Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-17T22:20:37.146Z Has data issue: false hasContentIssue false

11 - Neural networks as statistical methods in survival analysis

Published online by Cambridge University Press:  06 October 2009

Richard Dybowski
Affiliation:
King's College London
Vanya Gant
Affiliation:
University College London Hospitals NHS Trust, London
Get access

Summary

Introduction

Artificial neural networks are increasingly being seen as an addition to the statistics toolkit that should be considered alongside both classical and modern statistical methods. Reviews in this light have been given by one of us (Ripley 1993, 1994a–c, 1996) and Cheng & Titterington (1994) and it is a point of view that is being widely accepted by the mainstream neural networks community. There are now many texts (Hertz et al. 1991; Haykin 1994; Bishop 1995; Ripley 1996) covering the wide range of artificial neural networks; we concentrate here on methods that we see as most appropriate generally in medicine, and in particular on methods for survival data that have not to our knowledge been reviewed in depth (although Schwarzer et al. (1997) reviewed a large number of applications in oncology). In particular, we point out the many different ways classification networks have been used for survival data, as well as their many flaws.

Most applications of artificial neural networks to medicine are classification problems; that is, the task is on the basis of the measured features to assign the patient (or biopsy or electroencephalograph or …) to one of a small set of classes. Baxt (1995) gave a table of applications of neural networks in clinical medicine that are almost all of this form, including those in laboratories (Dybowski & Gant 1995).

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×