Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-18T17:18:13.102Z Has data issue: false hasContentIssue false

2 - Binomial trees and discrete parameter martingales

Published online by Cambridge University Press:  05 June 2012

Alison Etheridge
Affiliation:
University of Oxford
Get access

Summary

Summary

In this chapter we build some more sophisticated market models that track the evolution of stock prices over a succession of time periods. Over each individual time period, the market follows our simple binary model of Chapter 1. The possible trajectories of the stock prices are then encoded in a tree. A simple corollary of our work of Chapter 1 will allow us to price claims by taking expectation with respect to certain probabilities on the tree under which the stock price process is a discrete parameter martingale.

Definitions and basic properties of discrete parameter martingales are presented and illustrated in §2.3, and we see for the first time how martingale methods can be employed as an elegant computational tool. Then, §2.4 presents some important martingale theorems. In §2.5 we pave the way for the Black–Scholes analysis of Chapter 5 by showing how to construct, in the martingale framework, the portfolio that replicates a claim. In §2.6 we preview the Black–Scholes formula with a heuristic passage to the limit.

The multiperiod binary model

Our single period binary model is, of course, inadequate as a model of the evolution of an asset price. In particular, we have allowed ourselves to observe the market at just two times, zero and T. Moreover, at time T, we have supposed the stock price to take one of just two possible values.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×