Skip to main content Accessibility help
×
Hostname: page-component-7479d7b7d-c9gpj Total loading time: 0 Render date: 2024-07-16T00:06:16.954Z Has data issue: false hasContentIssue false

3 - Feynman path integral

Published online by Cambridge University Press:  04 August 2010

Alexander Altland
Affiliation:
Universität zu Köln
Ben D. Simons
Affiliation:
University of Cambridge
Get access

Summary

The aim of this chapter is to introduce the concept of the Feynman path integral. As well as developing the general construction scheme, particular emphasis is placed on establishing the interconnections between the quantum mechanical path integral, classical Hamiltonian mechanics, and classical statistical mechanics. The practice of path integration is discussed in the context of several pedagogical applications. As well as the canonical examples of a quantum particle in a single and a double potential well, we discuss the generalization of the path integral scheme to tunneling of extended objects (quantum fields), dissipative and thermally assisted quantum tunneling, and the quantum mechanical spin.

In this chapter we temporarily leave the arena of many-body physics and second quantization and, at least superficially, return to single-particle quantum mechanics. By establishing the path integral approach for ordinary quantum mechanics, we will set the stage for the introduction of field integral methods for many-body theories explored in the next chapter. We will see that the path integral not only represents a gateway to higher-dimensional functional integral methods but, when viewed from an appropriate perspective, already represents a field theoretical approach in its own right. Exploiting this connection, various concepts of field theory, namely stationary phase analysis, the Euclidean formulation of field theory, instanton techniques, and the role of topology in field theory, are introduced in this chapter.

The path integral: general formalism

Broadly speaking, there are two approaches to the formulation of quantum mechanics: the “operator approach” based on the canonical quantization of physical observables and the associated operator algebra, and the Feynman path integral.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×