Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-swr86 Total loading time: 0 Render date: 2024-07-17T17:40:24.812Z Has data issue: false hasContentIssue false

Chapter 33 - Seizure disorders

overview

from Section 5 - Seizure disorders

Published online by Cambridge University Press:  05 March 2013

Jonathan H. Gillard
Affiliation:
University of Cambridge
Adam D. Waldman
Affiliation:
Imperial College London
Peter B. Barker
Affiliation:
The Johns Hopkins University School of Medicine
Get access

Summary

Seizures and epilepsies

Epilepsy is the most common of disabling neurological conditions, and seizures are among the most common of neurological symptoms. Seizures are paroxysmal, transitory events that alter consciousness or other cortical function, and they result from episodic neurologic, psychiatric, or extracerebral (particularly cardiovascular) dysfunction. Epileptic seizures are distinguished from other such events by their abnormally synchronized electrical discharges in localized or widely distributed groups of cerebral neurons; such hypersynchronous discharges do not occur during organic or psychogenic non-epileptic seizures, certain of which may produce behaviors closely resembling those of epileptic seizures. Many individuals experience a single generalized tonic–clonic seizure at some time in life, which can be caused by electrolyte disturbances, hypoglycemia, or other extracerebral conditions. Epilepsy is diagnosed only when persisting cerebral dysfunction causes recurring epileptic seizures. Approximately 5% of the general population has one or more epileptic seizure during their lifetimes. At any point in time, 1–2% of the population has epilepsy; cumulative lifetime incidence exceeds 3%. Seizures are refractory to control with antiepileptic drugs in more than 30% of all epilepsies, but the incidence of drug refractoriness varies considerably across the wide range of epileptic syndromes.[3]

Type
Chapter
Information
Clinical MR Neuroimaging
Physiological and Functional Techniques
, pp. 519 - 525
Publisher: Cambridge University Press
Print publication year: 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Engel, J Jr.Seizures and Epilepsy. Philadelphia: F A Davis, 1989.Google ScholarPubMed
Engel, J Jr, Pedley, TA (eds.). Epilepsy: A Comprehensive Textbook, 2nd edn. Philadelphia, PA: Lippincott-Raven, 2007.
Kwan, P, Brodie, MJ.Effectiveness of first antiepileptic drug. Epilepsia 2001; 42: 1255–1260.CrossRefGoogle ScholarPubMed
Steriade, M.Cellular substrates of brain rhythms. In Electroencephalography: Basic Principles, Clinical Applications, and Related Fields, 3rd edn, eds. Niedermeyer, E, Lopes da Silva, FBaltimore, MD: Williams & Wilkins, 1993, pp. 27–62.Google Scholar
Wasterlain, CG.Mortality and morbidity from serial seizures. Epilepsia 1974; 15: 155–176.CrossRefGoogle ScholarPubMed
Chang, BS, Lowenstein, DH.Mechanisms of disease: epilepsy. N Engl J Med 2003; 349: 1257–1266.CrossRefGoogle Scholar
Latchaw, RE, Kucharczyk, J, Moseley, ME (eds.). Diagnostic and Therapeutic Imaging of the Nervous System, Philadelphia, PA: Lippincott Williams & Wilkins, 2005.
Cascino, GD, Jack, CR (eds.). Neuroimaging in Epilepsy: Principles and PracticePhiladelphia, PA: Butterworth-Heinemann, 1996.
Duncan, JS. Imaging and epilepsy. Brain 1997; 120: 339–377.CrossRefGoogle ScholarPubMed
Engel, J Jr.Surgery for seizures. N Engl J Med 1996; 334: 647–652.CrossRefGoogle ScholarPubMed
Kuzniecky, RI, Jackson, GD (eds.). Magnetic Resonance in Epilepsy: Neuroimaging Techniques, 2nd edn. Amsterdam: Elsevier, 2005.
Wiebe, S, Blume, WT, Girvin, JP, Eliasziw, M.A randomized, controlled trial of surgery for temporal-lobe epilepsy. N Engl J Med 2001; 345: 311–318.CrossRefGoogle ScholarPubMed
Spencer, SS, Bautista, RED.Functional neuroimaging in localization of the ictal onset zone. In Functional Imaging in the Epilepsies, eds. Henry, TR, Berkovic, SF, Duncan, JS. Philadelphia, PA:Lippincott Williams & Wilkins, 2000, pp. 285–296.Google Scholar
Henry, TR, Mazziotta, JC, Engel, J., et al. Quantifying interictal metabolic activity in human temporal lobe epilepsy. J Cerebr Blood Flow Metab 1990; 10: 748–757.CrossRefGoogle ScholarPubMed
Engel, J, Kuhl, DE, Phelps, ME.Patterns of human local cerebral glucose metabolism during epileptic seizures. Science 1982; 218: 64–66.CrossRefGoogle ScholarPubMed
Berkovic, SF.The neurobiology of ictal SPECT. In Functional Imaging in the Epilepsies eds. Henry, TR, Berkovic, SF, Duncan, JS. Philadelphia, PA: Lippincott Williams & Wilkins, 2000, pp. 103–110.Google Scholar
Lee, BI, Markand, ON, Wellman, HN, et al. HIPDM-SPECT in patients with medically intractable complex partial seizures. Arch Neurol 1988; 45: 397–412.CrossRefGoogle ScholarPubMed
van Paesschen, W, Dupont, P, van Driel, G, van Billoen, H, Maes, A.SPECT perfusion changes during complex partial seizures in patients with hippocampal sclerosis. Brain 2003; 126: 1103–1111.CrossRefGoogle ScholarPubMed
Newton, MR, Berkovic, SF, Austin, MC, et al. Dystonia, clinical lateralization, and regional blood flow changes in temporal lobe seizures. Neurology 1992; 42: 371–377.CrossRefGoogle ScholarPubMed
Gaillard, WD, Fazilat, S, White, S, et al. Interictal metabolism and blood flow are uncoupled in temporal cortex of patients with complex partial epilepsy. Neurology 1995; 45: 1841–1847.CrossRefGoogle ScholarPubMed
Duncan, JS. [11C]Flumazenil PET in partial epilepsies. In Functional Imaging in the Epilepsies, eds. Henry, TR, Berkovic, SF, Duncan, JS. Philadelphia, PA:Lippincott Williams & Wilkins, 2000, pp. 204–211.Google Scholar
Henry, TR, Frey, KA, Sackellares, JC, et al. In vivo cerebral metabolism and central benzodiazepine-receptor binding in temporal lobe epilepsy. Neurology 1993; 43: 1998–2006.CrossRefGoogle ScholarPubMed
Savic, I, Thorell, JO, Roland, P.[11C]Flumazenil positron emission tomography visualizes frontal epileptogenic regions. Epilepsia 1995; 36: 1225–1232.CrossRefGoogle ScholarPubMed
Juhasz, C, Chugani, DC, Muzik, O, et al. Alpha-methyl-l-tryptophan PET detects epileptogenic cortex in children with intractable epilepsy. Neurology 2003; 60: 960–968.CrossRefGoogle Scholar
Ebisu, T, Rooney, WD, Graham, SH, Weiner, MW, Maudsley, AA. N-Acetylaspartate as an in vivo marker of neuronal viability in kainate-induced status epilepticus: 1H magnetic resonance spectroscopic imaging. J Cereb Blood Flow Metab 1994; 14: 373–382.CrossRefGoogle Scholar
Jackson, GD, Opdam, HI.Ictal fMRI: methods and models. In Functional Imaging in the Epilepsies, eds. Henry, TR, Duncan, JS, Berkovic, SF. Philadelphia, PA: Lippincott Williams & Wilkins, 2000, pp. 203–211.Google Scholar
Meric, B, Barrere, B, Peres, M, et al. Effects of kainate-induced seizures on brain metabolism: a combined 1H and 31P NMR study in rat. Brain Res 1994; 638: 53–60.CrossRefGoogle ScholarPubMed
Najm, I, Wang, Y, Hong, SC, et al. Temporal changes in proton MRS metabolites after kainic acid-induced seizures in rat brain. Epilepsia 1997; 38: 87–94.CrossRefGoogle ScholarPubMed
Najm, IM, Wang, Y, Shedid, D, et al. MRS metabolic markers of seizures and seizure-induced neuronal damage. Epilepsia 1998; 39: 244–250.CrossRefGoogle ScholarPubMed
Nakasu, Y, Nakasu, S, Morikawa, S, et al. Diffusion-weighted MR in experimental sustained seizures elicited with kainic acid. AJNR Am J Neuroradiol 1995; 16: 1185–1192.Google ScholarPubMed
Wall, CJ, Kendall, EJ, Obenaus, A.Rapid alterations in diffusion-weighted images with anatomic correlates in a rodent model of status epilepticus. AJNR Am J Neuroradiol 2000; 21: 1841–1852.Google Scholar
Wang, Y, Majors, A, Najm, I, et al. Postictal alteration of sodium content and apparent diffusion coefficient in epileptic rat brain induced by kainic acid. Epilepsia 1996; 37: 1000–1006.CrossRefGoogle ScholarPubMed
Diehl, B, Najm, I, Ruggieri, P, et al. Postictal diffusion-weighted imaging for the localization of focal epileptic areas in temporal lobe epilepsy. Epilepsia 2001; 42: 21–28.CrossRefGoogle ScholarPubMed
Flacke, S, Wullner, U, Keller, E, Hamzei, F, Urbach, H.Reversible changes in echo planar perfusion- and diffusion-weighted MRI in status epilepticus. Neuroradiology 2001; 42: 92–95.CrossRefGoogle Scholar
Henry, TR, Drury, I, Brunberg, JA, et al. Focal cerebral magnetic resonance changes associated with partial status epilepticus. Epilepsia 1994; 35: 35–41.CrossRefGoogle ScholarPubMed
Lansberg, MG, O-Brien, MW, Norbash, AM, et al. MRI abnormalities associated with partial status epilepticus. Neurology 1999; 52: 1021–1027.CrossRefGoogle ScholarPubMed
Warach, S, Levin, JM, Schomer, DL, Holman, BL, Edelman, RR.Hyperperfusion of ictal seizure focus demonstrated by MR perfusion imaging. AJNR Am J Neuroradiol 1994; 15: 965–968.Google ScholarPubMed
Perez, ER, Maeder, P, Villemure, KM, et al. Acquired hippocampal damage after temporal lobe seizures in 2 infants. Ann Neurol 2000; 48: 384–387.3.0.CO;2-N>CrossRefGoogle ScholarPubMed
Pirttila, TR, Pitkanen, A, Tuunanen, J, Kauppinen, RA.Ex vivo MR microimaging of neuronal damage after kainate-induced status epilepticus in rat: correlation with quantitative histology. Magn Res Med 2001; 46: 946–954.CrossRefGoogle ScholarPubMed
Salmenpera, T, Kalviainen, R, Partanen, K, Mervaala, E, Pitkanen, A.MRI volumetry of the hippocampus, amygdala, entorhinal cortex, and perirhinal cortex after status epilepticus. Epilepsy Res 2000; 40: 155–170.CrossRefGoogle ScholarPubMed
Briellmann, RS, Berkovic, SF, Syngeniotis, A, King, MA, Jackson, GD.Seizure-associated hippocampal volume loss: a longitudinal magnetic resonance study of temporal lobe epilepsy. Ann Neurol 2002; 51: 641–644.CrossRefGoogle ScholarPubMed
O’Brien, TJ, So, EL, Meyer, FB, Parisi, JE, Jack, CR.Progressive hippocampal atrophy in chronic intractable temporal lobe epilepsy. Ann Neurol 1999; 45: 526–529.3.0.CO;2-N>CrossRefGoogle ScholarPubMed
Kobayashi, E, D’Agostino, MD, Lopes-Cendes, I, et al. Hippocampal atrophy and T2-weighted signal changes in familial mesial temporal lobe epilepsy. Neurology 2003; 60: 405–409.CrossRefGoogle Scholar
Henry, TR.Functional imaging studies of epilepsy therapies. In Functional Imaging in the Epilepsies, eds. Henry, TR, Berkovic SF, Duncan JS. Philadelphia, PA:Lippincott Williams & Wilkins, 2000, pp. 305–317.Google Scholar
Baron, JC, Roeda, D, Munari, C, et al. Brain regional pharmacokinetics of 11C-labeled diphenylhydantoin positron emission tomography in humans. Neurology 1983; 33: 580–585.CrossRefGoogle ScholarPubMed
Henry, TR, Votaw, JR, Pennell, PB, et al. Acute blood flow changes and efficacy of vagus nerve stimulation in partial epilepsy. Neurology 1999; 52: 1166–1173.CrossRefGoogle ScholarPubMed
Hajek, M, Wieser H-, G, Khan, N, et al. Preoperative and postoperative glucose consumption in mesiobasal and lateral temporal lobe epilepsy. Neurology 1994; 44: 2125–2132.CrossRefGoogle ScholarPubMed
Hugg, JW, Kuzniecky, RI, Gilliam, FG, et al. Normalization of contralateral metabolic function following temporal lobectomy demonstrated by 1H magnetic resonance spectroscopic imaging. Ann Neurol 1996; 40: 236–239.CrossRefGoogle ScholarPubMed
Pan, JW, Bebin, EM, Chu, WJ, Hetherington, HP.Ketosis and epilepsy: 31P spectroscopic imaging at 4.1 T. Epilepsia 1999; 40: 703–707.CrossRefGoogle ScholarPubMed
Seymour, KJ, Bluml, S, Sutherling, J, Sutherling, W, Ross, BD.Identification of cerebral acetone by 1H-MRS in patients with epilepsy controlled by ketogenic diet. MAGMA 1999; 8: 33–42.Google ScholarPubMed
Theodore, WH.Antiepileptic drugs and cerebral glucose metabolism. Epilepsia 1988; 29(Suppl 2): S48–S55.CrossRefGoogle ScholarPubMed
Petroff, OA, Mattson, RH, Rothman, DL.Proton MRS: GABA and glutamate. In Functional Imaging in the Epilepsies, eds. Henry, TR, Berkovic, SF, Duncan, JS. Philadelphia, PA:Lippincott Williams & Wilkins, 2000, pp. 261–271.Google Scholar
Prevett, MC, Lammertsma, AA, Brooks, DJ, et al. Benzodiazepine-GABAA receptors in idiopathic generalized epilepsy measured with [11C]flumazenil and positron emission tomography. Epilepsia 1995; 36: 113–121.CrossRefGoogle ScholarPubMed
Ugurbil, K, Adriany, G, Andersen, P, et al. Ultrahigh field magnetic resonance imaging and spectroscopy. Magn Reson Imaging 2003; 21: 1263–1281.CrossRefGoogle ScholarPubMed
Lee, S-P, Silva, AC, Ugurbil, K, Kim S-, G.Diffusion-weighted spin-echo fMRI at 9.4 T: microvascular/tissue contribution to BOLD signal changes. Magn Reson Med 1999; 42: 919–928.3.0.CO;2-8>CrossRefGoogle Scholar
Nakada, T, Matsuzawa, H, Kwee, IL.High-resolution imaging with high and ultra high-field magnetic resonance imaging systems. Neuroreport 2008; 19: 7–13.CrossRefGoogle ScholarPubMed
Adriany, G, van de Moortele, PF, Wiesinger, F, et al. Transmit and receive transmission line arrays for 7 Tesla parallel imaging. Magn Reson Med 2005; 53: 434–445.CrossRefGoogle ScholarPubMed
Van de Moortele, PF, Akgun, C, Adriany, G, et al. B1destructive interferences and spatial phase patterns at 7 T with a head transceiver array coil. Magn Reson Med 2005; 54: 1503–1518.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×