Skip to main content Accessibility help
×
Hostname: page-component-84b7d79bbc-rnpqb Total loading time: 0 Render date: 2024-07-28T16:34:29.820Z Has data issue: false hasContentIssue false

4 - Development of Complex-Valued Derivative Formulas

Published online by Cambridge University Press:  03 May 2011

Are Hjørungnes
Affiliation:
University of Oslo
Get access

Summary

Introduction

The definition of a complex-valued matrix derivative was given in Chapter 3 (see Definition 3.1). In this chapter, it will be shown how the complex-valued matrix derivatives can be found for all nine different types of functions given in Table 2.2. Three different choices are given for the complex-valued input variables of the functions, namely, scalar, vector, or matrix; in addition, three possibilities for the type of output that functions return, again, could be scalar, vector, or matrix. The derivative can be identified through the complex differential by using Table 3.2. In this chapter, it will be shown how the theory introduced in Chapters 2 and 3 can be used to find complex-valued matrix derivatives through examples. Many results are collected inside tables to make them more accessible.

The rest of this chapter is organized as follows: The simplest case, when the output of a function is a complex-valued scalar, is treated in Section 4.2, which contains three subsections (4.2.1, 4.2.2, and 4.2.3) when the input variables are scalars, vectors, and matrices, respectively. Section 4.3 looks at the case of vector functions; it contains Subsections 4.3.1, 4.3.2, and 4.3.3, which treat the three cases of complex-valued scalar, vector, and matrix input variables, respectively. Matrix functions are considered in Section 4.4, which contains three subsections. The three cases of complex-valued matrix functions with scalar, vector, and matrix inputs are treated in Subsections 4.4.1, 4.4.2, and 4.4.3, respectively. The chapter ends with Section 4.5, which consists of 10 exercises.

Type
Chapter
Information
Complex-Valued Matrix Derivatives
With Applications in Signal Processing and Communications
, pp. 70 - 94
Publisher: Cambridge University Press
Print publication year: 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×