Book contents
- Frontmatter
- Contents
- Contributors
- Case studies
- Preface to the second edition
- Preface to the first edition
- Abbreviations
- Introduction
- Section 1 Physiological MR techniques
- Section 2 Cerebrovascular disease
- Chapter 13 Cerebrovascular disease
- Chapter 14 Magnetic resonance spectroscopy in stroke
- Chapter 15 Diffusion and perfusion MR in stroke
- Chapter 16 Arterial spin labeling in stroke
- Chapter 17 Magnetic resonance diffusion tensor imaging in stroke
- Chapter 18 Magnetic resonance spectroscopy in severe obstructive carotid artery disease
- Chapter 19 Perfusion and diffusion imaging in chronic carotid disease
- Chapter 20 Susceptibility imaging and stroke
- Section 3 Adult neoplasia
- Section 4 Infection, inflammation and demyelination
- Section 5 Seizure disorders
- Section 6 Psychiatric and neurodegenerative diseases
- Section 7 Trauma
- Section 8 Pediatrics
- Section 9 The spine
- Index
- References
Chapter 19 - Perfusion and diffusion imaging in chronic carotid disease
from Section 2 - Cerebrovascular disease
Published online by Cambridge University Press: 05 March 2013
- Frontmatter
- Contents
- Contributors
- Case studies
- Preface to the second edition
- Preface to the first edition
- Abbreviations
- Introduction
- Section 1 Physiological MR techniques
- Section 2 Cerebrovascular disease
- Chapter 13 Cerebrovascular disease
- Chapter 14 Magnetic resonance spectroscopy in stroke
- Chapter 15 Diffusion and perfusion MR in stroke
- Chapter 16 Arterial spin labeling in stroke
- Chapter 17 Magnetic resonance diffusion tensor imaging in stroke
- Chapter 18 Magnetic resonance spectroscopy in severe obstructive carotid artery disease
- Chapter 19 Perfusion and diffusion imaging in chronic carotid disease
- Chapter 20 Susceptibility imaging and stroke
- Section 3 Adult neoplasia
- Section 4 Infection, inflammation and demyelination
- Section 5 Seizure disorders
- Section 6 Psychiatric and neurodegenerative diseases
- Section 7 Trauma
- Section 8 Pediatrics
- Section 9 The spine
- Index
- References
Summary
Introduction
Diseases affecting the arterial supply to and distribution within the brain often interfere with central nervous system (CNS) metabolism. Such interference, which frequently results from internal carotid artery (ICA) pathology, can lead to the onset of clinical symptoms, signaling the need for investigation of the brain via an appropriate imaging modality. Imaging has historically been used to exclude the presence of pathology such as hemorrhage, neoplasm, or infection and latterly to investigate hemodynamic cause and status. The nature of metabolic change and the onset of associated symptoms can be broadly classified as being either acute or chronic. In the acute case (“brain attack”), an abrupt alteration in brain function resulting from changes in vascular supply, which are non-transient, is termed stroke. The ability of a healthcare system to respond quickly and effectively to the presentation of acute stroke may well depend heavily on the provision of imaging technology: the applications of diffusion and perfusion MR imaging (MRI) in this context are detailed elsewhere (Ch. 15). This chapter will concentrate on the utility of perfusion and diffusion in the context of chronic ICA disease. The majority of carotid disease is atherosclerotic, and so emphasis will be placed on this pathology.
Alterations to the brain’s vascular supply, hemodynamic failure, and the search for clinically relevant physiological indicators
Patients with chronic cerebrovascular blood supply deficits often present with a history of symptoms such as those associated with transient ischemic attacks (TIAs), amaurosis fugax, or having experienced an episode of minor or non-disabling stroke. Sometimes they have experienced more than one such ischemic event. They may be at high risk of having a significant disabling stroke and although previous symptoms may have had sudden onset, for the purposes of this chapter, their speedy resolution classifies their overall disease state as being chronic. In the clinical setting, the overall aim of imaging in this patient group is to aid the prevention of recurrent ischemia, thereby reducing the risk of disabling stroke.
- Type
- Chapter
- Information
- Clinical MR NeuroimagingPhysiological and Functional Techniques, pp. 258 - 272Publisher: Cambridge University PressPrint publication year: 2009