal of Phycology, 28, 768–772.CrossRefGoogle Scholar
Oren, A. (2007). Diversity of organic osmotic compounds and osmotic adaptation in cyanobacteria and algae. In Algae and Cyanobacteria in Extreme Environments, ed. Seckbach, J.. Dordrecht: Springer, pp. 641–655.Google Scholar
Printz, H. (1939). Vorarbeiten zu einer Monographie der Trentepohliaceen. Nytt Magasin for Naturvbidenskapene, 80, 137–210.Google Scholar
Pröschold, T. and Leliaert, F. (2007). Systematics of the green algae: conflict of classic and modern approaches. In Unravelling the Algae: the Past, Present and Future of Algal Systematics, ed. Brodie, J. and Lewis, J.. Systematics Association Special Volume 75. Boca Raton, FL: CRC Press, pp. 123–153.Google Scholar
Reisser, W. (2007). The hidden life of algae underground. In Algae and Cyanobacteria in Extreme Environments, ed. Seckbach, J.. Dordrecht: Springer, pp. 47–58.Google Scholar
Reisser, W. and Houben, P. (2001). Different strategies of aeroterrestrial algae in reacting to increased levels of UV-B and ozone. Nova Hedwigia Beiheft, 123, 291–296.Google Scholar
Rindi, F. (2007). Diversity, distribution and ecology of green algae and cyanobacteria in urban habitats. In Algae and Cyanobacteria in Extreme Environments, ed. Seckbach, J.. Dordrecht: Springer, pp. 571–582.Google Scholar
Rindi, F. and Guiry, M. D. (2002). Diversity, life history and ecology of Trentepohlia and Printzina (Trentepohliales, Chlorophyta) in urban habitats in western Ireland. Journal of Phycology, 38, 39–54.CrossRefGoogle Scholar
Rindi, F. and Guiry, M. D. (2004). Composition and spatial variability of terrestrial algal assemblages occurring at the bases of urban walls in Europe. Phycologia, 43, 225–235.CrossRefGoogle Scholar
Rindi, F. and López-Bautista, J. M. (2007). New and interesting records of Trentepohlia (Trentepohliales, Chlorophyta) from French Guiana, including the description of two new species. Phycologia, 46, 698–708.CrossRefGoogle Scholar
Rindi, F. and López-Bautista, J. M. (2008). Diversity and ecology of Trentepohliales (Ulvophyceae, Chlorophyta) in French Guiana. Cryptogamie Algologie, 29, 13–43.Google Scholar
Rindi, F., Guiry, M. D., Barbiero, R. P. and Cinelli, F. (1999). The marine and terrestrial Prasiolales (Chlorophyta) of Galway City, Ireland: a morphological and ecological study. Journal of Phycology, 35, 469–482.CrossRefGoogle Scholar
Rindi, F., López-Bautista, J. M., Sherwood, A. R. and Guiry, M. D. (2006). Morphology and phylogenetic position of Spongiochrysis hawaiiensis gen. et sp. nov., the first known terrestrial member of the order Cladophorales (Ulvophyceae, Chlorophyta). International Journal of Systematic and Evolutionary Microbiology, 56, 913–922.CrossRefGoogle Scholar
Rindi, F., McIvor, L., Sherwood, A. R. et al. (2007). Molecular phylogeny of the green algal order Prasiolales (Trebouxiophyceae, Chlorophyta). Journal of Phycology, 43, 811–822.CrossRefGoogle Scholar
Rindi, F., Guiry, M. D. and López-Bautista, J. M. (2008a). Distribution, morphology and phylogeny of Klebsormidium (Klebsormidiales, Charophyceae) in urban environments in Europe. Journal of Phycology, 44, 1529–1540.CrossRefGoogle Scholar
Rindi, F., Lam, D. W. and López-Bautista, J. M. (2008b). Trentepohliales (Ulvophyceae, Chlorophyta) from Panama. Nova Hedwigia, 87, 421–444.CrossRefGoogle Scholar
Rindi, F., Lam, D. W. and López-Bautista, J. M. (2009). Phylogenetic relationships and species circumscription in Trentepohlia and Printzina (Trentepohliales, Chlorophyta). Molecular Phylogenetics and Evolution, 52, 329–339.CrossRefGoogle Scholar
Robinson, S., Wasley, J. and Tobin, A. K. (2003). Living on the edge: plants and global change in continental and maritime Antarctica. Global Change Biology, 9, 1681–1717.CrossRefGoogle Scholar
Schippers, P., Lurling, M. and Scheffer, M. (2004). Increase of atmospheric CO2 promotes phytoplankton productivity. Ecology Letters, 6, 446–451.CrossRefGoogle Scholar
Schubert, H., Kroom, B. M. A. and Matthijs, H. C. P. (1994). In-vivo manipulation of the xanthophyll cycle and the role of zeaxanthin in the protection against photodamage in the green alga Chlorella pyrenoidosa. Journal of Biological Chemistry, 269, 7267–7272.Google ScholarPubMed
Servais, T., Lehnert, O., Li, J., et al. (2008). The Ordovician biodiversification: revolution in the oceanic trophic chain. Lethaia, 41, 99–109.CrossRefGoogle Scholar
Sharma, N. K., Rai, A. K., Singh, S., and Brown, R. M. (2007). Airborne algae: their present status and relevance. Journal of Phycology, 43, 615–627.CrossRefGoogle Scholar
Sluiman, H. J., Guihal, C. and Mudimu, O. (2008). Assessing phylogenetic affinities and species delimitations in Klebsormidiales (Streptophyta): nuclear-encoded rDNA phylogeny and ITS secondary structure models in Klebsormidium, Hormidiella and Entransia. Journal of Phycology, 44, 183–195.CrossRefGoogle ScholarPubMed
Smith, G. M. (1950). The Freshwater Algae of the United States. New York, NY: McGraw-Hill.Google Scholar
Thompson, R. H. and Wujek, D. E. (1992). Printzina gen. nov. (Trentepohliaceae), including a description of a new species. Journal of Phycology, 28, 232–237.CrossRefGoogle Scholar
Thompson, R. H. and Wujek, D. E. (1997). Trentepohliales: Cephaleuros, Phycopeltis and Stomatochroon. Morphology, Taxonomy and Ecology. Enfield, NH: Science Publishers.Google Scholar
Tozzi, S., Schofield, O. and Falkowski, P. (2004). Historical climate change and ocean turbulence as selective agents for two key phytoplankton functional groups. Marine Ecology Progress Series, 274, 123–132.CrossRefGoogle Scholar
Trainor, F. R. and Gladych, R. (1995). Survival of algae in desiccated soil: a 35-year study. Phycologia, 34, 191–192.CrossRefGoogle Scholar
Verbruggen, H., Ashworth, M., LoDuca, S. T. et al. (2009). A multi-locus time calibrated phylogeny of the siphonous green algae. Molecular Phylogenetics and Evolution, 50, 642–653.CrossRefGoogle ScholarPubMed
Watanabe, S., Mitsui, K., Nakayama, T. and Inouye, I. (2006). Phylogenetic relationships and taxonomy of sarcinoid green algae: Chlorosarcinopsis, Desmotetra, Sarcinochlamys, gen. nov., Neochlorosarcina and Chlorosphaeropsis (Chlorophyceae, Chlorophyta). Journal of Phycology, 42, 679–695.CrossRefGoogle Scholar
Wee, Y. C. and Lee, K. B. (1980). Proliferation of algae on surfaces of buildings in Singapore. International Biodeteration Bulletin, 16, 113–117.Google Scholar
Wong, C. Y., Chu, W. L., Marchant, H. and Phang, S. M. (2007). Comparing the responses of Antarctic, tropical and temperate microalgae to ultraviolet radiation stress. Journal of Applied Phycology, 19, 689–699.CrossRefGoogle Scholar
Wright, R. F., Alewell, C., Cullen, J. M. et al. (2001). Trends in nitrogen deposition and leaching in acid-sensitive streams. Hydrological and Earth Systems Science, 5, 299–310.CrossRefGoogle Scholar
Xiong, F., Komenda, J., Kopecky, J. and Nedbal, L. (1997). Strategies of ultraviolet-B protection in microscopic algae. Physiologia Plantarum, 100, 378–388.CrossRefGoogle Scholar
Xiong, F., Kopecky, J. and Nedbal, L. (1999). The occurrence of UV-B adsorbing mycosporine-like amino acids in freshwater and terrestrial microalgae (Chlorophyta). Aquatic Botany, 63, 37–49.CrossRefGoogle Scholar
Yoon, H. S., Hackett, J. D., Ciniglia, C., Pinto, G. and Bhattacharya, D. (2004). A molecular timeline for the origin of photosynthetic eukaryotes. Molecular Biology and Evolution, 21, 809–818.CrossRefGoogle ScholarPubMed
Zhang, J. M., Huss, V. A. R., Sun, X. P., Chang, K. J. and Pang, D. B. (2008). Morphology and phylogenetic position of a trebouxiophycean green alga (Chlorophyta) growing on the rubber tree, Hevea brasiliensis, with the description of a new genus and species. European Journal of Phycology, 43, 185–193.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×