Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-18T09:15:43.584Z Has data issue: false hasContentIssue false

6 - Hydrodynamic modes and reversible mode couplings

from Part I - Near-equilibrium critical dynamics

Published online by Cambridge University Press:  05 June 2014

Uwe C. Täuber
Affiliation:
Virginia Polytechnic Institute and State University
Get access

Summary

Equipped with the field theory representation of non-linear Langevin equations, the tools of dynamic perturbation theory, and the dynamic renormalization group introduced in Chapters 4 and 5, we are now in the position to revisit models for dynamic critical behavior that entail reversible mode couplings and other conserved hydrodynamic modes. We have already encountered some of these in Section 3.3. In models C and D, respectively, a non-conserved or conserved n-component order parameter is coupled to a conserved scalar field, the energy density. Through a systematic renormalization group analysis, we may critically assess the earlier predictions from scaling theory, and discuss the stability of fixed points characterized by strong dynamic scaling, wherein the order parameter and conserved non-critical mode fluctuate with equal rates, and weak dynamic scaling regimes, where these characteristic time scales differ. Next we investigate isotropic ferromagnets (model J), with the conserved spin density subject to reversible precession in addition to diffusive relaxation. Exploiting rotational invariance, we can now firmly establish the scaling relation z = (d + 2 − η)/2. Similar symmetry arguments yield a scaling relation for the dynamic exponents associated with the order parameter and the non-critical fields in the O(n)-symmetric SSS model that encompasses model E for planar ferromagnets and superfluid helium 4 (for n = 2), and model G for isotropic antiferromagnets (n = 3). There exist competing strong- and weak-scaling fixed points, with the former stable to one-loop order, and characterized by z = d/2 for all slow modes.

Type
Chapter
Information
Critical Dynamics
A Field Theory Approach to Equilibrium and Non-Equilibrium Scaling Behavior
, pp. 207 - 250
Publisher: Cambridge University Press
Print publication year: 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bausch, R., H. K., Janssen, and H., Wagner, 1976, Renormalized field theory of critical dynamics, Z. Phys. B Cond. Matt. 24, 113–127.Google Scholar
Böni, P., D., Görlitz, J., Kötzler, and J. L.Martínez, Martínez, 1991, Dynamics of longitudinal and transverse fluctuations above Tc in EuS, Phys. Rev. B 43, 8755–8758.CrossRefGoogle ScholarPubMed
Brézin, E. and C., De Dominicis, 1975, Field-theoretic techniques and critical dynamics. II. Ginzburg—Landau stochastic models with energy conservation, Phys. Rev. B 12, 4954—1962.CrossRefGoogle Scholar
Coldea, R., R. A., Cowley, T. G., Perring, D. F., McMorrow, and B., Roessli, 1998, Critical behavior of the three-dimensional Heisenberg antiferromagnet RbMnF3, Phys. Rev. B 57, 5281–5290.CrossRefGoogle Scholar
De Dominicis, C. and L., Peliti, 1977, Deviations from dynamic scaling in helium and antiferromagnets, Phys. Rev. Lett. 38, 505–508.CrossRefGoogle Scholar
De Dominicis, C. and L., Peliti, 1978, Field-theory renormalization and critical dynamics above Tc: helium, antiferromagnets, and liquid-gas systems, Phys. Rev. B 18, 353–376.CrossRefGoogle Scholar
Dohm, V., 2006, Model F in two-loop order and the thermal conductivity near the superfluid transition of 4He, Phys. Rev. B 73, 092503-1–4.CrossRefGoogle Scholar
Dohm, V. and R., Folk, 1980, Nonasymptotic critical dynamics near the superfluid transition in 4He, Z. Phys. B Cond. Matt. 40, 79–93.CrossRefGoogle Scholar
Folk, R. and G., Moser, 2003, Critical dynamics of model C resolved, Phys. Rev. Lett. 91, 030601-1-4.CrossRefGoogle ScholarPubMed
Folk, R. and G., Moser, 2004, Critical dynamics of stochastic models with energy conservation (model C), Phys. Rev. E 69, 036101-1–18.CrossRefGoogle Scholar
Folk, R. and G., Moser, 2006, Critical dynamics: a field theoretical approach, J. Phys. A: Math. Gen. 39, R207–R313.CrossRefGoogle Scholar
Freedman, R. and G. F., Mazenko, 1976, Critical dynamics of isotropic antiferromagnets using renormalization-group methods: T ≥ TN, Phys. Rev. B 13, 4967–4983.Google Scholar
Frey, E. and F., Schwabl, 1994, Critical dynamics of magnets, Adv. Phys. 43, 577–683.CrossRefGoogle Scholar
Gross, M. and F., Varnik, 2012, Critical dynamics of an isothermal compressible nonideal fluid, Phys. Rev. E 86, 061119-1–15.CrossRefGoogle ScholarPubMed
Gunton, J. D. and K., Kawasaki, 1975, Critical transport anomalies in 4 – ∈ and 6 – ∈ dimensions, J. Phys. A: Math. Gen. 8, L9–L12.CrossRefGoogle Scholar
Gunton, J. D. and K., Kawasaki, 1976, Renormalization group equations in critical dynamics. II. Binary liquids, superfluid helium and magnets, Progr. Theor. Phys. 56, 61–76.CrossRefGoogle Scholar
Halperin, B. I., P. C., Hohenberg, and S.-k., Ma, 1974, Renormalization-group methods for critical dynamics: I. Recursion relations and effects of energy conservation, Phys. Rev. B 10, 139–153.CrossRefGoogle Scholar
Halperin, B. I., P. C., Hohenberg, and S.-k., Ma, 1976, Renormalization-group methods for critical dynamics: II. Detailed analysis of the relaxational models, Phys. Rev. B 13, 4119–4131.CrossRefGoogle Scholar
Halperin, B. I., P. C., Hohenberg, and E. D., Siggia, 1974, Renormalization-group calculations of divergent transport coefficients at critical points, Phys. Rev. Lett. 32, 1289–1292.CrossRefGoogle Scholar
Halperin, B. I., P. C., Hohenberg, and E. D., Siggia, 1976, Renormalization-group treatment of the critical dynamics of superfluid helium, the isotropic antiferromagnet, and the easy-plane ferromagnet, Phys. Rev. B 13, 1299–1328; err. Phys. Rev. B 21, 2044-2045 (1980).CrossRefGoogle Scholar
Hohenberg, P. C. and B. I., Halperin, 1977, Theory of dynamic critical phenomena, Rev. Mod. Phys. 49, 435–479.CrossRefGoogle Scholar
Janssen, H. K., 1977, Renormalized field theory for the critical dynamics of O(n)-symmetric systems, Z. Phys. B Cond. Matt. 26, 187–189.Google Scholar
Janssen, H. K., 1979, Field-theoretic methods applied to critical dynamics, in: Dynamical Critical Phenomena and Related Topics, ed. C. P., Enz, Lecture Notes in Physics, Vol. 104, Heidelberg: Springer-Verlag, 26-–47.Google Scholar
Kötzler, J., 1988, Universality of the dipolar dynamic crossover of cubic ferromagnets above Tc, Phys. Rev. B 38, 12027–12030.CrossRefGoogle ScholarPubMed
Ma, S.-k. and G. F., Mazenko, 1974, Critical dynamics of ferromagnets in 6 — ∈ dimensions, Phys. Rev. Lett. 33, 1383–1385.CrossRefGoogle Scholar
Ma, S.-k. and G. F., Mazenko, 1975, Critical dynamics of ferromagnets in 6 — ∈ dimensions: general discussion and detailed calculation, Phys. Rev. B 11, 4077—1100.CrossRefGoogle Scholar
Sasvári, L. and P., Szépfalusy, 1977, Dynamic critical properties of a stochastic n-vector model, Physica 87A, 1–34.Google Scholar
Sasvári, L., F., Schwabl, and P., Szépfalusy, 1975, Hydrodynamics of an n-component phonon system, Physica 81A, 108–128.Google Scholar
Semadeni, P., B., Roessli, P., Böni, P., Vorderwisch, and T., Chatterji, 2000, Critical fluctuations in the weak itinerant ferromagnet Ni3Al: a comparison between self-consistent renormalization and mode-mode coupling theory, Phys. Rev. B 62, 1083–1088.CrossRefGoogle Scholar
Siggia, E. D., B. I., Halperin, and P. C., Hohenberg, 1976, Renormalization-group treatment of the critical dynamics of the binary-fluid and gas-liquid transitions, Phys. Rev. B 13, 2110–2123.CrossRefGoogle Scholar
Tsai, S.-H. and D. P., Landau, 2003, Critical dynamics of the simple-cubic Heisenberg antiferromagnet RbMnF3: extrapolation to q = 0, Phys. Rev. B 67, 104411-1–6.CrossRefGoogle Scholar
Vasil'ev,, A. N., 1993, The Field Theoretic Renormalization Group in Critical Behavior Theory and Stochastic Dynamics, Boca Raton: Chapman & Hall / CRC, chapter 5.Google Scholar
Zinn-Justin, J., 1993, Quantum Field Theory and Critical Phenomena, Oxford: Clarendon Press, chapter 34.Google Scholar
Bhattacharjee, J. K., 1996, Critical dynamics of systems with reversible mode coupling terms: spherical limit, Europhys. Lett. 34, 525–530.CrossRefGoogle Scholar
Bhattacharjee, J. K., U., Kaatze, and S. Z., Mirzaev, 2010, Sound attenuation near the demixing point of binary liquids: interplay of critical dynamics and noncritical kinetics,Rep. Prog. Phys. 73, 066601, 1–36.CrossRefGoogle Scholar
Campellone, M. and J.-P., Bouchaud, 1997, Self-consistent screening approximation for critical dynamics, J. Phys. A: Math. Gen. 30, 3333–3343.CrossRefGoogle Scholar
Chaikin, P. M. and T. C., Lubensky, 1995, Principles of Condensed Matter Physics, Cambridge: Cambridge University Press, chapter 8.CrossRefGoogle Scholar
Chen, A., E. H., Chimowitz, S., De, and Y., Shapir, 2005, Universal dynamic exponent at the liquid–gas transition from molecular dynamics, Phys. Rev. Lett. 95, 255701-1–4.CrossRefGoogle ScholarPubMed
Das, S. K., M. E., Fisher, J. V., Sengers, J., Horbach, and K., Binder, 2006, Critical dynamics in a binary fluid: simulations and finite-size scaling, Phys. Rev. Lett. 97, 025702-1–4.CrossRefGoogle Scholar
Dohm, V., 1987, Renormalization-group theory of critical phenomena near the lambda transition of 4He, J. Low Temp. Phys. 69, 51–75.CrossRefGoogle Scholar
Dohm, V., 1991, Renormalization-group flow equations of model F, Phys. Rev. B 44, 2697–2712.CrossRefGoogle ScholarPubMed
Dohm, V. and R., Folk, 1982, Nonlinear dynamic renormalization-group analysis above and below the lambda transition in 4He, Physica 109 & 110B, 1549–1556.
Hohenberg, P. C., 1982, Critical phenomena in 4He, Physica 109 & 110B, 1436–1446.Google Scholar
Mesterházy, D., J. H., Stockemer, L. F., Palhares, and J., Berges, 2013, Dynamic universality class of Model C from the functional renormalization group, Phys. Rev. B 88, 174301-1–4.CrossRefGoogle Scholar
Roy, S. and S. K., Das, 2011, Transport phenomena in fluids: finite-size scaling for critical behavior, Europhys. Lett. (EPL) 94, 36001-1–6.

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×