Published online by Cambridge University Press: 02 March 2023
While the Poisson model motivated much of the classical control chart theory for count data, several works note the constraining equi-dispersion assumption. Dispersion must be addressed because over-dispersed data can produce false out-of-control detections when using Poisson limits, while under-dispersed data will produce Poisson limits that are too broad, resulting in potential false negatives and out-of-control states requiring a longer study period for detection. Section 6.1 introduces the Shewhart COM–Poisson control chart, demonstrating its flexibility in assessing in- or out-of-control status, along with advancements made to this chart. These initial works lead to a wellspring of flexible control chart development motivated by the COM–Poisson distribution. Section 6.2 describes a generalized exponentially weighted moving average control chart, and Section 6.3 describes the cumulative sum charts for monitoring COM–Poisson processes. Meanwhile, Section 6.4 introduces generally weighted moving average charts based on the COM-Poisson, and Section 6.5 presents the Conway–Maxwell–Poisson chart via the progressive mean statistic. Finally, the chapter concludes with discussion.
To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.