Skip to main content Accessibility help
×
Hostname: page-component-84b7d79bbc-4hvwz Total loading time: 0 Render date: 2024-07-31T22:19:42.512Z Has data issue: false hasContentIssue false

8 - MRS in epilepsy

Published online by Cambridge University Press:  04 August 2010

Peter B. Barker
Affiliation:
The Johns Hopkins University School of Medicine
Alberto Bizzi
Affiliation:
Istituto Neurologico Carlo Besta, Milan
Nicola De Stefano
Affiliation:
Università degli Studi, Siena
Rao Gullapalli
Affiliation:
University of Maryland, Baltimore
Doris D. M. Lin
Affiliation:
The Johns Hopkins University School of Medicine
Get access

Summary

Key points

  • MRS is principally used as an adjunct diagnostic technique for evaluating patients with medically intractable epilepsy (in order to identify the seizure focus).

  • Most commonly, NAA is reduced in epileptogenic tissue; metabolic abnormalities are often subtle.

  • Metabolic abnormalities may be more widespread than seen on MRI, and present in the contralateral hemisphere.

  • MRS may occasionally be helpful when other techniques (e.g. MRI) are either normal or non-specific.

  • MRS measures of the inhibitory neurotransmitter GABA using spectral editing may help determine optimal drug regimen.

  • MRS may also be a useful research tool for determining epileptogenic networks in the brain.

Introduction

Epilepsy, the condition of recurrent seizures, is a relatively common neurological disorder, estimated to affect between 1 and 2 million people in the US alone. A multitude of etiologies cause epilepsy, including tumors, developmental abnormalities, febrile illness, trauma, or infection. However, not infrequently, the cause is unknown. Many patients with epilepsy can be successfully treated pharmacologically, but when medical management fails to adequately control seizure activity, surgical resection of the epileptogenic tissue may be considered. For surgery to be successful, seizures must be of focal onset from a well-defined location. It has been estimated that up to 10% of patients with epilepsy are medically intractable, of whom approximately 20% may be candidates for surgical treatment. Traditionally, scalp electroencephalography (EEG) and often invasive (subdural grid or depth electrode) EEG are used to identify the epileptogenic regions of the brain, but increasingly magnetic resonance imaging (MRI), positron emission tomography (PET), ictal single photon emission computed tomography (SPECT), and, more recently, magnetoencephalography (MEG) are also used.

Type
Chapter
Information
Clinical MR Spectroscopy
Techniques and Applications
, pp. 131 - 143
Publisher: Cambridge University Press
Print publication year: 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Watson, CJack, CR, Cendes, F. Volumetric magnetic resonance imaging. Clinical applications and contributions to the understanding of temporal lobe epilepsy. Arch Neurol 1997; 54: 1521–31.CrossRefGoogle ScholarPubMed
Jack, CRHippocampal T2 relaxometry in epilepsy: past, present, and future. Am J Neuroradiol 1996; 17: 1811–4.Google ScholarPubMed
Jackson, GD, Connelly, A, Duncan, JS, Grunewald, RA, Gadian, DG. Detection of hippocampal pathology in intractable partial epilepsy: increased sensitivity with quantitative magnetic resonance T2 relaxometry. Neurology 1993; 43: 1793–9.CrossRefGoogle ScholarPubMed
Jack, CR, Rydberg, CH, Krecke, KN, Trenerry, MR, Parisi, JE, Rydberg, JN, et al. Mesial temporal sclerosis: diagnosis with fluid-attenuated inversion – recovery versus spin–echo MR imaging. Radiology 1996; 199: 367–73.CrossRefGoogle ScholarPubMed
Cendes, F, Andermann, F, Gloor, P, Evans, A, Jones-Gotman, M, Watson, C, et al. MRI volumetric measurement of amygdala and hippocampus in temporal lobe epilepsy. Neurology 1993; 43: 719–25.CrossRefGoogle ScholarPubMed
Jack, CR, Sharbrough, FW, Twomey, CK, Cascino, GD, Hirschorn, KA, Marsh, WR, et al. Temporal lobe seizures: lateralization with MR volume measurements of the hippocampal formation. Radiology 1990; 175: 423–9.CrossRefGoogle ScholarPubMed
Jack, CRMRI-based hippocampal volume measurements in epilepsy. Epilepsia 1994; 35(Suppl 6): S21–9.CrossRefGoogle ScholarPubMed
Spencer, SS. MRI and epilepsy surgery. Neurology 1995; 45: 1248–50.CrossRefGoogle ScholarPubMed
Jack, CR, Trenerry, MR, Cascino, GD, Sharbrough, FW, So, EL, O'Brien, PC. Bilaterally symmetric hippocampi and surgical outcome. Neurology 1995; 45: 1353–8.CrossRefGoogle ScholarPubMed
Berkovic, SF, McIntosh, AM, Kalnins, RM, Jackson, GD, Fabinyi, GC, Brazenor, GA, et al. Preoperative MRI predicts outcome of temporal lobectomy: an actuarial analysis. Neurology 1995; 45: 1358–63.CrossRefGoogle ScholarPubMed
Duncan, JS. Imaging and epilepsy. Brain 1997; 120(Pt 2): 339–77.CrossRefGoogle ScholarPubMed
Fisher, RS, Frost, JJ. Epilepsy. J Nucl Med 1991; 32: 651–9.Google ScholarPubMed
Engel, JThe use of positron emission tomographic scanning in epilepsy. Ann Neurol 1984; 15(Suppl): S180–91.CrossRefGoogle ScholarPubMed
Heiss, WD, Turnheim, M, Vollmer, R, Rappelsberger, P. Coupling between neuronal activity and focal blood flow in experimental seizures. Electroencephalogr Clin Neurophysiol 1979; 47: 396–403.CrossRefGoogle ScholarPubMed
Franck, G, Salmon, E, Sadzot, B, Maquet, P. Epilepsy: the use of oxygen-15-labeled gases. Semin Neurol 1989; 9: 307–16.CrossRefGoogle ScholarPubMed
Duncan, R, Patterson, J, Hadley, DM, Wyper, DJ, McGeorge, AP, Bone, I. Tc99m HM-PAO single photon emission computed tomography in temporal lobe epilepsy. Acta Neurol Scand 1990; 81: 287–93.CrossRefGoogle ScholarPubMed
Pizzini, F, Farace, P, Zanoni, T, Magon, S, Beltramello, A, Sbarbati, A, et al. Pulsed-arterial-spin-labeling perfusion 3 T MRI following single seizure: a first case report study. Epilepsy Res 2008; 81: 225–7.CrossRefGoogle Scholar
Warach, S, Levin, JM, Schomer, DL, Holman, BL, Edelman, RR. Hyperperfusion of ictal seizure focus demonstrated by MR perfusion imaging. Am J Neuroradiol 1994; 15: 965–8.Google ScholarPubMed
Paesschen, W. Ictal SPECT. Epilepsia 2004; 45(Suppl 4): 35–40.CrossRefGoogle ScholarPubMed
Swartz, BE, Tomiyasu, U, Delgado-Escueta, AV, Mandelkern, M, Khonsari, A. Neuroimaging in temporal lobe epilepsy: test sensitivity and relationships to pathology and postoperative outcome. Epilepsia 1992; 33: 624–34.CrossRefGoogle ScholarPubMed
Petroff, OA, Prichard, JW, Behar, KL, Alger, JR, Shulman, RG. In vivo phosphorus nuclear magnetic resonance spectroscopy in status epilepticus. Ann Neurol 1984; 16: 169–77.CrossRefGoogle ScholarPubMed
Young, RS, Chen, B, Petroff, OA, Gore, JC, Cowan, BE, Novotny, EJ, et al. The effect of diazepam on neonatal seizure: in vivo 31P and 1H NMR study. Pediatr Res 1989; 25: 27–31.CrossRefGoogle ScholarPubMed
Karlik, SJ, Stavraky, RT, Taylor, AW, Fox, AJ, McLachlan, RS. Magnetic resonance imaging and 31P spectroscopy of an interictal cortical spike focus in the rat. Epilepsia 1991; 32: 446–53.CrossRefGoogle ScholarPubMed
Younkin, DP, Delivoria-Papadopoulos, M, Maris, J, Donlon, E, Clancy, R, Chance, B. Cerebral metabolic effects of neonatal seizures measured with in vivo 31P NMR spectroscopy. Ann Neurol 1986; 20: 513–9.CrossRefGoogle ScholarPubMed
Hugg, JW, Laxer, KD, Matson, GB, Maudsley, AA, Husted, CA, Weiner, MW. Lateralization of human focal epilepsy by 31P magnetic resonance spectroscopic imaging. Neurology 1992; 42: 2011–8.CrossRefGoogle ScholarPubMed
Laxer, KD, Hubesch, B, Sappey-Marinier, D, Weiner, MW. Increased pH and inorganic phosphate in temporal seizure foci demonstrated by [31P]MRS. Epilepsia 1992; 33: 618–23.CrossRefGoogle Scholar
Garcia, PA, Laxer, KD, Grond, J, Hugg, JW, Matson, GB, Weiner, MW. Phosphorus magnetic resonance spectroscopic imaging in patients with frontal lobe epilepsy. Ann Neurol 1994; 35: 217–21.CrossRefGoogle ScholarPubMed
Chu, WJ, Hetherington, HP, Kuzniecky, RJ, Vaughan, JT, Twieg, DB, Faught, RE, et al. Is the intracellular pH different from normal in the epileptic focus of patients with temporal lobe epilepsy? A 31P NMR study. Neurology 1996; 47: 756–60.CrossRefGoogle ScholarPubMed
Hetherington, HP, Kim, JH, Pan, JW, Spencer, DD. 1H and 31P spectroscopic imaging of epilepsy: spectroscopic and histologic correlations. Epilepsia 2004; 45(Suppl 4): 17–23.CrossRefGoogle ScholarPubMed
Chu, WJ, Hetherington, HP, Kuzniecky, RI, Simor, T, Mason, GF, Elgavish, GA. Lateralization of human temporal lobe epilepsy by 31P NMR spectroscopic imaging at 4.1 T. Neurology 1998; 51: 472–9.CrossRefGoogle ScholarPubMed
Pan, JW, Bebin, EM, Chu, WJ, Hetherington, HP. Ketosis and epilepsy: 31P spectroscopic imaging at 4.1 T. Epilepsia 1999; 40: 703–07.CrossRefGoogle ScholarPubMed
Pan, JW, Williamson, A, Cavus, I, Hetherington, HP, Zaveri, H, Petroff, OA, et al. Neurometabolism in human epilepsy. Epilepsia 2008; 49(Suppl 3): 31–41.CrossRefGoogle ScholarPubMed
Matthews, PM, Andermann, F, Arnold, DL. A proton magnetic resonance spectroscopy study of focal epilepsy in humans. Neurology 1990; 40: 985–9.CrossRefGoogle ScholarPubMed
Birken, DL, Oldendorf, WH. N-acetyl-l-aspartic acid: a literature review of a compound prominent in 1H-NMR spectroscopic studies of brain. Neurosci Biobehav Rev 1989; 13: 23–31.CrossRefGoogle ScholarPubMed
Dam, AM. Epilepsy and neuron loss in the hippocampus. Epilepsia 1980; 21: 617–29.CrossRefGoogle ScholarPubMed
Cendes, F, Stanley, JA, Dubeau, F, Andermann, F, Arnold, DL. Proton magnetic resonance spectroscopic imaging for discrimination of absence and complex partial seizures. Ann Neurol 1997; 41: 74–81.CrossRefGoogle ScholarPubMed
Breiter, SN, Arroyo, S, Mathews, VP, Lesser, RP, Bryan, RN, Barker, PB. Proton MR spectroscopy in patients with seizure disorders. Am J Neuroradiol 1994; 15: 373–84.Google ScholarPubMed
Connelly, A, Jackson, GD, Duncan, JS, King, MD, Gadian, DG. Magnetic resonance spectroscopy in temporal lobe epilepsy. Neurology 1994; 44: 1411–7.CrossRefGoogle ScholarPubMed
Hetherington, HP, Kuzniecky, RI, Pan, JW, Vaughan, JT, Twieg, DB, Pohost, GM. Application of high field spectroscopic imaging in the evaluation of temporal lobe epilepsy. Magn Reson Imaging 1995; 13: 1175–80.CrossRefGoogle ScholarPubMed
Ng, TC, Comair, YG, Xue, M, So, N, Majors, A, Kolem, H, et al. Temporal lobe epilepsy: presurgical localization with proton chemical shift imaging. Radiology 1994; 193: 465–72.CrossRefGoogle ScholarPubMed
Garcia, PA, Laxer, KD, Grond, J, Hugg, JW, Matson, GB, Weiner, MW. Proton magnetic resonance spectroscopic imaging in patients with frontal lobe epilepsy. Ann Neurol 1995; 37: 279–81.CrossRefGoogle ScholarPubMed
Urenjak, J, Williams, SR, Gadian, DG, Noble, M. Proton nuclear magnetic resonance spectroscopy unambiguously identifies different neural cell types. J Neurosci 1993; 13: 981–9.CrossRefGoogle ScholarPubMed
Simister, RJ, Woermann, FG, McLean, MA, Bartlett, PA, Barker, GJ, Duncan, JS. A short-echo-time proton magnetic resonance spectroscopic imaging study of temporal lobe epilepsy. Epilepsia 2002; 43: 1021–31.CrossRefGoogle ScholarPubMed
Petroff, OA, Errante, LD, Rothman, DL, Kim, JH, Spencer, DD. Neuronal and glial metabolite content of the epileptogenic human hippocampus. Ann Neurol 2002; 52: 635–42.CrossRefGoogle ScholarPubMed
Pan, JW, Venkatraman, T, Vives, K, Spencer, DD. Quantitative glutamate spectroscopic imaging of the human hippocampus. NMR Biomed 2006; 19: 209–16.CrossRefGoogle ScholarPubMed
Peeling, J, Sutherland, G. 1H magnetic resonance spectroscopy of extracts of human epileptic neocortex and hippocampus. Neurology 1993; 43(3 Pt 1): 589–94.CrossRefGoogle ScholarPubMed
Cendes, F, Andermann, F, Preul, MC, Arnold, DL. Lateralization of temporal lobe epilepsy based on regional metabolic abnormalities in proton magnetic resonance spectroscopic images. Ann Neurol 1994; 35: 211–6.CrossRefGoogle ScholarPubMed
Hugg, JW, Laxer, KD, Matson, GB, Maudsley, AA, Weiner, MW. Neuron loss localizes human temporal lobe epilepsy by in vivo proton magnetic resonance spectroscopic imaging. Ann Neurol 1993; 34: 788–94.CrossRefGoogle ScholarPubMed
Capizzano, AA, Vermathen, P, Laxer, KD, Ende, GR, Norman, D, Rowley, H, et al. Temporal lobe epilepsy: qualitative reading of 1H MR spectroscopic images for presurgical evaluation. Radiology 2001; 218: 144–51.CrossRefGoogle ScholarPubMed
Kantarci, K, Shin, C, Britton, JW, So, EL, Cascino, GD, Jack, CRComparative diagnostic utility of 1H MRS and DWI in evaluation of temporal lobe epilepsy. Neurology 2002; 58: 1745–53.CrossRefGoogle ScholarPubMed
Cendes, F, Caramanos, Z, Andermann, F, Dubeau, F, Arnold, DL. Proton magnetic resonance spectroscopic imaging and magnetic resonance imaging volumetry in the lateralization of temporal lobe epilepsy: a series of 100 patients. Ann Neurol 1997; 42: 737–46.CrossRefGoogle ScholarPubMed
Ende, GR, Laxer, KD, Knowlton, RC, Matson, GB, Schuff, N, Fein, G, et al. Temporal lobe epilepsy: bilateral hippocampal metabolite changes revealed at proton MR spectroscopic imaging. Radiology 1997; 202: 809–17.CrossRefGoogle ScholarPubMed
Cendes, F, Andermann, F, Dubeau, F, Matthews, PM, Arnold, DL. Normalization of neuronal metabolic dysfunction after surgery for temporal lobe epilepsy. Evidence from proton MR spectroscopic imaging. Neurology 1997; 49: 1525–33.CrossRefGoogle ScholarPubMed
Vermathen, P, Ende, G, Laxer, KD, Walker, JA, Knowlton, RC, Barbaro, NM, et al. Temporal lobectomy for epilepsy: recovery of the contralateral hippocampus measured by (1)H MRS. Neurology 2002; 59: 633–6.CrossRefGoogle ScholarPubMed
Serles, W, Li, LM, Antel, SB, Cendes, F, Gotman, J, Olivier, A, et al. Time course of postoperative recovery of N-acetyl-aspartate in temporal lobe epilepsy. Epilepsia 2001; 42: 190–7.Google ScholarPubMed
Bernasconi, A, Tasch, E, Cendes, F, Li, LM, Arnold, DL. Proton magnetic resonance spectroscopic imaging suggests progressive neuronal damage in human temporal lobe epilepsy. Prog Brain Res 2002; 135: 297–304.CrossRefGoogle ScholarPubMed
Hetherington, HP, Kuzniecky, RI, Vives, K, Devinsky, O, Pacia, S, Luciano, D, et al. A subcortical network of dysfunction in TLE measured by magnetic resonance spectroscopy. Neurology 2007; 69: 2256–65.CrossRefGoogle ScholarPubMed
Mueller, SG, Suhy, J, Laxer, KD, Flenniken, DL, Axelrad, J, Capizzano, AA, et al. Reduced extrahippocampal NAA in mesial temporal lobe epilepsy. Epilepsia 2002; 43: 1210–6.CrossRefGoogle ScholarPubMed
Capizzano, AA, Vermathen, P, Laxer, KD, Matson, GB, Maudsley, AA, Soher, BJ, et al. Multisection proton MR spectroscopy for mesial temporal lobe epilepsy. Am J Neuroradiol 2002; 23: 1359–68.Google ScholarPubMed
Mueller, SG, Laxer, KD, Cashdollar, N, Lopez, RC, Weiner, MW. Spectroscopic evidence of hippocampal abnormalities in neocortical epilepsy. Eur J Neurol 2006; 13: 256–60.CrossRefGoogle ScholarPubMed
Mueller, SG, Laxer, KD, Barakos, JA, Cashdollar, N, Flenniken, DL, Vermathen, P, et al. Identification of the epileptogenic lobe in neocortical epilepsy with proton MR spectroscopic imaging. Epilepsia 2004; 45: 1580–9.CrossRefGoogle ScholarPubMed
Li, LM, Caramanos, Z, Cendes, F, Andermann, F, Antel, SB, Dubeau, F, et al. Lateralization of temporal lobe epilepsy (TLE) and discrimination of TLE from extra-TLE using pattern analysis of magnetic resonance spectroscopic and volumetric data. Epilepsia 2000; 41: 832–42.CrossRefGoogle ScholarPubMed
Li, LM, Cendes, F, Antel, SB, Andermann, F, Serles, W, Dubeau, F, et al. Prognostic value of proton magnetic resonance spectroscopic imaging for surgical outcome in patients with intractable temporal lobe epilepsy and bilateral hippocampal atrophy. Ann Neurol 2000; 47: 195–200.3.0.CO;2-2>CrossRefGoogle ScholarPubMed
Connelly, A, Paesschen, W, Porter, DA, Johnson, CL, Duncan, JS, Gadian, DG. Proton magnetic resonance spectroscopy in MRI-negative temporal lobe epilepsy. Neurology 1998; 51: 61–6.CrossRefGoogle ScholarPubMed
Doelken, MT, Stefan, H, Pauli, E, Stadlbauer, A, Struffert, T, Engelhorn, T, et al. (1)H-MRS profile in MRI-positive versus MRI-negative patients with temporal lobe epilepsy. Seizure 2008; 17: 490–7.CrossRefGoogle ScholarPubMed
Suhy, J, Laxer, KD, Capizzano, AA, Vermathen, P, Matson, GB, Barbaro, NM, et al. 1H MRSI predicts surgical outcome in MRI-negative temporal lobe epilepsy. Neurology 2002; 58: 821–3.CrossRefGoogle ScholarPubMed
Kuzniecky, R, Hetherington, H, Pan, J, Hugg, J, Palmer, C, Gilliam, F, et al. Proton spectroscopic imaging at 4.1 tesla in patients with malformations of cortical development and epilepsy. Neurology 1997; 48: 1018–24.CrossRefGoogle ScholarPubMed
Mueller, SG, Laxer, KD, Barakos, JA, Cashdollar, N, Flenniken, DL, Vermathen, P, et al. Metabolic characteristics of cortical malformations causing epilepsy. J Neurol 2005; 252: 1082–92.CrossRefGoogle ScholarPubMed
Simister, RJ, McLean, MA, Barker, GJ, Duncan, JS. Proton magnetic resonance spectroscopy of malformations of cortical development causing epilepsy. Epilepsy Res 2007; 74: 107–15.CrossRefGoogle ScholarPubMed
Li, LM, Cendes, F, Bastos, AC, Andermann, F, Dubeau, F, Arnold, DL. Neuronal metabolic dysfunction in patients with cortical developmental malformations: a proton magnetic resonance spectroscopic imaging study. Neurology 1998; 50: 755–9.CrossRefGoogle ScholarPubMed
Leite, CC, Lucato, LT, Sato, JR, Valente, KD, Otaduy, MC. Multivoxel proton MR spectroscopy in malformations of cortical development. Am J Neuroradiol 2007; 28: 1071–5; discussion 6–7.CrossRefGoogle ScholarPubMed
Stanley, JA, Cendes, F, Dubeau, F, Andermann, F, Arnold, DL. Proton magnetic resonance spectroscopic imaging in patients with extratemporal epilepsy. Epilepsia 1998; 39: 267–73.CrossRefGoogle ScholarPubMed
Holopainen, IE, Valtonen, ME, Komu, ME, Sonninen, PH, Manner, TE, Lundbom, NM, et al. Proton spectroscopy in children with epilepsy and febrile convulsions. Pediatr Neurol 1998; 19: 93–9.CrossRefGoogle ScholarPubMed
Cross, JH, Connelly, A, Jackson, GD, Johnson, CL, Neville, BG, Gadian, DG. Proton magnetic resonance spectroscopy in children with temporal lobe epilepsy. Ann Neurol 1996; 39: 107–13.CrossRefGoogle ScholarPubMed
Hanefeld, F, Kruse, B, Holzbach, U, Christen, HJ, Merboldt, KD, Hanicke, W, et al. Hemimegalencephaly: localized proton magnetic resonance spectroscopy in vivo. Epilepsia 1995; 36: 1215–24.CrossRefGoogle ScholarPubMed
Pan, JW, Telang, FW, Lee, JH, Graaf, RA, Rothman, DL, Stein, DT, et al. Measurement of beta-hydroxybutyrate in acute hyperketonemia in human brain. J Neurochem 2001; 79: 539–44.CrossRefGoogle ScholarPubMed
Seymour, KJ, Bluml, S, Sutherling, J, Sutherling, W, Ross, BD. Identification of cerebral acetone by 1H-MRS in patients with epilepsy controlled by ketogenic diet. Magma 1999; 8: 33–42.Google ScholarPubMed
Rothman, DL, Petroff, OA, Behar, KL, Mattson, RH. Localized 1H NMR measurements of gamma-aminobutyric acid in human brain in vivo. Proc Natl Acad Sci USA 1993; 90: 5662–6.CrossRefGoogle ScholarPubMed
Petroff, OA, Rothman, DL, Behar, KL, Mattson, RH. Low brain GABA level is associated with poor seizure control. Ann Neurol 1996; 40: 908–11.CrossRefGoogle ScholarPubMed
Petroff, OA, Rothman, DL, Behar, KL, Mattson, RH. Human brain GABA levels rise after initiation of vigabatrin therapy but fail to rise further with increasing dose. Neurology 1996; 46: 1459–63.CrossRefGoogle ScholarPubMed
Petroff, OA, Hyder, F, Mattson, RH, Rothman, DL. Topiramate increases brain GABA, homocarnosine, and pyrrolidinone in patients with epilepsy. Neurology 1999; 52: 473–8.CrossRefGoogle ScholarPubMed
Petroff, OA, Rothman, DL, Behar, KL, Lamoureux, D, Mattson, RH. The effect of gabapentin on brain gamma-aminobutyric acid in patients with epilepsy. Ann Neurol 1996; 39: 95–9.CrossRefGoogle ScholarPubMed
Edden, RA, Pomper, MG, Barker, PB. In vivo differentiation of N-acetyl aspartyl glutamate from N-acetyl aspartate at 3 Tesla. Magn Reson Med 2007; 57: 977–82.CrossRefGoogle ScholarPubMed
Vermathen, P, Laxer, KD, Matson, GB, Weiner, MW. Hippocampal structures: anteroposterior N-acetylaspartate differences in patients with epilepsy and control subjects as shown with proton MR spectroscopic imaging. Radiology 2000; 214: 403–10.CrossRefGoogle ScholarPubMed
Provencher, SW. Estimation of metabolite concentrations from localized in vivo proton NMR spectra. Magn Reson Med 1993; 30: 672–9.CrossRefGoogle ScholarPubMed
Hetherington, H, Kuzniecky, R, Pan, J, Mason, G, Morawetz, R, Harris, C, et al. Proton nuclear magnetic resonance spectroscopic imaging of human temporal lobe epilepsy at 4.1 T. Ann Neurol 1995; 38: 396–404.CrossRefGoogle ScholarPubMed
Bonekamp, D, Horska, A, Jacobs, MA, Arslanoglu, A, Barker, PB. Fast method for brain image segmentation: application to proton magnetic resonance spectroscopic imaging. Magn Reson Med 2005; 54: 1268–72CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×