Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-sh8wx Total loading time: 0 Render date: 2024-07-20T06:02:10.365Z Has data issue: false hasContentIssue false

23 - Shaping Age-at-Death Distributions by Applying Tooth Cementum Analysis to the Early Medieval Graveyard of Lauchheim (Germany)

from Part III - Applications

Published online by Cambridge University Press:  20 January 2022

Stephan Naji
Affiliation:
New York University
William Rendu
Affiliation:
University of Bordeaux (CNRS)
Lionel Gourichon
Affiliation:
Université de Nice, Sophia Antipolis
Get access

Summary

The paleodemography analysis of the Early medieval Lauchheim cemetery (Germany) was conducted to reconstruct the age-at-death distribution of 789 adults with preserved teeth using the Tooth Cementum Annulation (TCA) method, and the analysis of individual morphological age markers (MAE) for those without teeth. Aggregating TCA and MAE results revealed specific mortality peaks for males in their early fifties. After a mortality peak in their early forties, females surviving their fertile age group seemed to benefit from a resilience pattern that allows them to survive longer than their male counterparts. The mean life expectancy for females was below male life expectancy, whereas the oldest age group above 70 years of age included females only. In conclusion, TCA shows a more diverse age-at-death distribution without MAE inherent effects. Thus, it could be argued that TCA allows us to complement osteological age estimations and shape age at death distributions to understand demographic processes in premodern societies better.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2022

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adler, P. (1967). Die chronologie der gebissentwicklung. In Harndt, E. and Weyers, H. (eds.), Zahn, Mund-und Kieferheilkunde im Kindesalter. Berlin: Die Quintessenz, 3874.Google Scholar
Bertrand, B., Cunha, E., Bécart, A., Gosset, D., and Hédouin, V. (2019). Age at death estimation by cementochronology: Too precise to be true or too precise to be accurate? Am J Phys Anthropol 169: 464–81.CrossRefGoogle ScholarPubMed
Bocquet-Appel, J.-P., ed. (2008). Recent Advances in Palaeodemography. The Netherlands: Springer.CrossRefGoogle Scholar
Bocquet-Appel, J.-P., and Masset, C. eds. (1982). Farewell to paleodemography. J Hum Evol 11: 321–33.CrossRefGoogle Scholar
Brather, S. (2016). Lauchheim im frühen Mittelalter: Das DFG-Projekt und seine Perspektiven. In Koch, U., Prien, R., and Drauschke, J. (eds.), Reihengräber des Frühen Mittelalters. Remshalden: Bernhard Albert Greiner, 4754.Google Scholar
Buikstra, J. (2022). A brief history of cemental annuli research, with emphasis upon anthropological applications. In Naji, S., Gourichon, L., & Rendu, W., eds., Cementum in Anthropology: Back to the Root. Cambridge: Cambridge University Press, ch. 1.Google Scholar
Chamberlain, A. (2006). Demography in Archaeology. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Charles, D. K., Condon, K., Cheverud, J. M., and Buikstra, J. E. (1986). Cementum annulation and age determination in Homo Sapiens. I. Tooth variability and observer error. Am J Phys Anthropol 71: 311–20.Google Scholar
Großkopf, B. (1990). Individualaltersbestimmung mit Hilfe von Zuwachsringen im Zement bodengelagerter menschlicher Zähne. Zeitschrift für Rechtsmedizin 103: 251–9.CrossRefGoogle Scholar
Großkopf, B., and McGlynn, G. (2011). Age diagnosis based on incremental lines in dental cementum: A critical reflection. Anthropologischer Anzeiger 68: 275–89.CrossRefGoogle ScholarPubMed
Härke, H. (2014). Grave goods in early medieval burials: Messages and meaning. Mortality, 19(1): 4160.CrossRefGoogle Scholar
Hoppa, R. D., and Vaupel, J. W. (2002). The Rostock manifesto for paleodemography: the way from stage to age. In Hoppa, R. D. and Vaupel, J. W. (eds.). Paleodemography. Age distributions from skeletal samples. Cambridge Studies in Biological and Evolutionary Anthropology 31. Cambridge: Cambridge University Press, 18.CrossRefGoogle Scholar
Jankauskas, R., Barakauskas, S., and Bojarun, R. (2001). Incremental lines of dental cementum in biological age estimation. Homo 52/1: 5971.CrossRefGoogle Scholar
Kargerer, P., and Grupe, G. (2001). Age-at-death diagnosis and determination of life-history parameters by incremental lines in human dental cementum as an identification aid. Forensi+c Sci Int 118: 7582.CrossRefGoogle Scholar
Kemkes-Grottenthaler, A. (2002). Aging through the ages: Historical perspectives on age indicator methods. In Hoppa, R. D. and Vaupel, J. W. (eds.), Paleodemography: Age Distributions from Skeletal Samples. Cambridge: Cambridge University Press, 4872.CrossRefGoogle Scholar
Kvaal, S. I., and Solheim, T. (1995). A non-destructive dental method for age estimation. J For Odontostomatol 12: 611.Google Scholar
Lanteri, L., Bizot, B., Saliba-Serre, B., Gaudart, J., Signoli, M., and Schmitt, A. (2018). Cementochronology: A solution to assess mortality profiles from individual age-at-death estimates. J Archaeol Sci: Reports 20: 576–87.Google Scholar
Luy, M., and Wittwer-Backofen, U. (2006). Das Halley-Band für paläodemographische Mortalitätsanalysen. Zeitschrift für Bevölkerungswissenschaften 30: 219–44.Google Scholar
Mani-Caplazi, G., Hotz, G., Wittwer-Backofen, U., and Vach, W. (2019). Measuring incremental line width and appearance in the tooth cementum of recent and archaeological human teeth to identify irregularities: First insight using a standard protocol. Int J Paleopathology 27: 2437.CrossRefGoogle Scholar
Meinl, A., Huber, C. D., Tangl, S., Gruber, G. M., Teschler-Nicola, M., and Watzek, G. (2008). Comparison of the validity of three dental methods for the estimation of age at death. Forensic Sci. Int. 178: 96105.Google Scholar
Nagaoka, T., and Hirata, K. (2007). Reconstruction of paleodemographic characteristics from skeletal age at death distributions: Perspectives from Hitotsubashi, Japan. Am J Phys Anthropol 134: 301–11.CrossRefGoogle ScholarPubMed
Ferembach, D., Schwidetzky, I., and Stloukal, M. (1980). Recommendations for age and sex diagnosis of skeletons. J Hum Evol 9: 517–49.Google Scholar
Renz, H., and Radlanski, R. J. (2006). Incremental lines in root cementum of human teeth: A reliable age marker? Homo 57: 2950.CrossRefGoogle ScholarPubMed
Robbins Schug, G., Brandt, E. T., and Lukacs, J. R. (2012). Cementum annulations, age estimation, and demographic dynamics in Mid-Holocene foragers of north India. Homo 63: 94109.CrossRefGoogle ScholarPubMed
Steckel, R. H., Larsen, C. S., Roberts, C. A., and Baten, J., eds. (2018). The Backbone of Europe: Health, Diet, Work, and Violence over Two Millennia. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Stein, T. J., and Corcoran, J. F. (1994). Paradicular cementum deposition as a criterion for age in human beings. Oral Surg. Oral Med. Oral Path 77: 266–70.CrossRefGoogle ScholarPubMed
Storey, R. (2007). An elusive paleodemography? A comparison of two methods for estimating the adult age distribution of deaths at late Classic Copan, Honduras. Am J Phys Anthropol 132: 40–7.CrossRefGoogle ScholarPubMed
Stork, I. (2010). Friedhof und Dorf: der exemplarische Fall Lauchheim. In A. Gut (ed.), Die Alamannen auf der Ostalb: Frühe Siedler im Raum zwischen Lauchheim und Niederstotzingen. Esslingen: Landesamt für Denkmalpflege, 92105.Google Scholar
Wahl, J., Wittwer-Backofen, U., and Kunter, M. (1997). Zwischen masse und klasse: Alamannen im blickfeld der anthropologie. In Alamannen, Die (ed.), Archäologisches Landesmuseum Baden-Württemberg. Stuttgart: Theiss, 337–48.Google Scholar
Wittwer-Backofen, U. (2012). Age estimation using tooth cementum annulation. In Bell, L (ed.), Forensic Microscopy for Skeletal Tissues. Methods in Molecular Biology (915). New York: Humana Press, 129–44.Google Scholar
Wittwer-Backofen, U., Buckberry, J., Czarnetzki, A., Doppler, S., Grupe, G., Hotz, G., Kemkes, A., Larsen, C. S., Prince, D., Wahl, J., Fabig, A., and Weise, S. (2008). Basics in paleodemography: A comparison of age indicators applied to the early medieval skeletal sample of Lauchheim. Am J Phys Anthropol 137: 384–96.CrossRefGoogle Scholar
Wittwer-Backofen, U., Gampe, J., and Vaupel, J. W. (2004). Tooth cementum annulation for age estimation: Results from a large known-age validation study. Am J Phys Anthropol 123: 119–29.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×