Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-29T11:54:49.907Z Has data issue: false hasContentIssue false

Chapter 19 - Delusions

from Pathological Beliefs

Published online by Cambridge University Press:  03 November 2022

Julien Musolino
Affiliation:
Rutgers University, New Jersey
Joseph Sommer
Affiliation:
Rutgers University, New Jersey
Pernille Hemmer
Affiliation:
Rutgers University, New Jersey
Get access

Summary

Delusions are false and incorrigible beliefs. They have yet to yield to psychological or neurobiological explanation. Contemporary theories attempt to bridge these levels of explanation. However, they differ in the allowable directions of influence between brain regions and psychological processes. More recently, beliefs and belief updating have fallen under the lens of social network theories. Uniting individual level accounts with those that incorporate the influence of others on ones’ beliefs may yield new avenues for treatment, that leverage key nodes in an individual’s extant social network, or that reconfigure networks to facilitate more healthful and appropriate belief formation and updating.

Type
Chapter
Information
The Cognitive Science of Belief
A Multidisciplinary Approach
, pp. 421 - 439
Publisher: Cambridge University Press
Print publication year: 2022

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adams, R. A., Stephan, K. E., Brown, H. R., Frith, C. D., & Friston, K. J. (2013) The computational anatomy of psychosis. Frontiers in Psychiatry, 4, 47. https://doi.org/10.3389/fpsyt.2013.00047CrossRefGoogle ScholarPubMed
Bleuler, E. (1908) Die Prognose der Dementia praecox (Schizophreniegruppe). Allgemeine Zeitschrift für Psychiatrie und psychischgerichtliche Medizin, 65, 436464Google Scholar
Buchy, L., Woodward, T. S., & Liotti, M. (2007) A cognitive bias against disconfirmatory evidence (BADE) is associated with schizotypy. Schizophrenia Research, 90(1–3), 334337. https://doi.org/10.1016/j.schres.2006.11.012Google Scholar
Cacioppo, J. T., Fowler, J. H., & Christakis, N. A. (2009) Alone in the crowd: the structure and spread of loneliness in a large social network. Journal of Personality and Social Psychology, 97(6), 977991. https://doi.org/10.1037/a0016076Google Scholar
Christakis, N. A., & Fowler, J. H. (2007) The spread of obesity in a large social network over 32 years. New England Journal of Medicine, 357(4), 370379. https://doi.org/10.1056/NEJMsa066082Google Scholar
Christakis, N. A., & Fowler, J. H. (2008) The collective dynamics of smoking in a large social network. New England Journal of Medicine, 358(21), 22492258. https://doi.org/10.1056/NEJMsa0706154Google Scholar
Clark, A. (2013) Whatever next? Predictive brains, situated agents, and the future of cognitive science. Behavioral and Brain Sciences, 36(3), 181204. https://doi.org/10.1017/S0140525X12000477Google Scholar
Coltheart, M. (2002) Cognitive neuropsychology. In Pashler, H., Wixted, J. (Ed.), Steven’s handbook of experimental psychology (3 ed., Vol. 4, 139174). John Wiley & Sons.Google Scholar
Coltheart, M. (2010) The neuropsychology of delusions. Annals of the New York Academy of Sciences, 1191(1), 1626. https://doi.org/NYAS5496 [pii]10.1111/j.1749-6632.2010.05496.xGoogle Scholar
Coltheart, M., & Davies, M. (2000) Pathologies of belief. Blackwell.Google Scholar
Coltheart, M., Langdon, R., & McKay, R. (2010) Delusional Belief. Annual Reviews Psychology, 62, 271298. https://doi.org/10.1146/annurev.psych.121208.131622Google Scholar
Coltheart, M., Menzies, P., & Sutton, J. (2010) Abductive inference and delusional belief. Cognitive Neuropsychiatry, 15(1), 261287. https://doi.org/10.1080/13546800903439120CrossRefGoogle ScholarPubMed
Conant, R. C., & Ashby, W. R. (1970) Every good regulator of a system must be a model of that system. International Journal of Systems Science, 1(2), 8997.Google Scholar
Corlett, P. R., Cambridge, V., Gardner, J. M. et al. (2013) Ketamine effects on memory reconsolidation favor a learning model of delusions. PLoS ONE, 8(6), e65088. https://doi.org/10.1371/journal.pone.0065088Google Scholar
Corlett, P. R., & Fletcher, P. C. (2012) The neurobiology of schizotypy: fronto-striatal prediction error signal correlates with delusion-like beliefs in healthy people. Neuropsychologia, 50(14), 36123620. https://doi.org/10.1016/j.neuropsychologia.2012.09.045Google Scholar
Corlett, P. R., Fletcher, P. C. (2014) Computational psychiatry: a Rosetta Stone linking the brain to mental illness. Lancet Psychiatry 1(5), 399402.Google Scholar
Corlett, P. R., Frith, C. D., & Fletcher, P. C. (2009) From drugs to deprivation: a Bayesian framework for understanding models of psychosis. Psychopharmacology (Berlin), 206(4), 515530.Google Scholar
Corlett, P. R., Honey, G. D., Aitken, M. R. et al. (2006) Frontal responses during learning predict vulnerability to the psychotogenic effects of ketamine: linking cognition, brain activity, and psychosis. Archives of General Psychiatry, 63(6), 611621. https://doi.org/10.1001/archpsyc.63.6.611Google Scholar
Corlett, P. R., Honey, G. D., & Fletcher, P. C. (2007) From prediction error to psychosis: ketamine as a pharmacological model of delusions. Journal of Psychopharmacology, 21(3), 238252. https://doi.org/10.1177/0269881107077716Google Scholar
Corlett, P. R., Honey, G. D., Krystal, J. H., & Fletcher, P. C. (2011) Glutamatergic model psychoses: prediction error, learning, and inference. Neuropsychopharmacology, 36(1), 294315. https://doi.org/10.1038/npp.2010.163CrossRefGoogle ScholarPubMed
Corlett, P. R., Krystal, J. H., Taylor, J. R., & Fletcher, P. C. (2009) Why do delusions persist? Frontiers in Human Neuroscience, 3, 12. https://doi.org/10.3389/neuro.09.012.2009Google Scholar
Corlett, P. R., Murray, G. K., Honey, G. D. et al. (2007) Disrupted prediction-error signal in psychosis: evidence for an associative account of delusions. Brain, 130(Pt 9), 23872400. https://doi.org/10.1093/brain/awm173Google Scholar
Corlett, P. R., Taylor, J. R., Wang, X. J., Fletcher, P. C., & Krystal, J. H. (2010a) Toward a neurobiology of delusions. Progress in Neurobiology, 92(3), 345369. https://doi.org/10.1016/j.pneurobio.2010.06.007Google Scholar
Culbreth, A. J., Gold, J. M., Cools, R., & Barch, D. M. (2016) Impaired activation in cognitive control regions predicts reversal learning in schizophrenia. Schizophrenia Bulletin, 42(2), 484493. https://doi.org/10.1093/schbul/sbv075Google Scholar
Dayan, P., Kakade, S., & Montague, P. R. (2000) Learning and selective attention. Nature Neuroscience, 3(Suppl), 12181223. https://doi.org/10.1038/81504CrossRefGoogle ScholarPubMed
Dickinson, A. (2001) The 28th Bartlett Memorial Lecture. Causal learning: an associative analysis. Quarterly Journal of Experimental Psychology B, 54(1), 325.CrossRefGoogle ScholarPubMed
Diederen, K. M., & Schultz, W. (2015) Scaling prediction errors to reward variability benefits error-driven learning in humans. Journal of Neurophysiology, 114(3), 16281640. https://doi.org/10.1152/jn.00483.2015CrossRefGoogle ScholarPubMed
Durkheim, E. (1897/1967) Le suicide: etude de sociologie. Presses Universitaires de France.Google Scholar
Feeney, E. J., Groman, S. M., Taylor, J. R., & Corlett, P. R. (2017) Explaining delusions: reducing uncertainty through basic and computational neuroscience. Schizophrenia Bulletin, 43(2), 263272. https://doi.org/10.1093/schbul/sbw194Google Scholar
Fletcher, P. C., Anderson, J. M., Shanks, D. R. (2001) Responses of human frontal cortex to surprising events are predicted by formal associative learning theory. Nature Neuroscience, 4(10), 10431048. https://doi.org/10.1038/nn733Google Scholar
Fletcher, P. C., & Frith, C. D. (2009) Perceiving is believing: a Bayesian approach to explaining the positive symptoms of schizophrenia. Nature Reviews Neuroscience, 10(1), 4858.CrossRefGoogle ScholarPubMed
Fodor, J. A. (1983) The modularity of mind: an essay on faculty psychology. MIT Press.Google Scholar
Fotopoulou, A. (2014) Time to get rid of the “Modular” in neuropsychology: a unified theory of anosognosia as aberrant predictive coding. Journal of Neuropsychology, 8(1), 119. https://doi.org/10.1111/jnp.12010Google Scholar
Gradin, V. B., Kumar, P., Waiter, G. et al. (2011). Expected value and prediction error abnormalities in depression and schizophrenia. Brain, 134(Pt 6), 17511764. https://doi.org/10.1093/brain/awr059Google Scholar
Halligan, P. W., & David, A. S. (2001) Cognitive neuropsychiatry: towards a scientific psychopathology. Nature Reviews Neuroscience, 2(3), 209215.Google Scholar
Hartley, D. (1749/1976) Observations on Man, his frame, his duty, and his expectations. Delmar.Google Scholar
Helmholtz, H. V. (1867) Handbuch der physiologischen Optik. Voss.Google Scholar
Heyes, C., & Pearce, J. M. (2015) Not-so-social learning strategies. Proceedings in Biological Science, 282(1802). https://doi.org/10.1098/rspb.2014.1709Google Scholar
Holme, P., & Newman, M. E. (2006) Nonequilibrium phase transition in the coevolution of networks and opinions. Physics Review E Statistical Nonlinear and Soft Matter Physics, 74(5 Pt 2), 056108. https://doi.org/10.1103/PhysRevE.74.056108Google Scholar
Honsberger, M. J., Taylor, J. R., & Corlett, P. R. (2015) Memories reactivated under ketamine are subsequently stronger: A potential pre-clinical behavioral model of psychosis. Schizophrenia Research. https://doi.org/10.1016/j.schres.2015.02.009Google Scholar
Hume, D. (1900) An enquiry concerning human understanding. The Open court publishing co.Google Scholar
Izquierdo, A., Brigman, J. L., Radke, A. K., Rudebeck, P. H., & Holmes, A. (2016) The neural basis of reversal learning: An updated perspective. Neuroscience 14;345:1226. https://doi.org/10.1016/j.neuroscience.2016.03.021Google Scholar
Johnson, D. D., & Fowler, J. H. (2011) The evolution of overconfidence. Nature, 477(7364), 317320. https://doi.org/10.1038/nature10384Google Scholar
Kilhlstrom, J. F., & Hoyt, I. P. (1988) Hypnosis and the psychology of delusions. Wiley.Google Scholar
Lavigne, K. M., Menon, M., Moritz, S., & Woodward, T. S. (2020) Functional brain networks underlying evidence integration and delusional ideation. Schizophrenia Research, 216, 302309. https://doi.org/10.1016/j.schres.2019.11.038Google Scholar
Laws, K. R., Kondel, T. K., Clarke, R., & Nillo, A. M. (2011) Delusion-prone individuals: stuck in their ways? Psychiatry Research, 186(2–3), 219224. https://doi.org/10.1016/j.psychres.2010.09.018CrossRefGoogle ScholarPubMed
Lupyan, G., & Clark, A. (2015) Words and the world: predictive coding and the language-perception-cognition interface. Current Directions in Psychological Science, 24(4), 279284. https://doi.org/10.1177/0963721415570732CrossRefGoogle Scholar
Mackintosh, N. J. (1975) A theory of attention: variations in the associability of stimuli with reinforcement. Psychological Review, 82(4), 276298.Google Scholar
Maher, B. A. (1974) Delusional thinking and perceptual disorder. Journal of Individual Psychol, 30(1), 98113.Google Scholar
Maher, B. A. (1988a) Anomalous experience and delusional thinking: The logic of explanations. In Oltmanns, T. F., & Maher, B.A. (Eds.). Delusional Beliefs (pp. 1533). John Wiley and Sons.Google Scholar
Maher, B. A. (1988b) Delusions as normal theories. Wiley.Google Scholar
McKay, R. T., & Dennett, D. C. (2009) The evolution of misbelief. Behavioral and Brain Sciences, 32(6), 493510. https://doi.org/10.1017/S0140525X09990975Google Scholar
Miller, R. (1976) Schizophrenic psychology, associative learning and the role of forebrain dopamine. Medical Hypotheses, 2(5), 203211.Google Scholar
Mitchell, C. J., De Houwer, J., & Lovibond, P. F. (2009) The propositional nature of human associative learning. The Behavioral and Brain Sciences, 32(2), 183198. https://doi.org/10.1017/S0140525X09000855Google Scholar
Moritz, S., & Woodward, T. (2004) Plausibility judgment in schizophrenic patients: evidence for a liberal acceptance bias. German Journal of Psychiatry, 7(4), 6674.Google Scholar
Nassar, M. R., Waltz, J. A., Albrecht, M. A., Gold, J. M., & Frank, M. J. (2021) All or nothing belief updating in patients with schizophrenia reduces precision and flexibility of beliefs. Brain, 144(3), 10131029 https://doi.org/10.1093/brain/awaa453Google Scholar
Pearce, J. M., & Hall, G. (1980) A model for Pavlovian learning: variations in the effectiveness of conditioned but not of unconditioned stimuli. Psychological Review, 87(6), 532552.Google Scholar
Peters, E., Joseph, S., Day, S., & Garety, P. (2004) Measuring delusional ideation: the 21-item Peters et al. Delusions Inventory (PDI). Schizophrenia Bulletin, 30(4), 10051022.Google Scholar
Peters, E. R., Joseph, S. A., & Garety, P. A. (1999) Measurement of delusional ideation in the normal population: introducing the PDI (Peters et al. Delusions Inventory). Schizophrenia Bulletin, 25(3), 553576.Google Scholar
Powers, A. R., Mathys, C., & Corlett, P. R. (2017) Pavlovian conditioning-induced hallucinations result from overweighting of perceptual priors. Science, 357(6351), 596600. https://doi.org/10.1126/science.aan3458Google Scholar
Powers, A. R. III, Kelley, M., Corlett, P.R. (2016) Hallucinations as Top-Down effects on Perception. Biological Psychiatry: CNNI, 1(5), 393400.Google Scholar
Preuschoff, K., & Bossaerts, P. (2007) Adding prediction risk to the theory of reward learning. Annals of the New York Academy of Sciences, 1104, 135146. https://doi.org/10.1196/annals.1390.005Google Scholar
Preuschoff, K., Quartz, S. R., & Bossaerts, P. (2008) Human insula activation reflects risk prediction errors as well as risk. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 28(11), 27452752. https://doi.org/10.1523/JNEUROSCI.4286-07.2008Google Scholar
Quine, W. V., & Quine, W. V. (1951) Two dogmas of empiricism. Philosophical Review, 60, 2043.Google Scholar
Reddy, L. F., Waltz, J. A., Green, M. F., Wynn, J. K., & Horan, W. P. (2016) Probabilistic reversal learning in schizophrenia: stability of deficits and potential causal mechanisms. Schizophrenia Bulletin, 42(4), 942951. https://doi.org/10.1093/schbul/sbv226Google Scholar
Reed, E. J., Uddenberg, S., Suthaharan, P. (2020) Paranoia as a deficit in non-social belief updating. Elife, 9. https://doi.org/10.7554/eLife.56345Google Scholar
Reed, G. F. (1972) The psychology of anomalous experience: a cognitive approach. Hutchinson.Google Scholar
Rescorla, R. A., Wagner, A.R. (1972) A theory of Pavlovian conditioning: variations in the effectiveness of reinforcement and non-reinforcement. In Black, A. H., & Prokasy, W. F. (Eds.). Classical conditioning II: Current research and theory (pp. 6499). Appleton-Century-Crofts.Google Scholar
Romaniuk, L., Honey, G. D., King, J. R. et al. (2010) Midbrain activation during Pavlovian conditioning and delusional symptoms in schizophrenia. Archives of General Psychiatry, 67(12), 12461254. https://doi.org/10.1001/archgenpsychiatry.2010.169Google Scholar
Rosenquist, J. N., Fowler, J. H., & Christakis, N. A. (2011) Social network determinants of depression. Molecular Psychiatry, 16(3), 273281. https://doi.org/10.1038/mp.2010.13Google Scholar
Ross, R. M., McKay, R., Coltheart, M., & Langdon, R. (2015) Jumping to conclusions about the beads task? A meta-analysis of delusional ideation and data-gathering. Schizophrenia Bulletin, 41(5), 11831191. https://doi.org/10.1093/schbul/sbu187Google Scholar
Schlagenhauf, F., Huys, Q. J., Deserno, L. et al. (2014) Striatal dysfunction during reversal learning in unmedicated schizophrenia patients. Neuroimage, 89 (100), 171180. https://doi.org/10.1016/j.neuroimage.2013.11.034Google Scholar
Schlagenhauf, F., Sterzer, P., Schmack, K. et al. (2009) Reward feedback alterations in unmedicated schizophrenia patients: relevance for delusions. Biological Psychiatry, 65(12), 10321039. https://doi.org/10.1016/j.biopsych.2008.12.016Google Scholar
Sutton, R. S., Barto, A. G. (1998) Reinforcement learning: an introduction. MIT Press.Google Scholar
Tranel, D., & Damasio, A. R. (1985) Knowledge without awareness: an autonomic index of facial recognition by prosopagnosics. Science, 228(4706), 14531454.Google Scholar
Waltz, J. A. (2016) The neural underpinnings of cognitive flexibility and their disruption in psychotic illness. Neuroscience, 345, 203217. https://doi.org/10.1016/j.neuroscience.2016.06.005Google Scholar
Waltz, J. A., & Gold, J. M. (2007) Probabilistic reversal learning impairments in schizophrenia: further evidence of orbitofrontal dysfunction. Schizophrenia research, 93(1–3), 296303. https://doi.org/10.1016/j.schres.2007.03.010Google Scholar
Waltz, J. A., Kasanova, Z., Ross, T. J. et al. (2013) The roles of reward, default, and executive control networks in set-shifting impairments in schizophrenia. PLoS ONE, 8(2), e57257. https://doi.org/10.1371/journal.pone.0057257Google Scholar
Waltz, J. A., Schweitzer, J. B., Ross, T. J. et al. (2010) Abnormal responses to monetary outcomes in cortex, but not in the basal ganglia, in schizophrenia. Neuropsychopharmacology: Official Publication of the American College of Neuropsychopharmacology, 35(12), 24272439. doi: 10.1038/npp.2010.126Google Scholar
Widrow, B., Hoff, M.E. Jr. (1960) Adaptive switching circuits. Technical Report No. 1553-1 June 30, 1960.Google Scholar
Young, G. (2008) Capgras delusion: an interactionist model. Conscious and Cognition, 17(3), 863876.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×