Skip to main content Accessibility help
×
Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-20T19:54:31.192Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  23 November 2009

Jerry M. Straka
Affiliation:
University of Oklahoma
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Cloud and Precipitation Microphysics
Principles and Parameterizations
, pp. 371 - 384
Publisher: Cambridge University Press
Print publication year: 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andsager, K., Beard, K. V., and Laird, N. F. (1999). Laboratory measurements of axis ratios for large raindrops. J. Atmos. Sci., 56, 2673–2683.2.0.CO;2>CrossRefGoogle Scholar
Asai, T. (1965). A numerical study of the air-mass transformation over the Japan sea in winter. J. Meteorol. Soc. Jpn., 43, 1–15.CrossRefGoogle Scholar
Asai, T. and Kasahara, A. (1967). A theoretical study of the compensating downward motions associated with cumulus clouds. J. Atmos. Sci., 24, 487–496.2.0.CO;2>CrossRefGoogle Scholar
Auer, A. H. (1972). Inferences about ice nucleation from ice crystal observations. J. Atmos. Sci., 29, 311–317.2.0.CO;2>CrossRefGoogle Scholar
Aydin, K. and Seliga, T. (1984). Radar polarimetric backscattering properties of conical graupel. J. Atmos. Sci., 41, 1887–1892.2.0.CO;2>CrossRefGoogle Scholar
Bailey, M. and Hallett, J. (2004). Growth rates and habits of ice crystals between −20° and −70 °C. J. Atmos. Sci., 61, 514–544.2.0.CO;2>CrossRefGoogle Scholar
Bannon, P. R. (2002). Theoretical foundations for models of moist convection. J. Atmos. Sci., 59, 1967–1982.2.0.CO;2>CrossRefGoogle Scholar
Barge, B. L. and Isaac, G. A. (1973). The shape of Alberta hailstones. J. Rech. Atmos., 7, 11–20.Google Scholar
Bayewitz, M., Yerushalmi, H. J., Katz, S., and Shinnar, R. (1974). The extent of correlations in a stochastic coalescence process. J. Atmos. Sci., 31, 1604–1614.2.0.CO;2>CrossRefGoogle Scholar
Beard, K. (1976). Terminal velocity and shape of cloud and precipitation drops aloft. J. Atmos. Sci., 33, 851–864.2.0.CO;2>CrossRefGoogle Scholar
Beard, K. V. and Chuang, C. (1987). A new mode for the equilibrium shape of rain drops. J. Atmos. Sci., 44, 1509–1524.2.0.CO;2>CrossRefGoogle Scholar
Beard, K. V. and Ochs, H. T. (1984). Measured collection and coalescence efficiencies for accretion. J. Geophys. Res., 89, 7165–7169.CrossRefGoogle Scholar
Beard, K. V., Kubesh, R. J., and Ochs, H. T. (1991). Laboratory measurements of small raindrop distortion. Part I: Axis ratios and fall behavior. J. Atmos. Sci., 48, 698–710.2.0.CO;2>CrossRefGoogle Scholar
Beheng, K. D. (1981). Stochastic riming of plate like and columnar ice crystals. Pure Appl. Geophys., 119, 820–830.CrossRefGoogle Scholar
Beheng, K. D. (1994). A parameterization of warm cloud microphysical conversion processes. Atmos. Res., 33, 193–206.CrossRefGoogle Scholar
Beheng, K. D. and Doms, G. (1986). A general formulation of collection rates of cloud and raindrops using the kinetic equation and comparison with parameterizations. Contrib. Atmos. Phys., 59, 66–84.Google Scholar
Berry, E. X. (1967). Cloud droplet growth by collection. J. Atmos. Sci., 24, 688–701.2.0.CO;2>CrossRefGoogle Scholar
Berry, E. X. (1968a). Comments on “Cloud droplet coalescence: Statistical foundations and a one-dimensional sedimentation model.” J. Atmos. Sci., 25, 151–152.2.0.CO;2>CrossRefGoogle Scholar
Berry, E. X. (1968b). Modification of the warm rain process. Conference Proceedings, 1st National Conference on Weather Modification, Albany, NY, April 28–May 1, pp. 81–88.
Berry, E. X. and Reinhardt, R. L. (1974a). An analysis of cloud drop growth by collection: Part I. Double distributions. J. Atmos. Sci., 31, 1814–1824.2.0.CO;2>CrossRefGoogle Scholar
Berry, E. X. and Reinhardt, R. L. (1974b). An analysis of cloud drop growth by collection: Part II. Single initial distributions. J. Atmos. Sci., 31, 1825–1831.2.0.CO;2>CrossRefGoogle Scholar
Berry, E. X. and Reinhardt, R. L. (1974c). An analysis of cloud drop growth by collection: Part III. Accretion and self-collection. J. Atmos. Sci., 31, 2118–2126.2.0.CO;2>CrossRefGoogle Scholar
Berry, E. X. and Reinhardt, R. L. (1974d). An analysis of cloud drop growth by collection: Part IV. A new parameterization. J. Atmos. Sci., 31, 2127–2135.2.0.CO;2>CrossRefGoogle Scholar
Bigg, E. K. (1953). The supercooling of water. Proc. Phys. Soc. London, B66, 688–694.CrossRefGoogle Scholar
Blanchard, D. C. (1950). The behavior of water drops at terminal velocity in air. Trans. Am. Geophys. Union, 31, 836–842.CrossRefGoogle Scholar
Bleck, R. (1970). A fast approximative method for integrating the stochastic coalescence equation. J. Geophys. Res., 75, 5165–5171.CrossRefGoogle Scholar
Boren, C. F. and Albrecht, B. A. (1998). Atmospheric Thermodynamics. Oxford: Oxford University Press.Google Scholar
Bott, A. (1998). A flux method for the numerical solution of the stochastic collection equation. J. Atmos. Sci., 55, 2284–2293.2.0.CO;2>CrossRefGoogle Scholar
Bott, A. (2000). A flux method for the numerical solution of the stochastic collection equation: Extension to two-dimensional particle distributions. J. Atmos. Sci., 57, 284–294.2.0.CO;2>CrossRefGoogle Scholar
Braham, R. and Squires, P. (1974). Cloud physics 1974. Bull. Am. Meteor. Soc., 55, 543–586.2.0.CO;2>CrossRefGoogle Scholar
Bringi, V. N., Seliga, T. A., and Cooper, W. A. (1984). Analysis of aircraft hydrometeor spectra and differential reflectivity (ZDR) radar measurements during the Cooperative Convective Precipitation Experiment. Radio Sci., 19, 157–167.CrossRefGoogle Scholar
Bringi, V. N., Chandrasekar, V., and Rongrui, X. (1998). Raindrop axis ratios and size distributions in Florida rainshafts: An assessment of multiparameter radar algorithms. IEEE Trans. Geosci. Remote Sens., 36, 703–715.CrossRefGoogle Scholar
Brown, P. S. (1983). Some essential details for application of Bleck's method to the collision-break-up equation. J. Appl. Meteorol., 22, 693–697.2.0.CO;2>CrossRefGoogle Scholar
Brown, P. S. (1985). An implicit scheme for the efficient solution of the coalesence/collision-break-up equation. J. Comput. Phys., 58, 417–431.CrossRefGoogle Scholar
Brown, P. S. (1986). Analysis of the Low and List drop-breakup formulation. J. Appl. Meteorol., 25, 313–321.2.0.CO;2>CrossRefGoogle Scholar
Brown, P. S. (1987). Parameterization of drop-spectrum evolution due to coalescence and breakup. J. Atmos. Sci., 44, 242–249.2.0.CO;2>CrossRefGoogle Scholar
Brown, P. S. (1988). The effects of filament, sheet, and disk breakup upon the drop spectrum. J. Atmos. Sci., 45, 712–718.2.0.CO;2>CrossRefGoogle Scholar
Brown, P. S. (1990). Reversals in evolving raindrop size distributions due to the effects of coalescence and breakup. J. Atmos. Sci., 47, 746–754.2.0.CO;2>CrossRefGoogle Scholar
Brown, P. S. (1991). Parameterization of the evolving drop-size distribution based on analytic solution of the linearized coalescence-breakup equation. J. Atmos. Sci., 48, 200–210.2.0.CO;2>CrossRefGoogle Scholar
Brown, P. S. (1993). Analysis and parameterization of the combined coalescence, breakup, and evaporation processes. J. Atmos. Sci., 50, 2940–2951.2.0.CO;2>CrossRefGoogle Scholar
Brown, P. S. (1997). Mass conservation considerations in analytic representation of raindrop fragment distributions. J. Atmos. Sci., 54, 1675–1687.2.0.CO;2>CrossRefGoogle Scholar
Brown, P. S. (1999). Analysis of model-produced raindrop size distributions in the small-drop range. J. Atmos. Sci., 56, 1382–1390.2.0.CO;2>CrossRefGoogle Scholar
Brown, P. S. and Whittlesey, S. N. (1992). Multiple equilibrium solutions in Bleck-type models of drop coalescence and breakup. J. Atmos. Sci., 49, 2319–2324.2.0.CO;2>CrossRefGoogle Scholar
Bryan, G. H. and Fritsch, J. M. (2002). A benchmark simulation for moist nonhydrostatic numerical models. Mon. Weather Rev., 130, 2917–2928.2.0.CO;2>CrossRefGoogle Scholar
Bryan, G. H. and Fritsch, J. M. (2004). A reevaluation of ice–liquid water potential temperature. Mon. Weather Rev., 132, 2421–2431.2.0.CO;2>CrossRefGoogle Scholar
Byers, H. R. (1965). Elements of Cloud Physics. Chicago, IL: The University of Chicago Press.Google Scholar
Carrió, G. G. and Nicolini, M. (1999). A double moment warm rain scheme: Description and test within a kinematic framework. Atmos. Res., 52, 1–16.CrossRefGoogle Scholar
Chandrasekar, V., Cooper, W. A., and Bringi, V. N. (1988). Axis ratios and oscillations of raindrops. J. Atmos. Sci., 45, 1323–1333.2.0.CO;2>CrossRefGoogle Scholar
Chaumerliac, N., Richard, E., Rosset, R., and Nickerson, E. C. (1991). Impact of two microphysical schemes upon gas scavenging and deposition in a mesoscale meteorological model. J. Appl. Meteorol., 30, 88–97.2.0.CO;2>CrossRefGoogle Scholar
Chen, J. P. (1994). Predictions of saturation ratio for cloud microphysical models. J. Atmos. Sci., 51, 1332–1338.2.0.CO;2>CrossRefGoogle Scholar
Cheng, L. and English, M. (1983). A relationship between hailstone concentration and size. J. Atmos. Sci., 40, 204–213.2.0.CO;2>CrossRefGoogle Scholar
Cheng, L., English, M., and Wong, R. (1985). Hailstone size distributions and their relationship to storm thermodynamics. J. Appl. Meteorol., 24, 1059–1067.2.0.CO;2>CrossRefGoogle Scholar
Chong, S. L. and Chen, C. (1974). Water shells on ice pellets and hailstones. J. Atmos. Sci., 31, 1384–1391.2.0.CO;2>CrossRefGoogle Scholar
Clark, T. L. (1973). Numerical modeling of the dynamics and microphysics of warm cumulus convection. J. Atmos. Sci., 30, 857–878.2.0.CO;2>CrossRefGoogle Scholar
Clark, T. L. (1976). Use of log-normal distributions for numerical calculations of condensation and collection. J. Atmos. Sci., 33, 810–821.2.0.CO;2>CrossRefGoogle Scholar
Clark, T. L. (1977). A small-scale dynamical model using a terrain-following coordinate transformation. J. Comput. Phys., 24, 186–215.CrossRefGoogle Scholar
Clark, T. L. (1979). Numerical simulations with a three-dimensional cloud model: Lateral boundary condition experiments and multicellular severe storm simulations. J. Atmos. Sci., 36, 2191–2215.2.0.CO;2>CrossRefGoogle Scholar
Clark, T. L. and Hall, W. (1979). A numerical experiment on stochastic condensation theory. J. Atmos. Sci., 36, 470–483.2.0.CO;2>CrossRefGoogle Scholar
Cober, S. G. and List, R. (1993). Measurements of the heat and mass transfer parameters characterizing conical graupel growth. J. Atmos. Sci., 50, 1591–1609.2.0.CO;2>CrossRefGoogle Scholar
Cohard, J.-M. and Pinty, J. P. (2000). A comprehensive two-moment warm microphysical bulk model scheme: I: Description and tests. Q. J. Roy. Meteor. Soc., 126, 1815–1842.CrossRefGoogle Scholar
Cohard, J.-M., Pinty, J. P., and Suhre, K. (1998). On the parameterization of activation spectra from cloud condensation nuclei microphysical properties. J. Geophys. Res., 105, 11753–11766.CrossRefGoogle Scholar
Cohard, J.-M., Pinty, J. P., and Bedos, C. (2000). Extending Twomey's analytical estimate of nucleated cloud droplet concentrations from CCN spectra. J. Atmos. Sci., 55, 3348–3357.2.0.CO;2>CrossRefGoogle Scholar
Cooper, W. A., Bruintjes, R. T., and Mather, G. K. (1997). Calculations pertaining to hygroscopic seeding with flares. J. Appl. Meteorol., 36, 1449–1469.2.0.CO;2>CrossRefGoogle Scholar
Cotton, W. R. (1972a). Numerical simulation of precipitation development in supercooled cumuli – Part I. Mon. Weather Rev., 100, 757–763.2.3.CO;2>CrossRefGoogle Scholar
Cotton, W. R. (1972b). Numerical simulation of precipitation development in supercooled cumuli – Part II. Mon. Weather Rev., 100, 764–784.2.3.CO;2>CrossRefGoogle Scholar
Cotton, W. R. and Anthes, R. A. (1989). Storm and Cloud Dynamics. San Diego, CA: Academic Press.Google Scholar
Cotton, W. R. and Tripoli, G. J. (1978). Cumulus convection in shear flow – three-dimensional numerical experiments. J. Atmos. Sci., 35, 1503–1521.2.0.CO;2>CrossRefGoogle Scholar
Cotton, W. R., Stephens, M. A., Nehrkorn, T., and Tripoli, G. J. (1982). The Colorado State University three-dimensional cloud model – 1982. Part II: An ice phase parameterization. J. Rech. Atmos., 16, 295–320.Google Scholar
Cotton, W. R., Tripoli, G. J., Rauber, R. M., and Mulvihill, E. A. (1986). Numerical simulation of the effects of varying ice crystal nucleation rates and aggregation processes on orographic snowfall. J. Climate Appl. Meteor., 25, 1658–1680.2.0.CO;2>CrossRefGoogle Scholar
Cotton, W. R. and coauthors (2003) RAMS (2001). Current status and future directions. Meteor. Atmos. Phys., 82, 5–29.Google Scholar
Curic, M. and Janc, D. (1997). On the sensitivity of hail accretion rates in numerical modeling. Tellus, 49A, 100–107.CrossRefGoogle Scholar
Danielsen, E., Bleck, R., and Morris, D. (1972). Hail growth by stochastic collection in a cumulus model. J. Atmos. Sci., 29, 135–155.2.0.CO;2>CrossRefGoogle Scholar
Deardorff, J. W. (1980). Stratocumulus-capped mixed layers derived from a three-dimensional model. Bound.-Layer Meteorol., 18, 495–527.CrossRefGoogle Scholar
DeMott, P. J., Meyers, M. P., and Cotton, W. R. (1994). Parameterization and impact of ice initiation processes relevant to numerical model simulations of cirrus clouds. J. Atmos. Sci., 51, 77–90.2.0.CO;2>CrossRefGoogle Scholar
Dennis, A. and Musil, D. (1973). Calculations of hailstone growth and trajectories in a simple cloud model. J. Atmos. Sci., 30, 278–288.2.0.CO;2>CrossRefGoogle Scholar
Doms, G. and Beheng, K. D. (1986). Mathematical formulation of self collection, auto conversion, and accretion rates of cloud and raindrops. Meteorol. Rundsch., 39, 98–102.Google Scholar
Drake, J. C. and Mason, B. J. (1966). The melting of small ice spheres and cones. Q. J. Roy. Meteorol. Soc., 92, 500–509.CrossRefGoogle Scholar
Dye, J. E., Knight, C. A., Toutenhootd, V., and Cannon, T. W. (1974). The Mechanism of precipitation formation in northeastern Colorado cumulus, III. Coordinated microphysical and radar observations and summary. J. Atmos. Sci., 29, 278–288.Google Scholar
English, M. (1973). Alberta hailstorms. Part II: Growth of large hail in the storm. Meteorol. Monogr., 36, 37–98.Google Scholar
Farley, R. D. (1987). Numerical modeling of hailstorms and hailstone growth. Part II: The role of low-density riming growth in hail production. J. Appl. Meteorol., 26, 234–254.2.0.CO;2>CrossRefGoogle Scholar
Farley, R. D. and Orville, H. (1986). Numerical modeling of hailstorms and hailstone growth. Part I: Preliminary model verification and sensitivity tests. J. Appl. Meteorol., 25, 2014–2035.2.0.CO;2>CrossRefGoogle Scholar
Farley, R. D., Price, P. E., Orville, H. D., and Hirsch, J. H. (1989). On the numerical simulation of graupel/hail initiation via the riming of snow in bulk water microphysical cloud models. J. Appl. Meteorol., 28, 1128–1131.2.0.CO;2>CrossRefGoogle Scholar
Feingold, G., Tzivion, (Tzitzvashvili), S., and Levin, Z. (1988). Evolution of raindrop spectra. Part I: Solution to the stochastic collection/breakup equation using the method of moments. J. Atmos. Sci., 45, 3387–3399.2.0.CO;2>CrossRefGoogle Scholar
Feingold, G., Walko, R. L., Stevens, B., and Cotton, W. R. (1998). Simulations of marine stratocumulus using a new microphysics parameterization scheme. Atmos. Res., 47–48, 505–528.CrossRefGoogle Scholar
Feng, J. Q. and Beard, K. V. (1991). A perturbation model of raindrop oscillation characteristics with aerodynamic effects. J. Atmos. Sci., 48, 1856–1868.2.0.CO;2>CrossRefGoogle Scholar
Flatau, P. J., Tripoli, G. J., Verlinde, J., and Cotton, W. R. (1989). The CSU-RAMS cloud microphysical module: General theory and documentation. Technical Report 451. (Available from the Department of Atmospheric Sciences, Colorado State University, Ft. Collins, CO 80523.)
Fletcher, N. H. (1962). The Physics of Rain Clouds. Cambridge: Cambridge University Press.Google Scholar
Foote, G. B. (1984). A study of hail growth utilizing observed storm conditions. J. Appl. Meteorol., 23, 84–101.2.0.CO;2>CrossRefGoogle Scholar
Gaudet, B. J. and Schmidt, J. M. (2005). Assessment of hydrometeor collection rates from exact and approximate equations. Part I: A new approximate scheme. J. Atmos. Sci., 62, 143–159.CrossRefGoogle Scholar
Gaudet, B. J. and Schmidt, J. M. (2007). Assessment of hydrometeor collection rates from exact and approximate equations. Part II: Numerical bounding. J. Appl. Meteorol. Climatol., 46, 82–96.CrossRefGoogle Scholar
Gillespie, D. T. (1972). The stochastic coalescence model for cloud droplet growth. J. Atmos. Sci., 29, 1496–1510.2.0.CO;2>CrossRefGoogle Scholar
Gillespie, D. T. (1975). Three models for the coalescence growth of cloud drops. J. Atmos. Sci., 32, 600–607.2.0.CO;2>CrossRefGoogle Scholar
Gilmore, M. S. and Straka, J. M. (2008). The Berry and Reinhardt autoconversion parameterization: A digest. J. Appl. Meteorol. Climatol., 47, 375–396.CrossRefGoogle Scholar
Gilmore, M. S., Straka, J. M., and Rasmussen, E. N. (2004). Precipitation uncertainty due to variations in precipitation particle parameters within a simple microphysics scheme. Mon. Weather Rev., 132, 2610–2627.CrossRefGoogle Scholar
Glickman, T. S. (2000). The Glossary of Meteorology, 2nd edn. Boston, MA: American Meteorological Society.Google Scholar
Goddard, J. W. F. and Cherry, S. M. (1984). The ability of dual-polarization radar measurements in rain (copolar linear) to predict rainfall and microwave attenuation. Radio Sci., 19, 201–208.CrossRefGoogle Scholar
Goddard, J. W. F., Cherry, S. M., and Bringi, V. N. (1982). Comparison of dual-polarization radar measurements of rain with groundbased disdrometer measurements. J. Appl. Meteorol., 21, 252–256.2.0.CO;2>CrossRefGoogle Scholar
Golovin, A. M. (1963). The solution of the coagulation equation for cloud droplets in a rising air current. Isv. Ak. Nk. SSSR (Geophys. Ser.), 5, 783–791.Google Scholar
Greenan, B. J. and List, R. (1995). Experimental closure of the heat and mass transfer theory of spheroidal hailstones. J. Atmos. Sci., 52, 3797–3815.2.0.CO;2>CrossRefGoogle Scholar
Gunn, K. L. S. and Marshall, J. S. (1958). The distribution with size of aggregate snowflakes. J. Atmos. Sci., 15, 452–461.Google Scholar
Gunn, R. and Kinzer, G. D. (1949). The terminal velocity of fall for raindrops in stagnant air. J. Meteor., 6, 243–248.2.0.CO;2>CrossRefGoogle Scholar
Hall, W. D. (1980). A detailed microphysical model within a two-dimensional dynamic framework: Model description and preliminary results. J. Atmos. Sci., 37, 2486–2507.2.0.CO;2>CrossRefGoogle Scholar
Hall, W. D. and Pruppacher, H. (1976). The survival of ice particles falling from cirrus clouds in subsaturated air. J. Atmos. Sci., 33, 1995–2006.2.0.CO;2>CrossRefGoogle Scholar
Hallet, J. and Mossop, S. C. (1974). Production of secondary ice particles during the riming process. Nature, 249, 26–28.CrossRefGoogle Scholar
Hallgren, R. E. and Hosler, C. L. (1960). Preliminary results on the aggregation of ice crystals. Geophys. Monogr., Am. Geophys. Union, 5, 257–263.Google Scholar
Heymsfield, A. J. (1972). Ice crystal terminal velocities. J. Atmos. Sci., 29, 1348–1357.2.0.CO;2>CrossRefGoogle Scholar
Heymsfield, A. J. (1978). The characteristics of graupel particles in northeastern Colorado cumulus congestus clouds. J. Atmos. Sci., 35, 284–295.2.0.CO;2>CrossRefGoogle Scholar
Heymsfield, A. J. and Kajikawa, M. (1987). An improved approach to calculating terminal velocities of plate-like crystals and graupel. J. Atmos. Sci., 44, 1088–1099.2.0.CO;2>CrossRefGoogle Scholar
Heymsfield, A. J. and Pflaum, J. C. (1985). A quantitative assessment of the accuracy of techniques for calculating graupel growth. J. Atmos. Sci., 42, 2264–2274.2.0.CO;2>CrossRefGoogle Scholar
Heymsfield, A. J., Jameson, A. R., and Frank, H. W. (1980). Hail growth mechanisms in a Colorado storm: Part II: Hail formation processes. J. Atmos. Sci., 37, 1779–1807.2.0.CO;2>CrossRefGoogle Scholar
Hitchfield, W. and Stauder, M. (1967). The temperature of hailstones. J. Atmos. Sci., 24, 293–297.2.0.CO;2>CrossRefGoogle Scholar
Hobbs, P. V. (1974). Ice Physics. London: Oxford University Press.Google Scholar
Hosler, C. L. and Hallgren, R. E. (1961). Ice crystal aggregation. Nublia, 4, No. 1, 13–19.Google Scholar
Hu, Z. and Srivastava, R. (1995). Evolution of raindrop size distribution by coalescence, breakup, and evaporation: Theory and observations. J. Atmos. Sci., 52, 1761–1783.2.0.CO;2>CrossRefGoogle Scholar
Hubbert, J. V., Bringi, V. N., and Carey, L. D. (1998). CSU-CHILL polarimetric radar measurements from a severe hail storm in Eastern Colorado. J. Appl. Meteorol., 37, 749–775.2.0.CO;2>CrossRefGoogle Scholar
Huffman, P. J. and Vali, G. (1973). The effect of vapor depletion on ice nucleus measurements with membrane filters. J. Appl. Meteor., 12, 1018–1024.2.0.CO;2>CrossRefGoogle Scholar
Jameson, A. R. and Beard, K. V. (1982). Raindrop axial ratios. J. Appl. Meteorol., 21, 257–259.2.0.CO;2>CrossRefGoogle Scholar
Johnson, D. B. and Rasmussen, R. M. (1992). Hail growth hysteresis. J. Atmos. Sci., 49, 2525–2532.2.0.CO;2>CrossRefGoogle Scholar
Jones, D. M. (1959). The shape of raindrops. J. Atmos. Sci., 16, 504–510.Google Scholar
Joss, J. and Zawadzki, I. (1997). Raindrop distributions again? Preprints, 28th Conference On Radar Meteorology, Austin, TX, 7–12 September, pp. 326–327.
Kajikawa, M. and Heymsfield, A. J. (1989). Aggregation of ice crystals in cirrus. J. Atmos. Sci., 46, 3108–3121.2.0.CO;2>CrossRefGoogle Scholar
Kessler, E. (1969). On the distribution and continuity of water substance in atmospheric circulations. Meteorol. Monogr., No. 32.Google Scholar
Khain, A. P., Ovtchinnikov, M., Pinski, M., Pokrovsky, A., and Krugiliak, H. (2000). Notes on the state-of-the-art numerical modeling of cloud microphysics. Atmos. Res., 55, 159–224.CrossRefGoogle Scholar
Khairoutdinov, M. F. and Kogan, Y. L. (1999). A large eddy simulation model with explicit microphysics: Validation against aircraft observations of a stratocumulus-topped boundary layer. J. Atmos. Sci., 56, 2115–2131.2.0.CO;2>CrossRefGoogle Scholar
Khairoutdinov, M. and Kogan, Y. (2000). A new cloud physics parameterization in a large-eddy simulation model of marine stratocumulus. Mon. Weather Rev., 128, 229–243.2.0.CO;2>CrossRefGoogle Scholar
Kinzer, G. D. and Gunn, R. (1951). The evaporation, temperature, and thermal relaxation-time of free falling waterdrops. J. Meteorol., 8, 71–83.2.0.CO;2>CrossRefGoogle Scholar
Klemp, J. B. and Wilhelmson, R. B. (1978). The simulation of three-dimensional convective storm dynamics. J. Atmos. Sci., 35, 1070–1096.2.0.CO;2>CrossRefGoogle Scholar
Knight, C. A. (1979). Observations of the morphology of melting snow. J. Atmos. Sci., 36, 1123–1130.Google Scholar
Knight, C. A. and Knight, N. C. (1970). Hailstone embryos. J. Atmos. Sci., 27, 659–666.2.0.CO;2>CrossRefGoogle Scholar
Knight, C. A. and Knight, N. C. (1973). Conical graupel. J. Atmos. Sci., 30, 118–124.2.0.CO;2>CrossRefGoogle Scholar
Knight, C. A. and Knight, N. C. (2001). Hailstorms. In Severe Convective Storms, ed. Doswell, C. A., AMS Monograph 50, ch. 6, pp. 223–254.CrossRefGoogle Scholar
Knight, C. A. and Miller, L. (1993). First radar echoes from cumulus clouds. Bull. Am. Meteorol. Soc., 74, 179–188.2.0.CO;2>CrossRefGoogle Scholar
Knight, N. C. (1981). The climatology of hailstone embryos. J. Appl. Meteorol., 20, 750–755.2.0.CO;2>CrossRefGoogle Scholar
Knight, N. C. (1986). Hailstone shape factor and its relation to Radar interpretation of hail. J. Appl. Meteorol., 25, 1956–1958.2.0.CO;2>CrossRefGoogle Scholar
Koenig, R. and Murray, F. W. (1976). Ice-bearing cumulus evolution: Numerical simulations and general comparison against observations. J. Appl. Meteorol., 15, 742–762.2.0.CO;2>CrossRefGoogle Scholar
Kogan, Y. L. (1991). The simulation of a convective cloud in a 3-D model with explicit microphysics. Part I: Model description and sensitivity experiments. J. Atmos. Sci., 48, 1160–1189.2.0.CO;2>CrossRefGoogle Scholar
Kogan, Y. L. and Martin, W. J. (1994). Parameterization of bulk condensation in numerical cloud models. J. Atmos. Sci., 51, 1728–1739.2.0.CO;2>CrossRefGoogle Scholar
Komabayasi, M., Gonda, T., and Isono, K. (1964). Lifetime of water drops before breaking and size distribution of fragments. J. Meteorol. Soc. Jpn., 42, 330–340.CrossRefGoogle Scholar
Kovetz, A. and Olund, B. (1969). The effect of coalescence and condensation on rain formation in a cloud of finite vertical extent. J. Atmos. Sci., 26, 1060–1065.2.0.CO;2>CrossRefGoogle Scholar
Kry, P. R. and List, R. (1974). Angular motions of freely falling spheroidal hailstone models. Phys. Fluids, 17, 1093–1102.CrossRefGoogle Scholar
Kubesh, R. J. and Beard, K. V. (1993). Laboratory measurements of spontaneous oscillations for moderate-sized raindrops. J. Atmos. Sci., 50, 1089–1098.2.0.CO;2>CrossRefGoogle Scholar
Kumjian, M. R. and Ryzhko, A. V. (2008). Polarimetric signatures in supercell thunderstorms. J. Appl. Meteorol. Climatol., 47, 1940–1961.CrossRefGoogle Scholar
Langlois, W. E. (1973). A rapidly convergent procedure for computing large-scale condensation in a dynamical weather model. Tellus, 25, 86–87.CrossRefGoogle Scholar
Laws, J. O. and Parsons, D. A. (1943). The relation of raindrop-size to intensity. Trans Am. Geophys. Union, 24, Part II, 452–460.CrossRefGoogle Scholar
Lesins, G. and List, R. (1986). Sponginess and drop shedding of gyrating hailstones in a pressure-controlled icing wind tunnel. J. Atmos. Sci., 43, 2813–2825.2.0.CO;2>CrossRefGoogle Scholar
Lin, Y. L., Farley, R. D., and Orville, H. D. (1983). Bulk parameterization of the snow field in a cloud model. J. Climate Appl. Meteorol., 22, 1065–1092.2.0.CO;2>CrossRefGoogle Scholar
List, R. (1986). Properties and growth of hailstones. Thunderstorm Dynamics and Morphology, ed. Kessler, E.. Norman, OK: University of Oklahoma Press, pp. 259–276.Google Scholar
List, R. and Gillespie, J. (1976). Evolution of raindrop spectra with collision-induced breakup. J. Atmos. Sci., 33, 2007–2013.2.0.CO;2>CrossRefGoogle Scholar
List, R. and Schemenauer, R. S. (1971). Free-fall behavior of planar snow crystals, conical graupel and small hail. J. Atmos. Sci., 28, 110–115.2.0.CO;2>CrossRefGoogle Scholar
List, R., Rentsch, U. W., Byram, A. C., and Lozowski, E. P. (1973). On the aerodynamics of spheroidal hailstone models. J. Atmos. Sci., 30, 653–661.2.0.CO;2>CrossRefGoogle Scholar
Liu, J. and Orville, H. (1969). Numerical modeling of precipitation and cloud shadow effects on mountain-induced cumuli. J. Atmos. Sci., 26, 1283–1298.2.0.CO;2>CrossRefGoogle Scholar
Liu, Y. and Daum, P. H. (2004). Parameterization of the autoconversion process. Part I: Analytical formulation of the Kessler-type parameterizations. J. Atmos. Sci., 61, 1539–1548.2.0.CO;2>CrossRefGoogle Scholar
Locatelli, J. D. and Hobbs, P. V. (1974). Fall speeds and masses of solid precipitation particles. J. Geophys. Res., 79, 2185–2197.CrossRefGoogle Scholar
Loney, M. L., Zrnic, D. S., Straka, J. M., and Ryzhkov, A. V. (2002). Enhanced polarimetric radar signatures above the melting level in a supercell storm. J. Appl. Meteorol., 41, 1179–1194.2.0.CO;2>CrossRefGoogle Scholar
Long, A. B. (1974). Solutions to the droplet collection equation for polynomial kernels. J. Atmos. Sci., 31, 1040–1052.2.0.CO;2>CrossRefGoogle Scholar
Low, R. D. (1969). A generalized equation for the solution effect in droplet growth. J. Atmos. Sci., 26, 608–611.2.0.CO;2>CrossRefGoogle Scholar
Low, T. and List, R. (1982a). Collision, coalescence and breakup of raindrops. Part I: Experimentally established coalescence efficiencies and fragment size distributions in breakup. J. Atmos. Sci., 39, 1591–1606.2.0.CO;2>CrossRefGoogle Scholar
Low, T. and List, R. (1982b). Collision, coalescence and breakup of raindrops. Part II: Parameterization of fragment size distributions in breakup. J. Atmos. Sci., 39, 1607–1618.2.0.CO;2>CrossRefGoogle Scholar
Ludlam, F. H. (1958). The hail problem. Nubila, 1, 12–96.Google Scholar
Macklin, W. C. (1963). Heat transfer from hailstones. Quart. J. Roy. Meteorol. Soc., 89, 360–369.CrossRefGoogle Scholar
Macklin, W. C. and Bailey, I. H. (1962). The density and structure of ice formed by accretion. Q. J. Roy. Meteorol. Soc., 88, 30–50.CrossRefGoogle Scholar
Macklin, W. C. and Bailey, I. H. (1966). On the critical liquid water concentrations of large hailstones. Quart. J. Roy. Meteorol. Soc., 92, 297–300.CrossRefGoogle Scholar
Magono, C. and Lee, C. W. (1966). Meteorological classification of natural snow crystals. J. Fac. Sci., Hokkaido Univ., Ser. VII, 2, 321–335.Google Scholar
Mansell, E. R., MacGorman, D. R., Ziegler, C. L., and Straka, J. M. (2002). Simulated three-dimensional branched lightning in a numerical thunderstorm model. J. Geophys. Res., 107 (9), doi: 10.1029/2000JD000244.CrossRefGoogle Scholar
Mansell, E. R., MacGorman, D. R., Ziegler, C. L., and Straka, J. M. (2005). Charge structure and lightning sensitivity in a simulated multicell thunderstorm. J. Geophys. Res., 110, D12101, doi: 10.1029/2004JD005287.CrossRefGoogle Scholar
Manton, M. J. and Cotton, W. R. (1977). Formulation of approximate equations for modeling moist convection on the mesoscale. Technical Report, Colorado State University, Fort Collins, CD.Google Scholar
Marshall, J. S. and Palmer, W. M. K. (1948). The distribution of raindrops with size. J. Meteorol., 5, 165–166.2.0.CO;2>CrossRefGoogle Scholar
Mason, B. J. (1957). The Physics of Clouds. Oxford: Clarendon Press.Google Scholar
Mason, B. J. (1971). The Physics of Clouds, 2nd edn. Oxford: Clarendon Press.Google Scholar
Matson, R. J. and Huggins, A. W. (1980). The direct measurement of the sizes, shapes, and kinematics of falling hailstones. J. Atmos. Sci., 37, 1107–1125.2.0.CO;2>CrossRefGoogle Scholar
McDonald, J. (1963). The saturation adjustment in numerical modelling of fog. J. Atmos. Sci., 20, 476–478.2.0.CO;2>CrossRefGoogle Scholar
McFarguhar, G. M. (2004). A new representation of breakup of raindrops and its implications for shapes of raindrop size distributions. J. Atmos. Sci., 61, 777–792.2.0.CO;2>CrossRefGoogle Scholar
McTaggart-Cowan, J. and List, R. (1975). Collision and breakup of water drops at terminal velocity. J. Atmos. Sci., 32, 1401–1411.2.0.CO;2>CrossRefGoogle Scholar
Meyers, M. P., DeMott, P. J., and Cotton, W. R. (1992). New primary ice-nucleation parameterizations in an explicit cloud model. J. Appl. Meteorol., 31, 708–721.2.0.CO;2>CrossRefGoogle Scholar
Meyers, M. P., Walko, R. L., Harrington, J. Y., and Cotton, W. R. (1997). New RAMS cloud microphysics parameterization. Part II. The two-moment scheme. Atmos. Res., 45, 3–39.CrossRefGoogle Scholar
Milbrandt, J. A. and Yau, M. K. (2005a). A multimoment bulk microphysics parameterization. Part I: Analysis of the role of the spectral shape parameter. J. Atmos. Sci., 62, 3051–3064.CrossRefGoogle Scholar
Milbrandt, J. A. and Yau, M. K. (2005b). A multimoment bulk microphysics parameterization. Part II: A proposed three-moment closure and scheme description. J. Atmos. Sci., 62, 3065–3081.CrossRefGoogle Scholar
Mitra, S. K., Vohl, O., Ahr, M., and Pruppacher, H. R. (1990). A wind tunnel and theoretical study of the melting behavior of atmospheric ice particles. IV: Experiment and theory for snow flakes. J. Atmos. Sci., 47, 584–591.2.0.CO;2>CrossRefGoogle Scholar
Mizuno, H. (1990). Parameterization of the accretion process between different precipitation elements. J. Meteorol. Soc. Jpn., 68, 395–398.CrossRefGoogle Scholar
Morrison, H. and Grabowski, W. W. (2007). Comparison of bulk and bin warm rain microphysical models using a kinematic framework. J. Atmos. Sci., 64, 2839–2861.CrossRefGoogle Scholar
Morrison, H. and Grabowski, W. W. (2008). A novel approach for representing ice microphysics in models: Description and tests using a kinematic framework. J. Atmos. Sci., 65, 1528–1548.CrossRefGoogle Scholar
Moss, M. S. and Rosenthal, S. L. (1975). On the estimation of planetary boundary layer variables in mature hurricanes. Mon. Weather Rev., 103, 980–988.2.0.CO;2>CrossRefGoogle Scholar
Mossop, S. C. (1976). Production of secondary ice particles during the growth of graupel riming. Q. J. Roy. Meteorol. Soc., 102, 25–44.CrossRefGoogle Scholar
Mossop, S. C. and Kidder, R. E. (1962). Artificial hailstones. Bull. Obs. Puy. De Dom, 2, 65–79.Google Scholar
Murakami, M. (1990). Numerical modeling of dynamical and microphysical evolution of an isolated convective cloud – the 19 July 1981 CCOPE cloud. J. Meteorol. Soc. Jpn., 68, 107–128.CrossRefGoogle Scholar
Nelson, S. P. (1980). A Study of Hail Production in a Supercell Storm using Doppler Derived Wind Field and a Numerical Hail Growth Model. NOAA Technical Memorandum ERL NSSL-89. National Severe Storm Laboratory. (NTIS PB81-17822Q.)
Nelson, S. P. (1983). The influence of storm flow structure on hail growth. J. Atmos. Sci., 40, 1965–1983.2.0.CO;2>CrossRefGoogle Scholar
Nelson, S. P. (1987). The hybrid multicellular–supercellular storm – an efficient hail producer. Part II. General characteristics and implications for hail growth. J. Atmos. Sci., 44, 2060–2073.2.0.CO;2>CrossRefGoogle Scholar
Nickerson, E. C., Richard, E., Rosset, R., and Smith, D. R. (1986). The numerical simulation of clouds, rains and airflow over the Vosges and Black Forest mountains: A meso-β model with parameterized microphysics. Mon. Weather Rev., 114, 398–414.2.0.CO;2>CrossRefGoogle Scholar
Ogura, Y. and Takahashi, T. (1973). The development of warm rain in a cumulus model. J. Atmos. Sci., 30, 262–277.2.0.CO;2>CrossRefGoogle Scholar
Ohtake, T. (1970). Factors affecting the size distribution of raindrops and snowflakes. J. Atmos. Sci., 27, 804–813.2.0.CO;2>CrossRefGoogle Scholar
Orlanski, I. (1976). A simple boundary condition for unbounded hyperbolic flows. J. Comput. Phys., 21, 251–269.CrossRefGoogle Scholar
Orville, H. and Kopp, F. J. (1977). Numerical simulation of the history of a hailstorm. J. Atmos. Sci., 34, 1596–1618.2.0.CO;2>CrossRefGoogle Scholar
Passarelli, R. E. (1978). An approximate analytical model of the vapor deposition and aggregation growth of snowflakes. J. Atmos. Sci., 35, 118–124.2.0.CO;2>CrossRefGoogle Scholar
Passarelli, R. E. and Srivastava, R. C. (1979). A new aspect of snowflake aggregation theory. J. Atmos. Sci., 36, 484–493.2.0.CO;2>CrossRefGoogle Scholar
Pellett, J. L. and Dennis, A. S. (1974). Effects of heat storage in hailstones. Conference Proceedings, Conference on Cloud Physics, Tucson, AZ, October 21–24, pp. 63–66.Google Scholar
Pflaum, J. C. (1980). Hail formation via microphysical recycling. J. Atmos. Sci., 37, 160–173.2.0.CO;2>CrossRefGoogle Scholar
Pflaum, J. C., and Pruppacher, H. (1979). A wind tunnel investigation of the growth of graupel initiated from frozen drops. J. Atmos. Sci., 36, 680–689.2.0.CO;2>CrossRefGoogle Scholar
Proctor, F. H. (1987). The Terminal Area Simulation System. Vol. I: Theoretical Formulation. NASA Contractor Report 4046, NASA, Washington, DC. [Available from the National Technical Information Service, Springfield, VA, 22161.]
Pruppacher, H. R. and Beard, K. V. (1970). A wind tunnel investigation of the internal circulation and shape of water drops falling at terminal velocity in air. Q. J. Roy. Meteorol. Soc., 96, 247–256.CrossRefGoogle Scholar
Pruppacher, H. R. and Klett, J. D. (1981). Microphysics of Clouds and Precipitation. Dordrecht: D. Reidel Publishing.Google Scholar
Pruppacher, H. R. and Klett, J. D. (1997). Microphysics of Clouds and Precipitation, 2nd edn. Dordrecht: Kluwer Academic Publishers.Google Scholar
Pruppacher, H. R. and Pitter, R. L. (1971). A semi-empirical determination of the shape of cloud and rain drops. J. Atmos. Sci., 28, 86–94.2.0.CO;2>CrossRefGoogle Scholar
Rasmussen, R. M. and Heymsfield, A. J. (1985). A generalized form for impact velocities used to determine graupel accretional densities. J. Atmos. Sci., 42, 2275–2279.2.0.CO;2>CrossRefGoogle Scholar
Rasmussen, R. M. and Heymsfield, A. J. (1987a). Melting and shedding of graupel and hail. Part I: Model physics. J. Atmos. Sci., 44, 2754–2763.2.0.CO;2>CrossRefGoogle Scholar
Rasmussen, R. M. and Heymsfield, A. J. (1987b). Melting and shedding of graupel and hail. Part II: Sensitivity study. J. Atmos. Sci., 44, 2764–2782.2.0.CO;2>CrossRefGoogle Scholar
Rasmussen, R. and Pruppacher, H. R. (1982). A wind tunnel and theoretical study of the melting behavior of atmospheric ice particles. I: A wind tunnel study of frozen drops of radius < 500 μm. J. Atmos. Sci., 39, 152–158.2.0.CO;2>CrossRefGoogle Scholar
Rasmussen, R. M., Levizzani, V., and Pruppacher, H. R. (1984). A wind tunnel and theoretical study on the melting behavior of atmospheric ice particles: III. Experiment and theory for spherical ice particles of radius > 500 μm. J. Atmos. Sci., 41, 381–388.2.0.CO;2>CrossRefGoogle Scholar
Rauber, R. M., Beard, K. V., and Andrews, B. M. (1991). A mechanism for giant raindrop formation in warm, shallow convective clouds. J. Atmos. Sci., 48, 1791–1797.2.0.CO;2>CrossRefGoogle Scholar
Reinhardt, R. L. (1972). An analysis of improved numerical solution to the stochastic collection equation for cloud drops. Ph.D. Dissertation, University of Nevada.
Reisner, J., Rasmussen, R. M., and Bruintjes, R. T. (1998). Explicit forecasting of supercooled liquid water in winter storms using the MM5 mesoscale model. Q. J. Roy. Meteorol. Soc., 124, 1071–1107.CrossRefGoogle Scholar
Rogers, D. C. (1973). The aggragation of natural ice crystals. M. S. Thesis, Department of Atmospheric Resources, University of Wyoming.
Rogers, R. R. and Yau, M. K. (1989). A Short Course in Cloud Physics. Pergamon Press.Google Scholar
Rotunno, R. and Emanuel, K. A. (1987). An air–sea interaction theory for tropical cyclones. Part II: Evolutionary study using a nonhydrostatic axisymmetric numerical model. J. Atmos. Sci., 44, 542–561.2.0.CO;2>CrossRefGoogle Scholar
Rutledge, S. A. and Hobbs, P. V. (1983). The mesoscale and microscale structure and organization of clouds and precipitation in midlatitude cyclones. VIII: A model for the “seeder-feeder” process in warm-frontal rainbands. J. Atmos. Sci., 40, 1185–1206.2.0.CO;2>CrossRefGoogle Scholar
Rutledge, S. A. and Hobbs, P. V. (1984). The mesoscale and microscale structure and organization of clouds and precipitation in midlatitude cyclones. XII: A diagnostic modeling study of precipitation development in narrow cold-frontal rainbands. J. Atmos. Sci., 41, 2949–2972.2.0.CO;2>CrossRefGoogle Scholar
Saleeby, S. M. and Cotton, W. R. (2004). A large-droplet mode and prognostic number concentration of cloud droplets in the Colorado State University Regional Atmospheric Modeling System (RAMS). Part I: Module descriptions and supercell test simulations. J. Appl. Meteorol., 43, 182–195.2.0.CO;2>CrossRefGoogle Scholar
Saleeby, S. M. and Cotton, W. R. (2005). A large-droplet mode and prognostic number concentration of cloud droplets in the Colorado State University Regional Atmospheric Modeling System (RAMS). Part II: Sensitivity to a Colorado winter snowfall event. J. Appl. Meteorol., 44, 1912–1929.CrossRefGoogle Scholar
Saleeby, S. M. and Cotton, W. R. (2008). A binned approach to cloud-droplet riming implemented in a bulk microphysics model. J. Appl. Meteorol. Climatol., 47, 694–703.CrossRefGoogle Scholar
Sauvageot, H. and Lacaux, J. P. (1995). The shape of averaged drop size distributions. J. Atmos. Sci., 52, 1070–1083.2.0.CO;2>CrossRefGoogle Scholar
Schlamp, R. J., Pruppacher, H. R., and Hamielec, H. R. (1975). A numerical investigation of the efficiency with which simple columnar ice crystals collide with supercooled water drops. J. Atmos. Sci., 32, 2330–2337.2.0.CO;2>CrossRefGoogle Scholar
Schoenberg-Ferrier, B. (1994). A double-moment multiple-phase four-class bulk ice scheme. Part I: Description. J. Atmos. Sci., 51, 249–280.2.0.CO;2>CrossRefGoogle Scholar
Schumann, T. E. W. (1938). The theory of hailstone formation. Q. J. Roy. Meteorol. Soc., 64, 3–21.CrossRefGoogle Scholar
Scott, W. T. (1968). Analytical studies of cloud droplet coalescence. J. Atmos. Sci., 25, 54–65.2.0.CO;2>CrossRefGoogle Scholar
Scott, W. T. and Levin, Z. (1975). A comparison of formulations of stochastic collection. J. Atmos. Sci., 32, 843–847.2.0.CO;2>CrossRefGoogle Scholar
Seifert, A. (2008). On the parameterization of evaporation of raindrops as simulated by a one dimensional model. J. Atmos. Sci., 28, 741–751.Google Scholar
Seifert, A. and Beheng, K. D. (2001). A double-moment parameterization for simulating autoconversion, accretion and self-collection. Atmos. Res., 59–60, 265–281.CrossRefGoogle Scholar
Seifert, A. and Beheng, K. D. (2005). A two-moment cloud microphysical parameterization for mixed phase clouds. Part 1: Model description. Meteorol. Atmos. Phys., doi: 10.1007/s00703-005-0112-4.Google Scholar
Shafrir, U. and Gal-Chen, T. (1971). A numerical study of collision efficiencies and coalescence parameters for droplet pairs with radii up to 300 microns. J. Atmos. Sci., 28, 741–751.2.0.CO;2>CrossRefGoogle Scholar
Simpson, J. and Wiggert, V. (1969). Models of precipitating cumulus towers. Mon. Weather Rev., 97, 471–489.2.3.CO;2>CrossRefGoogle Scholar
Smagorinski, J. (1963). General circulation experiments with the primitive equations. I: The basic experiments. Mon. Weather Rev., 91, 99–164.2.3.CO;2>CrossRefGoogle Scholar
Soong, S. T. (1974). Numerical simulation of warm rain development in an axisymmetric cloud model. J. Atmos. Sci., 31, 1262–1285.2.0.CO;2>CrossRefGoogle Scholar
Soong, S. T. and Ogura, Y. (1973). A comparison between axisymmetric and slab-symmetric cumulus cloud models. J. Atmos. Sci., 30, 879–893.2.0.CO;2>CrossRefGoogle Scholar
Srivastava, R. C. (1971). Size distribution of raindrops generated by their breakup and coalescence. J. Atmos. Sci., 28, 410–415.2.0.CO;2>CrossRefGoogle Scholar
Srivastava, R. (1989) Growth of cloud drops by condensation: A criticism of currently accepted theory and a new approach. J. Atmos. Sci., 46, 869–887.2.0.CO;2>CrossRefGoogle Scholar
Srivastava, R. C. and Coen, J. L. (1992). New explicit equations for the accurate calculation of the growth and evaporation of hydrometeors by the diffusion of water vapor. J. Atmos. Sci., 49, 1643–1651.2.0.CO;2>CrossRefGoogle Scholar
Stensrud, D. J. (2007). Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Stevens, B., Walko, R. L., Cotton, W. R., and Feingold, G. (1996). The spurious production of cloud-edge supersaturations by Eulerian models. Mon. Weather Rev., 124, 1034–1041.2.0.CO;2>CrossRefGoogle Scholar
Stewart, R. E., Marwitz, J. D., Pace, J. C., and Carbone, R. E. (1984). Characteristics through the melting layer of stratiform clouds. J. Atmos. Sci., 41, 3227–3237.2.0.CO;2>CrossRefGoogle Scholar
Straka, J. M. and Mansell, E. R. (2005). A bulk microphysics parameterization with multiple ice precipitation categories. J. Appl. Meteorol., 44, 445–466.CrossRefGoogle Scholar
Straka, J. M. and Rasmussen, E. N. (1997). Toward improving microphysical parameterizations of conversion processes. J. Appl. Meteorol., 36, 896–902.2.0.CO;2>CrossRefGoogle Scholar
Straka, J. M., Zrnic, D. S., and Ryzhkov, A. V. (2000). Bulk hydrometeor classification and quantification using polarimetric radar data: Synthesis of relations. J. Appl. Meteorol., 39, 1341–1372.2.0.CO;2>CrossRefGoogle Scholar
Straka, J. M., Kanak, K. M., and Gilmore, M. S. (2007). The behavior of number concentration tendencies for the continuous collection growth equation using one- and two-moment bulk parameterization schemes. J. Appl. Meteorol. Climatol., 46, 1264–1274.CrossRefGoogle Scholar
Stull, R. B. (1988). An Introduction to Boundary Layer Meteorology. Dordrecht: Kluwer Academic Publishers.CrossRefGoogle Scholar
Takahashi, T. (1976). Hail in an axisymmetric cloud model. J. Atmos. Sci., 33, 1579–1601.2.0.CO;2>CrossRefGoogle Scholar
Tao, W. K., Simpson, J., and McCumber, M. (1989). An ice-water saturation adjustment. Mon. Weather Rev., 117, 231–235.2.0.CO;2>CrossRefGoogle Scholar
Telford, J. W. (1955). A new aspect of coalescence theory. J. Atmos. Sci., 12, 436–444.Google Scholar
Thompson, G., Rasmussen, R. M., and Manning, K. (2004). Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part I: Description and sensitivity analysis. Mon. Weather Rev., 132, 519–542.2.0.CO;2>CrossRefGoogle Scholar
Tokay, A. and Beard, K. V. (1996). A field study of raindrop oscillations. Part I: Observation of size spectra and evaluation of oscillation causes. J. Appl. Meteorol., 35, 1671–1687.2.0.CO;2>CrossRefGoogle Scholar
Tripoli, G. J. and Cotton, W. R. (1980). A numerical investigation of several factors contributing to the observed variable intensity of deep convection over south Florida. J. Appl. Meteorol., 19, 1037–1063.2.0.CO;2>CrossRefGoogle Scholar
Tripoli, G. J. and Cotton, W. R. (1981). The use of ice-liquid water potential temperature as a thermodynamic variable in deep atmospheric models. Mon. Weather Rev., 109, 1094–1102.2.0.CO;2>CrossRefGoogle Scholar
Twomey, S. (1959). The nuclei of natural cloud formation. Part II: The supersaturation in natural clouds and the variation of cloud droplet concentration. Geophys. Pure Appl., 43, 243–249.CrossRefGoogle Scholar
Twomey, S. (1964). Statistical effects in the evolution of a distribution of cloud droplets by coalescence. J. Atmos. Sci., 21, 553–557.2.0.CO;2>CrossRefGoogle Scholar
Twomey, S. (1966). Computation of rain formation by coalescence. J. Atmos. Sci., 23, 405–411.2.0.CO;2>CrossRefGoogle Scholar
Tzivion (Tzitzvashvili), S., Feingold, G., and Levin, Z. (1987). An efficient numerical solution to the stochastic collection equation. J. Atmos. Sci., 44, 3139–3149.2.0.CO;2>CrossRefGoogle Scholar
Tzivion (Tzitzvashvili), S., Feingold, G., and Levin, Z. (1989). The evolution of raindrop spectra. Part II: Collisional collection/breakup and evaporation in a rainshaft. J. Atmos. Sci., 46, 3312–3328.2.0.CO;2>CrossRefGoogle Scholar
Ulbrich, C. W. (1983). Natural variations in the analytical form of the raindrop size distribution. J. Climate Appl. Meteorol., 22, 1764–1775.2.0.CO;2>CrossRefGoogle Scholar
Ulbrich, C. W. and Atlas, D. (1982). Hail parameter relations: A comprehensive digest. J. Appl. Meteor., 21, 22–43.2.0.CO;2>CrossRefGoogle Scholar
Vali, G. (1975). Remarks, on the mechanism of atmospheric ice nucleation. Proceedings of the 8th International Conference, on Nucleation, Leningrad, 23–29 September, ed. I. I. Gaivoronski, pp. 265–299.
Vali, G. (1994). Freezing rate due to heterogeneous nucleation. J. Atmos. Sci., 51, 1843–1856.2.0.CO;2>CrossRefGoogle Scholar
Broeke, M. S., Straka, J. M., and Rasmussen, E. N. (2008). Polarimetric radar observations at low levels during tornado life cycles in a small sample of classic Southern Plains supercells. J. Appl. Meteorol. Climatol., 47, 1232–1247.CrossRefGoogle Scholar
Verlinde, J. and Cotton, W. R. (1993). Fitting microphysical observations of nonsteady convective clouds to a numerical model: An application of the adjoint technique of data assimilation to a kinematic model. Mon. Weather Rev., 121, 2776–2793.2.0.CO;2>CrossRefGoogle Scholar
Verlinde, J., Flatau, P. J., and Cotton, W. R. (1990). Analytical solutions to the collection growth equation: Comparison with approximate methods and application to cloud microphysics parameterization schemes. J. Atmos. Sci., 47, 2871–2880.2.0.CO;2>CrossRefGoogle Scholar
Walko, R. L., Cotton, W. R., Meyers, M. P., and Harrington, J. Y. (1995). New RAMS cloud microphysics parameterization: Part I. The single-moment scheme. Atmos. Res., 38, 29–62.CrossRefGoogle Scholar
Walko, R. L., Cotton, W. R., Feingold, G., and Stevens, B. (2000). Efficient computation of vapor and heat diffusion between hydrometeors in a numerical model. Atmos. Res., 53, 171–183.CrossRefGoogle Scholar
Wang, P. K. (1985). A convection diffusion model for the scavenging of submicron snow crystals of arbitrary shapes. J. Rech. Atmos., 19, 185–191.Google Scholar
Wang, P. K. (2002). Ice Microdynamics. San Diego, CA: Academic Press.Google Scholar
Wang, P. K. and Ji, W. (1992). A numerical study of the diffusional growth and riming rates of ice crystals in clouds. Preprints volume, 11th International Cloud Physics Conference, August 11–17, Montreal, Canada.
Warshaw, M. (1967). Cloud droplet coalescence: Statistical foundations and a one-dimensional sedimentation model. J. Atmos. Sci., 24, 278–286.2.0.CO;2>CrossRefGoogle Scholar
Wilhelmson, R. and Ogura, Y. (1972). The pressure perturbation and the numerical modeling of a cloud. J. Atmos. Sci., 29, 1295–1307.2.0.CO;2>CrossRefGoogle Scholar
Wisner, C. E., Orville, H. D., and Myers, C. G. (1972). A numerical model of a hail bearing cloud. J. Atmos. Sci., 29, 1160–1181.2.0.CO;2>CrossRefGoogle Scholar
Young, K. C. (1974a). A numerical simulation of wintertime, orographic precipitation: Part I. Description of model microphysics and numerical techniques. J. Atmos. Sci., 31, 1735–1748.2.0.CO;2>CrossRefGoogle Scholar
Young, K. C. (1974b). A numerical simulation of wintertime, orographic precipitation: Part II. Comparison of natural and AgI-seeded conditions. J. Atmos. Sci., 31, 1749–1767.2.0.CO;2>CrossRefGoogle Scholar
Young, K. C. (1975). The evolution of drop spectra due to condensation, coalescence and breakup. J. Atmos. Sci., 32, 965–973.2.0.CO;2>CrossRefGoogle Scholar
Young, K. C. (1993). Microphysical Processes in Clouds. London: Oxford University Press.Google Scholar
Ziegler, C. L. (1985). Retrieval of thermal and microphysical variables in observed convective storms. Part I: Model development and preliminary testing. J. Atmos. Sci., 42, 1487–1509.2.0.CO;2>CrossRefGoogle Scholar
Ziegler, C. L., Ray, P. S., and Knight, N. C. (1983). Hail growth in an Oklahoma multicell storm. J. Atmos. Sci., 40, 1768–1791.2.0.CO;2>CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Jerry M. Straka, University of Oklahoma
  • Book: Cloud and Precipitation Microphysics
  • Online publication: 23 November 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511581168.016
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Jerry M. Straka, University of Oklahoma
  • Book: Cloud and Precipitation Microphysics
  • Online publication: 23 November 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511581168.016
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Jerry M. Straka, University of Oklahoma
  • Book: Cloud and Precipitation Microphysics
  • Online publication: 23 November 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511581168.016
Available formats
×