from Part I - Near-equilibrium critical dynamics
Published online by Cambridge University Press: 05 June 2014
This chapter addresses phase transitions and dynamic scaling occurring in systems comprised of interacting indistinguishable quantum particles, for which entanglement correlations are crucial. It first describes how the dynamics (in real time) and thermodynamics (in imaginary time) of quantum many-particle Hamiltonians can be mapped onto field theories based on coherent-state path integrals. While bosons are described by complex-valued fields, fermions are represented by anticommuting Grassmann variables. Since quantum-mechanical systems are of inherently dynamical nature, the corresponding field theory action entails d + 1 dimensions, with time playing a special role. For Hamiltonians that incorporate only two-particle interactions, we can make contact with the previously studied Langevin equations, yet with effectively multiplicative rather than additive noise. As an illustration, this formalism is applied to deduce fundamental properties of weakly interacting boson superfluids. Whereas Landau–Ginzburg theory already provides a basic hydrodynamic description, the Gaussian approximation allows the computation of density correlations, the Bose condensate fraction, and the normal- and superfluid densities from the particle current correlations. We next establish that quantum fluctuations are typically irrelevant for thermodynamic critical phenomena, provided that Tc > 0, and readily extend finite-size scaling theory to the imaginary time axis to arrive at general scaling forms for the free energy. Intriguing novel phenomena emerge in the realm of genuine quantum phase transitions at zero temperature, governed by other control parameters such as particle density, interaction or disorder strengths.
To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.