Skip to main content Accessibility help
×
Hostname: page-component-7479d7b7d-rvbq7 Total loading time: 0 Render date: 2024-07-15T15:13:19.176Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  05 June 2012

William Bechtel
Affiliation:
University of California, San Diego
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Discovering Cell Mechanisms
The Creation of Modern Cell Biology
, pp. 281 - 312
Publisher: Cambridge University Press
Print publication year: 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Afzelius, Björn A. (1962). Chemical fixatives for electron microscopy. In Harris, R. J. C. (Ed.), The Interpretation of Ultrastructure (Vol. 1, pp. 1–19). New York: Academic PressGoogle Scholar
Afzelius, Björn A. (1966). Anatomy of the Cell (B. Satir, Trans.). Chicago: University of Chicago PressGoogle Scholar
Allchin, Douglas (1996). Cellular and theoretical chimeras: Piecing together how cells process energy. Studies in the History and Philosophy of Science, 27, 31–41CrossRefGoogle ScholarPubMed
Allchin, Douglas (1997). A twentieth-century phlogiston: Constructing error and differentiating domains. Perspectives on Science, 5, 81–127Google Scholar
Allchin, Douglas (2002). To err and win a Nobel Prize: Paul Boyer, ATP synthase and the emergence of bioenergetics. Journal of the History of Biology, 35, 149–72CrossRefGoogle Scholar
Allfrey, Vincent G. (1959). The isolation of subcellular components. In Brachet, J. & Mirsky, A. E. (Eds.), The Cell (pp. 193–290). New York: Academic PressGoogle Scholar
Altmann, Richard (1889). Ueber Nucleinsäuren. Archiv für Anatomie Physiologie und wissenschaftliche Medicin, 524–36Google Scholar
Altmann, Richard (1890). Die Elementaroganismen und ihre Beziehungen zu den Zellen. Leipzig: von VeitGoogle Scholar
Anderson, Thomas F. (1956). Electron microscopy of microorganisms. In Oster, G. & Pollister, A. W. (Eds.), Physical Techniques in Biological Research, Vol. 3: Cells and Tissues (pp. 177–240). New York: Academic PressGoogle Scholar
Anderson, Winston A. (2000). The value of mentoring in the career of a young scientist. Molecular Biology of the Cell, 11, 795–7CrossRefGoogle ScholarPubMed
Appel, Toby A. (1987). Founding. In Brobeck, J. R., Reynolds, O. E., & Appel, T. A. (Eds.), History of the American Physiological Society. Bethesda, MD: The American Physiological SocietyCrossRefGoogle Scholar
Bainton, Dorothy F. (1981). The discovery of lysosomes. Journal of Cell Biology, 91, 66s–76sCrossRefGoogle ScholarPubMed
Baker, John R. (1942). Some aspects of cytological technique. In Bourne, G. H. (Ed.), Cytology and Cell Physiology (First ed.). Oxford: Clarendon PressGoogle Scholar
Baker, John R. (1944). The structure and the chemical composition of the Golgi element. Quarterly Journal of Microscopical Science, 85, 1Google Scholar
Baker, John R. (1951). Cytological Technique. London: Methuen & Co. Ltd.Google Scholar
Baker, John R. (1957). The Golgi controversy. Symposia of the Society for Experimental Biology, 10, 1–10Google Scholar
Baker, John R. (1963). New developments in the Golgi controversy. International Review of Cytology, 19, 183–201Google Scholar
Barnes, Barry (1977). Interests and the Growth of Knowledge. London: Routledge and Kegan PaulGoogle Scholar
Barnum, C. P., & Huseby, R. A. (1948). Some quantitative analyses of the particulate fractions from mouse liver cell cytoplasm. Archives of Biochemistry, 19, 17–23Google ScholarPubMed
Barsalou, Lawrence W. (1999). Perceptual symbol systems. Behavioral and Brain Sciences, 22, 577–660Google ScholarPubMed
Battelli, Federico, & Stern, Lina Salomonovna (1911). Die Oxydation der Bersteinsäure durch Tiergewebe. Biochemische Zeitschrift, 30, 172–94Google Scholar
Beams, H. W., & King, R. L. (1934). The effects of ultracentrifuging upon the Golgi apparatus in the uterine gland cells. Anatomical Record, 59, 363CrossRefGoogle Scholar
Beams, Jesse W. (1938). High speed centrifuging. Review of Modern Physics, 10, 245–63CrossRefGoogle Scholar
Bechtel, William (1984). The evolution of our understanding of the cell: A study in the dynamics of scientific progress. Studies in the History and Philosophy of Science, 15, 309–56CrossRefGoogle ScholarPubMed
Bechtel, William (1986a). The nature of scientific integration. In Bechtel, W. (Ed.), Integrating Scientific Disciplines (pp. 3–52). Dordrecht: Martinus NijhoffCrossRefGoogle Scholar
Bechtel, William (1986b). Biochemistry: A cross-disciplinary endeavor that discovered a distinctive domain. In Bechtel, W. (Ed.), Integrating Scientific Disciplines (pp. 77–100). Dordrecht: Martinus NijhoffCrossRefGoogle Scholar
Bechtel, William (1995). Deciding on the data: Epistemological problems surrounding instruments and research techniques in cell biology. In Hull, D., Forbes, M., and Burian, R. M. (Eds.), PSA 1994 (Vol. 2, pp. 167–78). East Lansing, MI: Philosophy of Science AssociationGoogle Scholar
Bechtel, William (2000). From imaging to believing: Epistemic issues in generating biological data. In Creath, R. & Maienschein, J. (Eds.), Biology and Epistemology (pp. 138–63). Cambridge, England: Cambridge University PressGoogle Scholar
Bechtel, William (2001). Decomposing and localizing vision: An exemplar for cognitive neuroscience. In Bechtel, W., Mandik, P., Mundale, J., & Stufflebeam, R. S. (Eds.), Philosophy and the Neurosciences: A Reader (pp. 225–49). Oxford: Basil BlackwellGoogle Scholar
Bechtel, William (2002a). Decomposing the mind-brain: A long-term pursuit. Brain and Mind, 3, 229–42CrossRefGoogle Scholar
Bechtel, William (2002b). Aligning multiple research techniques in cognitive neuroscience: Why is it important?Philosophy of Science, 69, S48–S58CrossRefGoogle Scholar
Bechtel, William, & Richardson, Robert C. (1993). Discovering Complexity: Decomposition and Localization as Strategies in Scientific Research. Princeton, NJ: Princeton University PressGoogle Scholar
Belitzer, Vladimir A., & Tsibakova, Elena T. (1939). [The mechanism of phosphorylation associated with respiration]. Biokhimiya, 4, 516–35Google Scholar
Bell, L. G. E. (1952). The application of freezing and drying techniques in cytology. International Review of Cytology, 1, 35–63CrossRefGoogle Scholar
Benda, Carl (1898). Über die Spermatogenese der Vertebraten und hoeherer Evertebraten. II. Theil. Die Histiogenese der Spermien. Archiv für Anatomie und Physiologie (Physiologische Abteilung), 393–8Google Scholar
Benda, Carl (1899). Weitere Mitteilungen über die Mitochondria. Archiv für Anatomie und Physiologie (Physiologische Abteilung), 376–83Google Scholar
Bensley, Robert R. (1937). On the fat distribution of mitochondria in the guinea pig liver. Anatomical Record, 69, 341–53CrossRefGoogle Scholar
Bensley, Robert R. (1943). Chemical structure of cytoplasm. In Hoerr, N. L. (Ed.), Frontiers in Cytochemistry: The Physical and Chemical Organization of the Cytoplasm (Vol. 10, pp. 323–34). Lancaster, PA: Jacques Cattell PressGoogle Scholar
Bensley, Robert R. (1951). Facts versus artifacts in cytology: The Golgi apparatus. Experimental Cell Research, 2, 1–9CrossRefGoogle Scholar
Bensley, Robert R. (1953). Introduction and greetings: Symposium on the structure and biochemistry of mitochondria. Journal of Histochemistry and Cytochemistry, 1, 179–82Google Scholar
Bensley, Robert R., & Gersh, Isidore (1933a). Studies on the cell structure by the freezing-drying method. I. Introduction. Anatomical Record, 57, 205–15CrossRefGoogle Scholar
Bensley, Robert R., & Gersh, Isidore (1933b). Studies on the cell structure by the freezing-drying method. II. Mitochondria. Anatomical Record, 57, 217CrossRefGoogle Scholar
Bensley, Robert R., & Hoerr, Normand L. (1934a). Studies on cell structure by the freezing-drying method. V. The chemical basis of the organization of the cell. Anatomical Record, 60, 251–66CrossRefGoogle Scholar
Bensley, Robert R., & Hoerr, Normand L. (1934b). Studies on cell structure by the freeze-drying method. VI. The preparation and properties of mitochondria. Anatomical Record, 60, 449–55CrossRefGoogle Scholar
Bernard, Claude (1848). De l'origine du sucre dans l'économic animale. Archives générales de médecine, 18, 303–19Google Scholar
Bernard, C. (1858). Leçons sur les propriétés physiologiques et les altérations pathologiques des liquides de l'organisme. Paris: BaillièreGoogle Scholar
Bernard, Claude (1865). An Introduction to the Study of Experimental Medicine. New York: DoverGoogle Scholar
Bernard, Claude (1878a). Leçons sur les phénomènes de la vie communs aux animaux et aux ⅴégétaux. Paris: BaillièreGoogle Scholar
Bernard, Claude (1878b). La fermentation alcoolique. Dernières expériences de Claude Bernard. Edited posthumously by M. Berthelot. Revue scientifique de la France et de l'étranger, Paris, 16, 49–56Google Scholar
Bernhard, Wilhelm, Gautier, A., & Oberling, Charles (1951). Fibrillary elements of probable ergastoplasmic nature in cytoplasm of hepatic cells revealed by electron microscopy. Comptes rendus des séances de la Société de biologie et de ses filial, 145, 566Google ScholarPubMed
Bernhard, Wilhelm, Haguenau, Francoise, Gautier, A., & Oberling, Charles (1952). La structure submicroscopique des elements basolphes cytoplasmiques dans le foie, le pancreas, et les glandes salivaires. Zeitschrift fur Zellforschung, 37, 281–300CrossRefGoogle Scholar
Berthet, Jacques, Berthet, Lucie, Appelmans, Françoise, & Duve, Christian (1951). Tissue fractionation studies: 2. The nature of the linkage between acid phosphatase and mitochondria in rat-liver tissue. Biochemical Journal, 50, 182–9CrossRefGoogle ScholarPubMed
Berthet, Jacques, & Duve, Christian (1951). Tissue fractionation studies. I. The existence of a mitochondria-linked enzymatically inactive form of acid phosphatase in rat liver tissue. Biochemical Journal, 50, 174–81CrossRefGoogle Scholar
Berthollet, Claude Louis (1780). Recherches sur la nature des substances animales et sur leurs rapports avec les substances ⅴégétales. Mémoires de l'Acadeâmie royale des sciences, 120–5Google Scholar
Bertrand, Gabriel (1895). Sur la laccase et sur le pouvoir oxydant de cette diastase. Comptes rendus de l'Académie des sciences, 120, 266–9Google Scholar
Berzelius, Jöns Jacob (1836). Einige Ideen über bei der Bildung organischer Verbindungen in der lebenden Naturwirksame, aber bisher nicht bemerke Kraft. Jahres-Berkcht über die Fortschritte der Chemie, 15, 237–45Google Scholar
Bichat, Xavier (1805). Recherches Physiologiques sur la Vie et la Mort. (3rd ed.). Paris: MachantCrossRefGoogle Scholar
Bittner, John J. (1936). Some possible effects of nursing on the mammary gland tumor incidence in mice. Science, 84, 162CrossRefGoogle ScholarPubMed
Bloor, David (1991). Knowledge and Social Imagery (2nd ed.). Chicago: University of Chicago PressGoogle Scholar
Boas, Marie (1952). The establishment of the mechanical philosophy. Osiris, 10, 412–541CrossRefGoogle Scholar
Bogen, J., & Woodward, J. (1988). Saving the phenomena. Philosophical Review, 97, 303–52CrossRef
Bonner, John T. (1952). Morphogenesis. Princeton: Princeton University PressGoogle Scholar
Borsook, Henry, Deasy, Clara L., Hagen-Smit, Arie J., Keighley, Geoffrey, & Lowy, Peter H. (1950). The uptake in vitro of C14-labeled glycine, L-leucine, and L-lysine by different components of guinea pig liver homogenate. Journal of Biological Chemistry, 184, 529Google Scholar
Bourne, Geoffrey H. (1942). Mitochondria and the Golgi apparatus. In Bourne, G. (Ed.), Cytology and Cell Physiology (pp. 99–138). Oxford: Oxford University PressGoogle Scholar
Bourne, Geoffrey H. (1962). Division of Labor in Cells. New York: Academic PressGoogle Scholar
Bowen, Robert H. (1924). On a possible relation between the Golgi apparatus and secretory products. American Journal of Anatomy, 33, 197–217CrossRefGoogle Scholar
Bowen, Robert H. (1929). The cytology of glandular secretion. Quarterly Review of Biology, 4, 299–324 and 484–51CrossRefGoogle Scholar
Boyer, Paul D., Chance, Britton, Ernster, Lars, Mitchell, Peter, Racker, Efraim, & Slater, Edward Charles (1977). Oxidative phoshorylation and photophosphorylation. Annual Review of Biochemistry, 46, 955–1026CrossRefGoogle Scholar
Brachet, Jean (1942). La localisation des acides pentosenucléiques dans les tissues animaux et dans les oeufs d'Amphibiens en voie de développement. Archive de Biologie, 43, 207–57Google Scholar
Brachet, Jean (1957). Biochemical Cytology. New York: Academic PressGoogle Scholar
Brachet, Jean, & Jeener, Raymond (1944). Recherches sur les particules cytoplasmiques de dimensions macroméculaires riches en acide pentosenucléique. Pt. I. Propriétés générales, relations avec les hydrolases, les hormones, les protéines de structure. Enymologia, 13, 196–212Google Scholar
Brenner, Sydney, Jacob, Francois, & Meselson, Matthew (1961). An unstable intermediate carrying information from genes to ribosomes for protein synthesis. Nature, 190, 576–81CrossRefGoogle ScholarPubMed
Bretschneider, L. H. (1952). The electron-microscopic investigation of tissue sections. International Review of Cytology, 1, 305–22CrossRefGoogle Scholar
Brodmann, Korbinian (1909/1994). Vergleichende Lokalisationslehre der Grosshirnrinde (L. J. Garvey, Trans.). Leipzig: J. A. BarthGoogle Scholar
Brown, Robert (1833). On the organs and mode of fecundation in Orchideae and Asclediadeae. Transactions of the Linnean Society, 16, 685–745CrossRefGoogle Scholar
Bucher, Nancy (1953). The formation of radioactive cholesterol and fatty acids from C14-labeled acetate by rat liver homogenates. Journal of the American Chemical Society, 75, 498CrossRefGoogle Scholar
Buchner, Eduard (1897). Alkoholische Gärung ohne Hefezellen (Vorläufige Mittheilung). Berichte der deutschen chemischen Gesellschaft, 30, 117–24CrossRefGoogle Scholar
Buchner, Eduard, & Meisenheimer, J. (1904). Die chemische Vorgänge bei der alkoholischen Gärung. Berichte der deutschen chemischen Gesellschaft, 37, 417–28CrossRefGoogle Scholar
Burian, Richard M. (1996). Underappreciated pathways toward molecular genetics as illustrated by Jean Brachet's cytochemical embryology. In Sarkar, S. (Ed.), The Philosophy and History of Molecular Biology: New Perspectives (pp. 67–85). Dordrecht: KluwerCrossRefGoogle Scholar
Cagniard-Latour, Charles (1838). Memoire sur la fermentation vineuse. Annales de chimie et de physique, 68, 206–23. Cajal, Santiago Ramón. See Ramón y Cajal, Santiago
Campbell, Peter N., & Epstein, Michael A. (1966). The Structure and Function of Animal Cell Components. Oxford: Pergamon PressGoogle Scholar
Cannan, C. M., & Berger, R. (1951). Quantitative comparison of submicroscopic cytoplasmic particles observed in normal and malignant cells with the electron microscope. Cancer Research, 2, 242Google Scholar
Cannon, Walter B. (1929). Organization of physiological homeostasis. Physiological Reviews, 9, 399–431CrossRefGoogle Scholar
Caro, Lucien (1961). Electron microscopic radioautography of thin sections: The Golgi zone as a site of protein concentration in pancreatic acinar cells. Journal of Cell Biology, 10, 37–45CrossRefGoogle ScholarPubMed
Caro, Lucien, & Palade, George E. (1964). Protein synthesis, storage, and discharge in the pancreatic exocrine cell. An autoradiographic study. Journal of Cell Biology, 20, 473–95CrossRefGoogle ScholarPubMed
Caspersson, Torbjörn O. (1936). Über den chemischen Aufbau der strukturen des Zellkernes. Skandinavisches archiv für physiologie, 73(Suppl. nr. 8), 1–151Google Scholar
Caspersson, Torbjörn O. (1950). Cell Growth and Cell Function. New York: W. W. Norton & Co.Google Scholar
Caspersson, Torbjörn O., & Schultz, Jack (1938). Nucleic acid metabolism of the chromosomes in relation to gene reproduction. Nature, 142, 294CrossRefGoogle Scholar
Caspersson, Torbjörn O., & Schultz, Jack (1940). Ribonucleic acids in both nucleus and cytoplasm, and the function of the nucleolus. Proceedings of the National Academy of Sciences, USA, 26, 507–15CrossRefGoogle ScholarPubMed
Causey, Robert L. (1977). Unity of Science. Dordrecht: D. Reidel Publishing CompanyCrossRefGoogle Scholar
Champy, Christian (1911). Archives d'anatomie microscopique, 13, 55
Chance, Britton, & Williams, G. R. (1956). The respiratory chain and oxidative phosphorylation. Advances in Enzymology, 17, 65–134Google ScholarPubMed
Chantrenne, Hubert (1947). Hétérogénéité des granules cytoplasmiques du foie de souris. Biochimica et Biophysica Acta, 1, 437–48CrossRefGoogle Scholar
Chao, Fu-Chuan, & Schachmann, Howard K. (1956). The isolation and characterization of a macromolecular ribonucleoprotein from yeast. Archives of Biochemistry and Biophysics, 61, 220–30CrossRefGoogle Scholar
Chubin, Daryl E. (1982). Sociology of Sciences: An Annotated Bibliography on Invisible Colleges, 1972–1981. New York: GarlandGoogle Scholar
Churchland, Patricia S., & Sejnowski, Terrence J. (1992). The Computational Brain. Cambridge, MA: MIT PressGoogle Scholar
Claude, Albert (1935). Properties of the causative agent of a chicken tumor. Ⅺ. Chemical composition of purified chicken tumor extracts containing the active principle. Journal of Experimental Medicine, 61, 41–57CrossRefGoogle ScholarPubMed
Claude, Albert (1937). Preparation of an active agent from inactive tumor extracts. Science, 85, 294–5CrossRefGoogle ScholarPubMed
Claude, Albert (1938a). A fraction from normal chick embryo similar to the tumor producing fraction of chicken tumor I. Proceedings of the Society for Experimental Biology and Medicine, 39, 398–403CrossRefGoogle Scholar
Claude, Albert (1938b). Concentration and purification of Chicken Tumor I agent. Science, 87, 467–8CrossRefGoogle Scholar
Claude, Albert (1939). Chemical composition of the tumor-producing fraction of chicken tumor 1. Science, 90, 213–5CrossRefGoogle Scholar
Claude, Albert (1940). Particulate components of normal and tumor cells. Science, 91, 77–8CrossRefGoogle ScholarPubMed
Claude, Albert (1941). Particulate components of cytoplasm. Cold Springs Harbor Symposia on Quantitative Biology, 9, 263–71CrossRefGoogle Scholar
Claude, Albert (1943a). Distribution of nucleic acids in the cell and the morphological constitution of cytoplasm. In Hoerr, N. L. (Ed.), Frontiers in Cytochemistry: The Physical and Chemical Organization of the Cytoplasm (Vol. 10, pp. 111–29). Lancaster, PA: Jacques Cattell PressGoogle Scholar
Claude, Albert (1943b). The constitution of protoplasm. Science, 97, 451–6CrossRefGoogle Scholar
Claude, Albert (1944). The constitution of mitochondria and microsomes and the distribution of nucleic acid in the cytoplasm of a leukemic cell. Journal of Experimental Medicine, 80, 19–29CrossRefGoogle ScholarPubMed
Claude, Albert (1946). Fractionation of mammalian liver cells by differential centrifugation. II. Experimental procedures and results. Journal of Experimental Medicine, 84, 61–89CrossRefGoogle ScholarPubMed
Claude, Albert (1948). Studies on cells: morphology, chemical constitution, and distribution of biochemical functions. Harvey Lectures, 43, 121–64Google Scholar
Claude, Albert (1950). Studies on cell morphology and functions: Methods and results. Annals of the New York Academy of Sciences, 50, 854–60CrossRefGoogle Scholar
Claude, Albert, & Fullam, Ernest F. (1945). An electron microscope study of isolated mitochondria. Journal of Experimental Medicine, 81, 51–61CrossRefGoogle ScholarPubMed
Claude, Albert, & Fullam, Ernest F. (1946). The preparation of sections of guinea pig liver for electron microscopy. Journal of Experimental Medicine, 89, 499–503CrossRefGoogle Scholar
Claude, Albert, Porter, Keith R., & Pickels, E. G. (1947). Electron microscope study of chicken tumor cells. Cancer Research, 7, 421–30Google Scholar
Cleland, K. W., & Slater, Edward Charles (1953). Respiratory Granules of heart muscles. Biochemical Journal, 53, 547–56CrossRefGoogle Scholar
Collins, Harry (1981). What is TRASP? The radical programme as a methodological imperative. Philosophy of the Social Sciences, 11, 215–24CrossRefGoogle Scholar
Cooper, Cecil, & Lehninger, Albert L. (1956a). Oxidative phosphorylation by an enzyme complex from extracts of mitochndria. I. The span ß-hydroxybutyrate to oxygen. Journal of Biological Chemistry, 219, 489–506Google Scholar
Cooper, Cecil, & Lehninger, Albert L. (1956b). Oxidative phosphorylation by an enzyme complex from extracts of mitochondria. III. The span cytochrome c to oxygen. Journal of Biological Chemistry, 219, 519–29Google Scholar
Cooper, Cecil, & Lehninger, Albert L. (1957a). Oxidative phosphorylation by an enzyme complex from extracts of mitochondria. IV. Adenosinetriphosphatase activity. Journal of Biological Chemistry, 224, 547–60Google Scholar
Cooper, Cecil, & Lehninger, Albert L. (1957b). Oxidative phosphorylation by an enzyme complex from extracts of mitochondria. V. The adenosine triphosphate-phosphate exchange reaction. Journal of Biological Chemistry, 224, 561–78Google Scholar
Copeland, D. Eugene (1999). Origins of cell biology in the United States. FASEB Journal, 13, S181-S4CrossRefGoogle ScholarPubMed
Corner, George W. (1964). A History of the Rockefeller Institute, 1901–1953, Origins and Growth. New York: The Rockefeller Institute PressGoogle Scholar
Correns, Carl (1900). G. Mendel's Regel über das Verhalten der Nachkommenschaft der Rassenbastarde. Berichte der deutschen botanischen Gesellschaft, 18, 158–68Google Scholar
Cosslett, Vernon Ellis (1955). Electron microscopy. In Oster, G. & Pollister, A. W. (Eds.), Physical Techniques in Biological Research, Vol. 1 Optical Techniques (pp. 461–531). New York: Academic PressGoogle Scholar
Cowdry, Edmund Vincent (1918). The mitochondrial constituents of protoplasm. Contributions to Embryology. Carnegie Institution of Washington, Washington, DC, 8, 39–160Google Scholar
Cowdry, Edmund Vincent (1924). Cytological constituents – mitochondria, Golgi apparatus, and chromidial substance. In Cowdry, E. V. (Ed.), General Cytology: A Textbook of Cellular Structure and Function for Students of Biology and Medicine (pp. 313–82). Chicago: University of Chicago PressGoogle Scholar
Cowdry, Edmund Vincent (1943). In appreciation of Dr. R. R. Bensley. In Hoerr, N. L. (Ed.), Frontiers in Cytochemistry: The Physical and Chemical Organization of the Cytoplasm (Vol. 10, pp. 7–8). Lancaster, PA: Jacques Cattell PressGoogle Scholar
Crane, Diana (1972). Invisible Colleges. Chicago: University of Chicago PressGoogle Scholar
Crane, Frederick L., Hatefi, Youssef, Lester, R. L., & Widmer, C. (1957). Isolation of a quinone from beef heart mitochondria. Biochemica et Biophysica Acta, 25, 220–1CrossRefGoogle ScholarPubMed
Cranefield, Paul (1957). The organic physics of 1847 and the biophysics of today. Journal of the History of Medicine, 12, 407–23Google ScholarPubMed
Craver, Carl (forthcoming). Explaining the brain: What a science of the mind-brain could be
Creath, Richard (1988). The pragmatics of observation, PSA 1988 (Vol. 1, pp. 149–53)
Crick, Francis H. C. (1988). What Mad Pursuit: A Personal View of Scientific Discovery. New York: Basic BooksGoogle Scholar
Dalton, Albert J. (1951a). Structural details of some of the epithelial cell types in the kidney of the mouse as revealed by the electron microscope. Journal of the National Cancer Institute, 11, 1163–85Google Scholar
Dalton, Albert J. (1951b). Observations of the Golgi substance with the electron microscope. Nature, 168, 244CrossRefGoogle Scholar
Dalton, Albert J. (1953). Electron microscopy of tissue sections. International Review of Cytology, 2, 403–17CrossRefGoogle Scholar
Dalton, Albert J. (1955). A chrome-osmium tetroxide fixative for electron microscopy. Anatomical Record, 121, 281AGoogle Scholar
Dalton, Albert J., & Felix, Marie D. (1954). Cytological and cytochemical characteristics of the Golgi substance of epithelial cells of the epididymis – in situ, in homogenates and after isolation. American Journal of Anatomy, 94, 171–208CrossRefGoogle Scholar
Dalton, Albert J., & Felix, Marie D. (1955). A study of the Golgi substance and ergastoplasm in a series of mammalian cell types. In Fine Structure of Cells. Symposium Held at the VIIIth Congress of Cell Biology, Leiden, 1954 (pp. 274–93). New York: Interscience Publishers
Dalton, Albert J., & Felix, Marie D. (1956). A comparative study of the Golgi complex. Journal of Biophysical and Biochemical Cytology, 2(No. 4, Part 2), 79–84CrossRefGoogle ScholarPubMed
Dalton, Albert J., Kahler, H., Streibich, M. J., & Lloyd, B. (1950). Finer structure of hepatic, intestinal and retinal cells of the mouse as revealed by the electron microscope. Journal of the National Cancer Institute, 11, 439–61Google Scholar
Danielli, James F. (1953). Cytochemistry: A Critical Approach. New York: John Wiley and SonsGoogle Scholar
Danielli, James F., & Davson, Hugh (1935). A contribution to the theory of permeability of thin films. Journal of Cellular and Comparative Physiology, 5, 495–508CrossRefGoogle Scholar
Darden, Lindley (1990). Diagnosing and fixing faults in theories. In Shrager, J. & Langley, P. (Eds.), Computational Models of Scientific Discovery and Theory Formation (pp. 319–53). San Mateo, CA: Morgan KaufmannGoogle Scholar
Darden, Lindley (1991). Theory Change in Science: Strategies from Mendelian Genetics. New York: Oxford University PressGoogle Scholar
Darden, Lindley (1992). Strategies for anomaly resolution. In Giere, R. (Ed.), Cognitive Models of Science (pp. 251–73). Minneapolis, MN: University of Minnesota PressGoogle Scholar
Darden, Lindley (2005). Relations among fields: Mendelian, cytological and molecular mechanisms. Studies in the History and Philosophy of Biological and Biomedical Science, 36, 349–71CrossRefGoogle ScholarPubMed
Darden, Lindley, & Craver, Carl (2002). Strategies in the interfield discovery of the mechanism of protein synthesis. Studies in the History and Philosophy of the Biological and Biomedical Sciences, 33, 1–28CrossRefGoogle Scholar
Darden, Lindley, & Maull, Nancy (1977). Interfield theories. Philosophy of Science, 43, 44–64Google Scholar
de Duve, Christian (1958). Lysosomes, a new group of cytoplasmic particles. In Hayashi, T. (Ed.), Subcellular Particles (pp. 128–59). New York: The Road Press CompanyGoogle Scholar
Duve, Christian (Ed.) (1959). Lysosomes: A New Group of Cytoplasmic Particles. New York: Ronald Press CompanyGoogle Scholar
Duve, Christian (1963). The lysosome. Scientific American, 208(5), 64–72CrossRefGoogle Scholar
Duve, Christian (1963–4). The separation and characterization of subcellular particles. Harvey Lectures, 59, 49–87Google Scholar
de Duve, Christian (1969). The lysosome in retrospect. In Dingle, J. T. & Fell, H. B. (Eds.), Lysosomes in Biology and Pathology (pp. 3–40). Amsterdam: North HollandGoogle Scholar
Duve, Christian (1971). Tissue fractionation: Past and present. Journal of Cell Biology, 50, 20d–55dCrossRefGoogle ScholarPubMed
Duve, Christian (1984). A Guided Tour of the Living Cell. New York: Scientific American LibraryGoogle Scholar
Duve, Christian, & Berthet, Jacques (1954). The use of differential centrifugation in the study of tissue enzymes. International Review of Cytology, 3, 225–75CrossRefGoogle Scholar
Duve, Christian, Pressman, Burton D., Gianetto, Robert, Wattiaux, Robert, & Appelmans, Françoise (1955). Tissue fractionation studies. 6. Intracellular distribution patterns of enzymes in rat liver tissue. Biochemical Journal, 60, 604–17CrossRefGoogle Scholar
Robertis, Eduardo D. P., Nowinski, Wiktor W., & Saez, Francisco A. (1949). General Cytology. Philadelphia: W. B. Saunders CompanyGoogle Scholar
Robertis, Eduardo D. P., Nowinski, Wiktor W., & Saez, Francisco A. (1954). General Cytology. (Second ed.). Philadelphia: W. B. Saunders CompanyGoogle Scholar
Devlin, Thomas M., & Lehninger, Albert L. (1956). Oxidative phosphorylation by an enzyme complex from extracts of mitochondria II. The span hydroxbutyrate to cytochrome c. Journal of Biological Chemistry, 219, 507–18Google Scholar
Dowe, Phil (1995). Causality and conserved quantities: A reply to Salmon. Philosophy of Science, 62, 321–33CrossRefGoogle Scholar
Dröscher, Ariane (1998). Camillo Golgi and the discovery of the Golgi apparatus. Histochemistry and Cell Biology, 109, 425–30Google Scholar
Drummond, D. G. (1950). The practice of electron microscopy. Journal of the Royal Microscopical Society, 70, 1–158CrossRefGoogle Scholar
du Bois-Reymond, Emil Heinrich (1859). Über die Angeblick saure Reaktion des Muskelfleisches. Monatsbericht der Königlich-Preussischen Akademie der Wissenschaften zu Berlin, 288–324Google Scholar
Dujardin, Felix (1835). Recherches sur les organismes inférieurs. Annales des Science Naturelles: Zoologie, 2nd series, 4, 343–77Google Scholar
Dumortier, Barthélemy Charles (1832). Recherches sur la structure comparée et le développement des animaux et des ⅴégéetaux. Nova Acta Physico Medica Academiae Caesareae Leopoldino Carolinae, 16, 217Google Scholar
Dutrochet, René Henri Joachim (1826). L'agent immédiat du mouvement vital dévoilé dans la nature et dans son mode d'action chez les ⅴégétaux et les animaux. Paris: JB BallièreGoogle Scholar
Dutrochet, René Henri Joachim (1828). Nouvelles recherches sur l'endosmose et l'exosmose. Paris: JB BallièreGoogle Scholar
Eggleton, Philip, & Eggleton, Marion Grace Palmer (1927). The physiological significance of phosphagen. Biochemical Journal, 63, 155–61Google ScholarPubMed
Einbeck, Hans (1914). Über das Vorkommen der Fumarsäure im freschen Fleische. Zeitschrift für physiologische Chemie, 90, 303–7CrossRefGoogle Scholar
Elman, Jeffrey L., Bates, Elizabeth A., Johnson, Mark H., Karmiloff-Smith, Annette, Parisi, Dominico, & Plunkett, Kim (1996). Rethinking Innateness: A Connectionist Perspective on Development. Cambridge, MA: MIT PressGoogle Scholar
Embden, Gustav, Deuticke, H. J., & Kraft, G. (1933). Über die intermediaren Vorgänge bei der Glykolyse in der Muskulatur. Klinische Wochenschrift, 12, 213–5CrossRefGoogle Scholar
Embden, Gustav, Kalberlah, F., & Engel, H. (1912). Über Milchsäurebildung im Muskelpreßsaft. Biochemische Zeitschrift, 45, 45–62Google Scholar
Embden, Gustav, & Laquer, Fritz Oscar (1914). Über der Chemie des Lactacidogens. I. Mitteilung. Isolierungsversuche. Zeitschrift für Physiologische Chemie, 93, 94–123CrossRefGoogle Scholar
Embden, Gustav, & Laquer, Fritz Oscar (1921). Über die Chemie des Lactacidogens. III. Zeitschrift für Physiologische Chemie, 113, 1–9Google Scholar
Englehardt, Vladimir Aleksandrovich (1932). Die Beziehunger zwischen Atmung und Pyrophosphatumsatz in Vogelerythrocyten. Biochemische Zeitschrift, 251, 343–68Google Scholar
Farah, Martha (1988). Is visual imagery really visual? Overlooked evidence from neuropsychology. Psychological Review, 95, 307–17CrossRefGoogle ScholarPubMed
Farquhar, Marilyn Gist, & Palade, George E. (1981). The Golgi apparatus (complex) – (1954–1981) – from artifact to center stage. Journal of Cell Biology, 91, 77s–103sCrossRefGoogle ScholarPubMed
Farquhar, Marilyn Gist, & Palade, George E. (1998). The Golgi apparatus: 100 years of progress and controversy. Trends in Cell Biology, 8, 2–10CrossRefGoogle ScholarPubMed
Farquhar, Marilyn Gist, & Rinehart, J. F. (1954). Cytologic alterations in the anterior pituitary gland following thyroidectomy: An electron microscope studyEndocrinology, 55, 857–76CrossRefGoogle Scholar
Farquhar, Marilyn Gist, & Wellings, Robert S. (1957). Electron microscopic evidence suggesting secretory granule formation within the Golgi apparatus. Journal of Biophysical and Biochemical Cytology, 3(No. 2), 319–22CrossRefGoogle ScholarPubMed
Fawcett, Don W., & Porter, Keith R. (1953). A study of the fine structure of ciliated epithelia. Journal of Morphology, 94, 221–64CrossRefGoogle Scholar
Fernández-Morán, Humberto (1952). The submicroscopic organization of vertebrate nerve fibres: An electron microscope study of myelinated and unmyelinated nerve fibres. Experimental Cell Research, 3, 282–359CrossRefGoogle Scholar
Fernández-Morán, Humberto (1962). Cell-membrane ultrastructure. Low-temperature electron microscopy and X-ray diffraction studies of lipoprotein components in lamellar systems. Circulation, 26, 1039–65CrossRefGoogle ScholarPubMed
Fernández-Morán, Humberto, Oda, T., Blair, P. V., & Green, David E. (1964). A macromolecular repeating unit of mitochondrial structure and function: Correlated electron microscopic and biochemical studies of isolated mitochondria and submitochondrial particles of beef heart muscle. The Journal of Cell Biology, 22, 63–100CrossRefGoogle ScholarPubMed
Feulgen, Robert Joachim, & Rossenbeck, Heinrich (1924). Mikrokopisch-chemischer Nachweis einer Nukleinsäure vom Typus Thymusnukleinsäure und die darauf beruhene elektive Fäbung von Zellkernen in mikrokopischen Präparaten. Zeitschrift für physiologische Chemie, 135, 203–48CrossRefGoogle Scholar
Fischer, Alfred (1899). Fixierung, Färbung und Bau des Protoplasmas. Kritische Untersuchungen über Technik und Theorie in der neueren Zellforschung. Jena: Gustav FischerGoogle Scholar
Fischer, Emil (1894). Einfluss der Konfiguration auf die Wirkung der Enzyme. Berichte der deutschen chemischen Gesellschaft, 27, 2985–93CrossRefGoogle Scholar
Fiske, Cyrus Hartwell, & Subbarow, Yellapragrada (1929). Phosphorus compounds of muscle and liver. Science, 70, 381–2CrossRefGoogle ScholarPubMed
Fleischer, Becca, Fleischer, Sidney, & Ozawa, Hidehiro (1969). Isolation and characterization of Golgi membranes from bovine liver. Journal of Cell Biology, 43, 59–79CrossRefGoogle ScholarPubMed
Flemming, Walther (1878). Zur Kenntnis der Zelle und ihrer Theilungserscheinungen. Schriften des naturwissenschaftlicher Verein für Schleswig-Holstein, 3, 23–7Google Scholar
Flemming, Walther (1879). Ueber das Verhalten des Kerns bei der Zellteilung und über die Bedeutung mehrkerniger Zellen. Archiv für pathologische Anatomie und Physiologie und für klinische Medizin, 77, 1–28Google Scholar
Flemming, Walther (1887). Neue Beiträge zur Kenntniss der Zelle. Archiv für mikroskopische Anatomie und Entwirklungsgeschichte, 29, 389–463CrossRefGoogle Scholar
Fletcher, Walter Morley, & Hopkins, Frederick Gowland (1907). Lactic acid in amphibian muscle. Journal of Physiology, 35, 247–309CrossRefGoogle ScholarPubMed
Florkin, Marcel (1972). A History of Biochemistry. Comprehensive Biochemistry. (Vol. 30). Amsterdam: ElsevierGoogle Scholar
Fodor, Jerry A. (1980). Fixation of belief and concept acquisition. In Piatelli-Palmarini, M. (Ed.), Language and Learning: The Debate between Jean Piaget and Noam Chomsky. Cambridge, MA: Harvard University PressGoogle Scholar
Fol, Hermann (1873). Le premier développement de l'oeuf chez les Géronidés. Archives des sciences physiques et naturelles, 2nd series, 48, 335–40Google Scholar
Fourcroy, Antoine François (1789). Elémens d'histoire naturelle et de chimie (Third ed.) (Vol. Three). Paris: CuchetGoogle Scholar
Frederic, J. (1956). Study of cytoplasms by highly enlarged microscopy with an anoptral device; photography of living cells and after osmic fixation of in vitro cultured cells. Experimental Cell Research, 11, 18–35CrossRefGoogle ScholarPubMed
Frédéricq, Léon (1884). Theodore Schwann: sa vie et ses travaux. LiegeGoogle Scholar
Friedkin, Morris, & Lehninger, Albert L. (1949). Oxidation-coupled incorporation of inorganic radiophosphate into phospholipide and nucleic acid in a cell-free system. Journal of Biological Chemistry, 177, 775–88Google Scholar
Friedmann, Herbert (1997). From Friedrich Wöhler's urine to Eduard Buchner's alcohol. In Cornish-Bowden, A. (Ed.), New Beer in an Old Bottle: Eduard Buchner and the Growth of Biochemical Knowledge (pp. 67–122). Valencia: Universitat de ValènciaGoogle Scholar
Fruton, Joseph S. (1972). Molecules and Life: Historical Essays on the Interplay of Chemistry and Biology. New York: Wiley InterscienceGoogle Scholar
Fullam, Ernest F., & Gessler, Albert E. (1946). A high speed microtome for the electron microscope. Review of Scientific Instruments, 17, 23–5CrossRefGoogle ScholarPubMed
Galilei, Galileo (1638(1914). Dialogues Concerning Two New Sciences. New York: MacMillanGoogle Scholar
Gall, Joseph G. (1996). Views of the Cell. Bethesda, MD: The American Society for Cell BiologyGoogle Scholar
Gánti, T. (2003). The principles of life. New York: OxfordCrossRefGoogle Scholar
Garfield, Eugene (1979). Citation Indexing. New York: WileyGoogle Scholar
Garnier, Charles (1897). Les ‘filaments basaux’ des cellules glandulaires. Bibliographie anatomique, 5, 278–89Google Scholar
Garnier, Charles (1900). Contribution à l'étude de la structure et du fonctionnement des cellules glandulaires séreuses. Du role de l'ergastroplasme dans la sécrétion. Journal de l'Anatomie et de la Physiologie normal es et pathologique de l'homme et des animaux, 36, 22–98Google Scholar
Gaudillière, Jean-Paul (1996). Molecular biologists, biochemists, and messenger RNA: The birth of a scientific network. Journal of the History of Biology, 29, 417–45CrossRefGoogle ScholarPubMed
Gay-Lussac, Joseph Louis (1810). Extrait d'un mémoire sur la Fermentation. Annales de chimie, 76, 245–59Google Scholar
Gersh, Isidore (1932). The Altmann technique for fixation by drying with freezing. Anatomical Record, 53, 309–37CrossRefGoogle Scholar
Gersh, Isidore (1959). Fixation and staining. In Brachet, J. & Mirsky, A. E. (Eds.), The Cell: Biochemistry, Physiology, and Morphology. (Vol. 1, pp. 21–66). New York: Academic PressGoogle Scholar
Gicklhorn, Josef (1932). Intracelluläre Myelinfiguren und ähnliche Bildungen bei der reversiblen Entmischung des Protoplasmas. Protoplasma, 15, 90–108CrossRefGoogle Scholar
Giere, Ronald G. (1999). Science without Laws. Chicago: University of Chicago PressGoogle Scholar
Glennan, Stuart (1996). Mechanisms and the nature of causation. Erkenntnis, 44, 50–71CrossRefGoogle Scholar
Glennan, Stuart (2002). Rethinking mechanistic explanation. Philosophy of Science, 69, S342–S53CrossRefGoogle Scholar
Glick, David (1953). A critical survey of current approaches in quantitative histo- and cytochemistry. International Review of Cytology, 2, 447–74CrossRefGoogle Scholar
Golgi, Camilo (1898). Intorno alla struttura delle cellule nervose. Bollettino della Società Medico-Chirurgica di Pavia, 13, 3–16Google Scholar
Gorter, Evert, & Grendel, F. (1925). On bimolecular layers of lipoids on the chromocytes of the blood. Journal of Experimental Medicine, 41, 439–43CrossRefGoogle ScholarPubMed
Graham, Thomas (1861). Liquid diffusion applied to analysis. Philosophical Transactions of the Royal Society, London, 151, 183–224CrossRefGoogle Scholar
Grassé, P. P. (1957). Ultrastructure, polarité et reproduction de l'appareil de Golgi. Comptes rendus de l'Académie des sciences, 245, 1278–81Google Scholar
Green, David E. (1936a). α-Glycerophosphate dehydrogenase. Biochemical Journal, 30, 629–44CrossRefGoogle Scholar
Green, David E. (1936b). The malic dehydrogenase of animal tissue. Biochemical Journal, 30, 2095–110CrossRefGoogle Scholar
Green, David E. (1951a). The cyclophorase system of enzymes. Biological Reviews, 26, 410–55CrossRefGoogle Scholar
Green, David E. (1951b). The cyclophorase system. In Edsall, J. T. (Ed.), Enzymes and Enzyme Systems (pp. 17–46). Cambridge, MA: Harvard University PressGoogle Scholar
Green, David E. (1957–8). Studies in organized enzyme systems. Harvey Lectures, 53, 177–227Google Scholar
Green, David E. (1964). The mitochondrion. Scientific American, 210(1), 63–74CrossRefGoogle ScholarPubMed
Green, David E., & Brosteaux, Jeanne (1936). The lactic dehydrogenase of animal tissue. Biochemical Journal, 30, 1489–508CrossRefGoogle Scholar
Green, David E., Dewan, John G., & Leloir, Luis F. (1937). The ß-hydroxybutyric dehydrogenase of animal tissues. Biochemical Journal, 31, 934–49CrossRefGoogle Scholar
Green, David E., & Dixon, Malcolm (1934). Studies on xanthine oxidase. Ⅺ. Xanthine oxidase and lactoflavine. Biochemical Journal, 28, 237–43CrossRefGoogle ScholarPubMed
Green, David E., Loomis, W. F., & Auerbach, V. H. (1948). Studies on the cyclophorase system. I. Journal of Biological Chemistry, 172, 389–402Google Scholar
Gregory, Richard L. (1961). The brain as an engineering problem. In Thorpe, W. H. & Zangwill, O. L. (Eds.), Current Problems in Animal Behavior (pp. 307–30). Cambridge: Cambridge University PressGoogle Scholar
Gregory, Richard L. (1968). Models and the localization of function in the central nervous system. In Evans, C. R. & Robertson, A. D. J. (Eds.), Key Papers: Cybernetics (pp. 91–102). London: ButterworthsGoogle Scholar
Hacking, Ian (1983). Representing and Intervening. Cambridge: Cambridge U.P.CrossRefGoogle Scholar
Haguenau, Françoise (1958). The ergastoplasm: Its history, ultrastructure, and biochemistry. International Review of Cytology, 7, 425CrossRefGoogle Scholar
Hanson, Norwood Russell (1958). Patterns of Discovery. Cambridge: CambridgeGoogle Scholar
Harden, Arthur (1903). Über alkoholische Gärung mit Hefe-Presstoff (Buchners zymase) bein Gegenwart von Blutserum. Berichte der deutschen chemischen Gesellschaft, 36, 715–6CrossRefGoogle Scholar
Harden, Arthur, & Young, William J. (1908). The alcoholic fermentation of yeast-juice, Part III – The function of phosphates in the fermentation of glucose. Proceedings of the Royal Society, London, B80, 299–311CrossRefGoogle Scholar
Hardy, W. B. (1899). Structure of cell protoplasm. Journal of Physiology, 24, 158–210CrossRefGoogle ScholarPubMed
Harman, J. W. (1950a). Studies on mitochondria: I. The association of cyclophorase with mitochondria. Experimental Cell Research, 1, 382–93CrossRefGoogle Scholar
Harman, J. W. (1950b). Studies of mitochondria: II. The structure of mitochondria in relation to enzymatic activity. Experimental Cell Research, 1, 394–402CrossRefGoogle Scholar
Harris, Henry (1999). The Birth of the Cell. New Haven: Yale University PressGoogle Scholar
Hatefi, Youssef, Haavik, A. G., Fowler, L. R., & Griffiths, D. E. (1962). Studies on the electron transfer system. 42. Reconstitution of the electron transfer system. Journal of Biological Chemistry, 237, 2661–9Google Scholar
Hegarty, Mary (1992). Mental animation: Inferring motion from static displays of mechanical systems. Journal of Experimental Psychology: Learning, Memory, and Cognition, 18, 1084–102Google ScholarPubMed
Heidenhain, Rudolf (1875). Beiträge zur Kenntniss des Pancreas. Archiv für die gesammte Physiologie des Menschen und der Thiere, 10, 557–632CrossRefGoogle Scholar
Hempel, Carl G., & Oppenheim, Paul (1948). Studies in the logic of explanation. Philosophy of Science, 15, 137–75CrossRefGoogle Scholar
Hewson, William (1773). On the figure and composition of the red particles of the blood, commonly called the red globules. Philosophical Transactions of the Royal Society of London, 63, 306–24CrossRefGoogle Scholar
Hill, Archibald Vivian (1910). The heat produced by contracture and muscular tone. Journal of Physiology, 40, 389–403CrossRefGoogle ScholarPubMed
Hill, Archibald Vivian (1913). The energy degraded in the recovery processes of stimulated muscles. Journal of Physiology, 46, 28–80CrossRefGoogle ScholarPubMed
Hill, Arthur Croft (1898). Reversible zymohydrolysis. Journal of the Chemical Society, 73, 634–58CrossRefGoogle Scholar
Hoagland, Mahlon B. (1955). An enzymatic mechanism for amino acid activation in animal tissues. Biochimica et Biophysica Acta, 16, 288–9CrossRefGoogle Scholar
Hoagland, Mahlon B., Keller, Elizabeth B., & Zamecnik, Paul C. (1956). Enzymatic carboxyl activation of amino acids. Journal of Biological Chemistry, 218, 345–58Google ScholarPubMed
Hoagland, Mahlon B., Zamecnik, Paul C., & Stephenson, Mary L. (1959). A hypothesis concerning the roles of particulate and soluble ribonucleic acids in protein synthesis. In Zirkle, R. E. (Ed.), A Symposium on Molecular Biology (pp. 105–14). Chicago: University of Chicago PressGoogle Scholar
Hoerr, Normand L. (1943). Methods of isolation of morphological constituents of the liver cell. In Hoerr, N. L. (Ed.), Frontiers in Cytochemistry: The Physical and Chemical Organization of the Cytoplasm (Vol. 10, pp. 185–231). Lancaster, PA: Jaques Cattell PressGoogle Scholar
Hofmeister, Franz (1901). Der chemische Organization der Zelle. Braunschweig: ViewegGoogle Scholar
Hofmeister, Wilhelm (1849). Die Entstehung des Embryos der Phanerogamen. Leipzig: Friedrich HofmeisterGoogle Scholar
Hogeboom, George H., & Adams, Mark H. (1942). Mammalian tyrosinase and dopa oxidaase. Journal of Biological Chemistry, 145, 273–9Google Scholar
Hogeboom, George H., Claude, Albert, & Hotchkiss, Rollin D. (1946). The distribution of cytochrome oxidase and succinoxidase in the cytoplasm of the mammalian liver cell. Journal of Biological Chemistry, 165, 615–29Google ScholarPubMed
Hogeboom, George H., Schneider, Walter C., & Palade, George E. (1948). Cytochemical studies of mammalian tissues. I. Isolation of intact mitochondria from rat liver; some biochemical properties of mitochondria and submicroscopic particulate matter. Journal of Biological Chemistry, 172, 619–35Google Scholar
Holmes, Frederic Lawrence (1963). Elementary analysis and the origins of physiological chemistry. Isis, 54, 50–81CrossRefGoogle Scholar
Holmes, Frederic Lawrence (1986). Intermediary metabolism in the early 20th century. In Bechtel, W. (Ed.), Integrating Scientific Disciplines (pp. 59–76). Dordrecht: Martinus NijhoffCrossRefGoogle Scholar
Holmes, Frederic Lawrence (1992). Between Biology and Medicine: The Formation of Intermediary Metabolism. Berkeley, CA: Office for History of Science and Technology, University of California at BerkeleyGoogle Scholar
Holmgren, Emil (1902). Einige Worte über das “Trophospongium” verschiedener Zellarten. Anatomischer Anzeiger, 20, 433–40Google Scholar
Holtzman, Eric, Novikoff, Alex B., & Villaverdi, H. (1967). Lysosomes and GERL in normal chromatolytic neurons of the rat ganglion nodosum. Journal of Cell Biology, 33, 419–35CrossRefGoogle ScholarPubMed
Hooke, Robert (1665). Micrographia: or some physiological descriptions of minute bodies made by magnifying glasses with observations and inquiries thereupon. London: John Martin and James AllestryCrossRefGoogle Scholar
Huennekens, Frank M., & Green, David E. (1950). Studies on the cyclophorase system. Ⅺ. The effect of various treatments on the requirement for pyridine nucleotide. Archives of Biochemistry, 27, 428–40Google ScholarPubMed
Hughes, Arthur (1959). A History of Cytology. London: Abelard-SchumanGoogle Scholar
Hultin, T. (1950). Incorporation in vivo of 15N-labeled glycine into liver fractions of newly hatched chicks. Experimental Cell Research, 1, 376–81CrossRefGoogle Scholar
Huxley, Thomas H. (1869). On the physical basis of life. The Fortnightly Review, 26, 129–45Google Scholar
Jamieson, James D., & Palade, George E. (1966). Role of the Golgi complex in the intracellular transport of secretory proteins. Proceedings of the National Academy of Sciences, USA, 55, 424–31CrossRefGoogle ScholarPubMed
Jamieson, James D., & Palade, George E. (1967a). Intracellular transport of secretory proteins in the pancreatic exocrine cell. I. Role of the peripheral elements of the Golgi complex. Journal of Cell Biology, 34, 577–96CrossRefGoogle Scholar
Jamieson, James D., & Palade, George E. (1967b). Intracellular transport of secretory proteins in the pancreatic exocrine cell. II. Transport of condensing vacuoles and zymogen granules. Journal of Cell Biology, 34, 597–615CrossRefGoogle Scholar
Jamieson, James D., & Palade, George E. (1968a). Intracellular transport of secretory proteins in the pancreatic exocrine cell. III. Dissociation of intracellular transport from protein synthesis. Journal of Cell Biology, 39, 580–8CrossRefGoogle Scholar
Jamieson, James D., & Palade, George E. (1968b). Intracellular transport of secretory proteins in the pancreatic exocrine cell. IV. Metabolic requirements. Journal of Cell Biology, 39, 589–603CrossRefGoogle Scholar
Jonker, Catholijn, Treur, Jan, & Wijngaards, Wouter C. A. (2002). Reductionist and anti-reductionist perspectives on dynamics. Philosophical Psychology, 15, 381–409CrossRefGoogle Scholar
Kalckar, Herman (1939). The nature of phosphoric esters formed in kidney extracts. Biochemical Journal, 33, 631–41CrossRefGoogle ScholarPubMed
Kauffman, Stuart A. (1971). Articulation of parts explanation in biology and the rational search for them. In Bluck, R. C. & Cohen, R. S. (Eds.), PSA 1970 (pp. 257–72). Dordrecht: ReidelGoogle Scholar
Keilin, David (1925). On cytochrome, a respiratory pigment, common to animals, yeast, and higher plants. Proceedings of the Royal Society B, 98, 312–39CrossRefGoogle Scholar
Keilin, David (1966). The History of Cell Respiration and Cytochrome. Cambridge: Cambridge University PressGoogle Scholar
Keilin, David, & Hartree, Edward F. (1939). Cytochrome and cytochrome oxidase. Proceedings of the Royal Society B, 127, 167–91CrossRefGoogle Scholar
Keilin, David, & Hartree, Edward F. (1940). Succinic dehydrogenase-cytochrome system of cells. Intracellular respiratory system catalyzing aerobic oxidation of succinic acid. Proceedings of the Royal Society B, 129, 277–306CrossRefGoogle Scholar
Keilin, David, & Hartree, Edward F. (1949). Activity of the succinic dehydrogenase-cytochrome system in different tissue preparation. Biochemical Journal, 44, 205–18CrossRefGoogle Scholar
Keller, Elizabeth B. (1951). Turnover of proteins of cell fractions of adult rat liver in vivo. Federation Proceedings, 10, 206Google Scholar
Keller, Elizabeth B., & Zamecnik, Paul C. (1956). The effect of guanosine diphosphate and triphosphate on the incorporation of labeled amino acids into proteins. Journal of Biological Chemistry, 221, 45–9Google ScholarPubMed
Kennedy, Eugene P., & Lehninger, Albert L. (1949). Oxidation of fatty acids and tricarboxylic acid cycle intermediaries by isolated rat liver mitochondria. Journal of Biological Chemistry, 179, 957–72Google Scholar
Kingsbury, B. F. (1913). Cytoplasmic Fixation. Anatomical Record, 6, 39–52CrossRefGoogle Scholar
Kirchhoff, Gottlieb Sigismund (1816). Formation du sucre dans les graines cereals converties en malt et dans la farine infusée dans l'eau bouillante. Journal de Pharmacie et de Chimie, 2, 250–8Google Scholar
Kirkman, Hadley, & Severinghaus, Aura E. (1938a). Review of the Golgi apparatus. Part I. Anatomical Record, 70, 413–30CrossRefGoogle Scholar
Kirkman, Hadley, & Severinghaus, Aura E. (1938b). Review of the Golgi apparatus. Part III. Anatomical Record, 71, 79–103CrossRefGoogle Scholar
Kitcher, Philip (1989). Explanatory unification and the causal structure of the world. In Kitcher, P. & Salmon, W. C. (Eds.), Scientific Explanation. (Vol. ⅫI, pp. 410–505). Minneapolis, MN: University of Minnesota PressGoogle Scholar
Kitcher, Philip (2001). Science, Truth, and Democracy. Oxford: Oxford University PressCrossRefGoogle Scholar
Knoop, Franz (1904). Der Abbau aromatischer Fettsäuren im Tierkörper. Freiburg: KuttruffGoogle Scholar
Koertge, Noretta (Ed.) (1998). A House Built on Sand: Exposing Postmodernist Myths about Science. New York: Oxford University PressCrossRefGoogle Scholar
Kohler, Robert E. (1971). The background to Eduard Buchner's discovery of cell-free fermentation. Journal of the History of Biology, 4, 35–61CrossRefGoogle ScholarPubMed
Kohler, Robert E. (1973). The enzyme theory and the origin of biochemistry. Isis, 64, 181–96Google ScholarPubMed
Kohler, Robert E. (1982). From Medical Chemistry to Biochemistry: The Making of a Biomedical Discipline. Cambridge: Cambridge University PressCrossRefGoogle Scholar
Kosslyn, Stephen Michael (1981). The medium and the message in mental imagery: A theory. Psychological Review, 88, 46–66CrossRefGoogle Scholar
Kosslyn, Stephen Michael (1994). Image and Brain: The Resolution of the Imagery Debate. Cambridge, MA: MIT PressGoogle Scholar
Krebs, Hans Adolf, & Johnson, William Arthur (1937). The role of citric acid in intermediate metabolism in animal tissues. Enzymologia, 4, 148–56Google Scholar
Kuhn, Thomas S. (1962(1970). The Structure of Scientific Revolutions. (Second ed.). Chicago: University of Chicago PressGoogle Scholar
Kühne, Wilhelm Friedrich (1877a). Erfahrungen und Bemerkungen über Enzyme und Fermente. Untersuchungen aus dem physiologischen Institut Heidelberg, 1, 291–324Google Scholar
Kühne, Wilhelm Friedrich (1877b). Ueber das Verhalten verschiedener organisirter und soganannte ungeformter Fermente. Verhandlungen des naturhistorisch-medicinischen Vereins zu Heidelberg, new series, 1, 190–3Google Scholar
Kützing, Friedrich Traugott (1837). Microscopische Untersuchungen über die Hefe und Essigmutter, nebst mehreren andern dazu gehörigen vegetabilischen Gebilden. Journal für praktische Chemie, 11, 385–409CrossRefGoogle Scholar
Lakatos, Imre (1970). Falsification and the methodology of scientific research programmes. In Lakatos, I. & Musgrave, A. (Eds.), Criticism and the Growth of Knowledge (pp. 91–196). Cambridge: Cambridge University PressCrossRefGoogle Scholar
Lardy, Henry A., & Elvehjem, Conrad A. (1945). Biological oxidations and reductions. Annual Review of Biochemistry, 14, 1–30CrossRefGoogle Scholar
Larkin, Jill H., & Simon, Herbert A. (1987). Why a diagram is (sometimes) worth ten thousand words. Cognitive Science, 11, 65–99CrossRefGoogle Scholar
Latour, Bruno, & Woolgar, Steven (1979). Laboratory Life: The Social Construction of Scientific Facts. Beverly Hills: Sage PublicationsGoogle Scholar
Latta, H., & Hartman, J. F. (1950). Use of a glass edge in thin sectioning for electron microscopy. Proceedings of the Society for Experimental Biology and Medicine, 74, 436–9CrossRefGoogle ScholarPubMed
Laudan, Larry (1977). Progress and Its Problems. Berkeley: University of California PressGoogle Scholar
Laudan, Larry (1981). The pseudo-science of science. Philosophy of the Social Sciences, 11, 173–98CrossRefGoogle Scholar
Lavoisier, Antoine Laurent, & LaPlace, Pierre Simon (1780). Mémoire sur la Chaleur. Mémoires de l'Acadeâmie royale des sciences, 35–408. Article IV reprinted in Oeuvres de Lavoisier, Vol. II, pp. 318–33. Paris, Imprimerie Impériale (1886)Google Scholar
Lavoisier, Antoine Laurent. (1781). Mémoire sur la formation de l'acide nommé air fixe ou acide crayeux, que je désignerai désormais sous le nom d'acide du charbon. Mémoires de l'Acadeâmie royale des sciences, 448–58Google Scholar
Lavoisier, Antoine Laurent. (1789). Traité élémentaire de chimie, présenté dans un ordre nouveau et d'après les découvertes modernes. Paris: CuchetGoogle Scholar
Ledingham, C. G., & Gye, W. E. (1935). On the nature of the filterable tumour-exciting agent in avian sacromata. Lancet, 228, 376–7CrossRefGoogle Scholar
Lehninger, Albert L. (1951). The organized respiratory activity of isolated rat-liver mitochondria. In Edsall, J. (Ed.), Enzymes and Enzyme Systems (pp. 1–14). Cambridge, MA: Harvard University PressGoogle Scholar
Lehninger, Albert L. (1954). Oxidative phosphorylation. Harvey Lectures, 49, 176–215Google Scholar
Lehninger, Albert L. (1964). The Mitochondrion: Molecular Basis of Structure and Function. New York: W. A. Benjamin, IncGoogle Scholar
Lehninger, Albert L., Wadkins, Charles L., Cooper, Cecil, Devlin, Thomas M., & Gamble, James L. Jr. (1958). Oxidative phosphorylation. Science, 128, 450–6CrossRefGoogle ScholarPubMed
Levene, Phoebus A., & Mori, Takajiro (1929). Ribodesose and xylodesose and their bearing on the structure of the thyminose. Journal of Biological Chemistry, 83, 803–16Google Scholar
Lewontin, Richard C. (1970). The units of selection. Annual Review of Ecology and Systematics, 1, 1–18CrossRefGoogle Scholar
Liebig, Justus (1831). Ueber einen neuen Apparat zur Analyse orgaischer Körper, und über die Zusammensetzung einiger organischer Substanzen. Annalen der Physik und Chemie, 21, 1–43CrossRefGoogle Scholar
Liebig, Justus (1842). Animal Chemistry: Or Organic Chemistry in Its Application to Physiology and Pathology. Cambridge: John OwenGoogle Scholar
Lipmann, Fritz (1939). An analysis of the pyruvic acid oxidation system. Cold Spring Harbor Symposium, 7, 248–59CrossRefGoogle Scholar
Lipmann, Fritz (1941). Metabolic generation and utilization of phosphate bond energy. Advances in Enzymology, 1, 99–160Google Scholar
Lipmann, Fritz (1945). Acetylation of sulfanilamide by liver homogenates and extracts. Journal of Biological Chemistry, 160, 173–90Google Scholar
Lipmann, Fritz (1946). Metabolic process patterns. In Green, D. E. (Ed.), Currents in Biochemical Research (pp. 137–48). New York: InterscienceGoogle Scholar
Locker, Ronald H., & Schmitt, Francis O. (1957). Some chemical and structural properties of paramyosin. Journal of Biophysical and Biochemical Cytology, 3, 889–96CrossRefGoogle ScholarPubMed
Lohmann, Karl (1929). Über die Pyrophosphatfraktion im Muskel. Naturwissenschaften, 17, 624–5Google Scholar
Longino, Helen (1990). Science as Social Knowledge. Princeton: Princeton University PressGoogle Scholar
Longino, Helen (2002). The Fate of Knowledge. Princeton: Princeton University PressGoogle Scholar
Ludford, R. J., Smiles, J., & Welch, F. V. (1948). The study of malignant cells by phase contrast and ultra-violet microscopy. Journal of the Royal Microscopical Society, 68, 1CrossRefGoogle Scholar
Lynen, Feodor, & Reichert, Ernestine (1951). Zur chemischen Struktur der ‘aktivierten Essigsäure.’Angewandte Chemie, 63, 47–8CrossRefGoogle Scholar
Machamer, Peter, Darden, Lindley, & Craver, Carl (2000). Thinking about mechanisms. Philosophy of Science, 67, 1–25CrossRefGoogle Scholar
MacMunn, Charles A. (1884). On myohaematin, an intrinsic muscle-pigment of vetrebrates and invertebrates, on histohaematin, and on the spectrum of the supra-renal bodies. Journal of Physiology, 5, ⅹⅹⅳGoogle Scholar
MacMunn, Charles A. (1886). Researches on myohaematin and the histohaematins. Philosophical Transactions of the Royal Society of London, 177, 267–98CrossRefGoogle Scholar
Manasseïn, Marie Mikhailovna (1872). Zur Frage von der alkoholischen Gährung ohne lebende Hefezellen. Berichte der deutschen chemischen Gesellschaft, 30, 3061–2CrossRefGoogle Scholar
Marton, Ladislaus (1934). Electron microscopy of biological objects. Nature, 133, 911CrossRefGoogle Scholar
Maxwell, J. C. (1868). On governors. Proceedings of the Royal Society of London, 16, 270–83
McIntosch, James (1935). The sedimentation of the virus of Rous sarcoma and the bacteriophage by a high-speed centrifuge. Journal of Pathology and Bacteriology, 41, 215–7Google Scholar
Mercer, Edgar H. (1962). Cells: Their Structure and Function. Garden City, NY: Anchor BooksGoogle Scholar
Mercer, Edgar H., & Birbeck, M. S. C. (1972). Electron Microscopy: A Handbook for Biologists. (Third ed.). Oxford: Blackwell Scientific PublicationsGoogle Scholar
Merton, Robert K. (1973). The Sociology of Science. Chicago: University of Chicago PressGoogle Scholar
Merzenich, Michael M., Recanzone, Gregg H., Jenkins, William M., & Grajski, K. A. (1990). Adaptive mechanisms in cortical networks underlying cortical contributions to learning and nondeclarative memory. Cold Spring Harbor Symposia on Quantitative Biology, 55, 873–87CrossRefGoogle ScholarPubMed
Meyerhof, Otto (1918). Über das Vorkommen des Coferments der alkoholischen Hefegärung im Muskelgewebe und sein mutmass Bedeutung im Atmungsmechanismus. Zeitschrift für physiologische Chemie, 101, 165–75CrossRefGoogle Scholar
Meyerhof, Otto (1920). Die Energieumwandlungen im Muskel. Archiv für die gesammte Physiologie des Menschen und der Thiere, 182, 232–83CrossRefGoogle Scholar
Meyerhof, Otto (1924). Chemical Dynamics of Life Phenomena. Philadelphia: LippincottGoogle Scholar
Meyerhof, Otto, Lohmann, Karl, & Meyer, Kurt Otto Hans (1931). Über anaerobe Bildung und Schwund von Brenztraubensäure in der Muskulatur. Biochemische Zeitschrift, 260, 417–45Google Scholar
Meyerhof, Otto, Ohlmeyer, Paul, & Möhle, Walter (1938). Über die Koppelung zwischen Oxydoreuktion und Phosphatveresterung bei der anaeroben Kohlenhydratspaltung. Biochemische Zeitschrift, 297, 90–133Google Scholar
Michaelis, Leonor (1899). Die vitale Färbung, eine Darstellungsmethode der Zellgranula. Archiv für mikrokopische Anatomie, 55, 558–75CrossRefGoogle Scholar
Miescher, Johann Friedrich (1871). Ueber die chemische Zusammensetzung des Eiters. Hoppe-Seyler's medicinisch-chemische Untersuchungen, 4, 441–60Google Scholar
Milne-Edwards, Henri (1823). Mémoire sur la structure élémentaire des pincipaux tissus organiques des animaux. Paris: LejeuneGoogle Scholar
Mirsky, Alfred E., & Ris, Hans (1951). The composition and structure of isolated chromosomes. Journal of General Physiology, 34, 475–92CrossRefGoogle ScholarPubMed
Mitchell, Peter (1961). Coupling of phosphorylation to electron and hydrogen transfer by a chemi-osmotic type of mechanism. Nature, 191, 144–8CrossRefGoogle Scholar
Mitchell, Peter (1966). Chemiosmotic Coupling in Oxidative and Photosynthetic Phosphorylation. Bodmin: Glynn Research Ltd.Google ScholarPubMed
Mohl, Hugo (1837). Ueber die Vermehrung der Pflanzenzellen durch Theilung. Flora, 20, 1–16Google Scholar
Mohl, Hugo von (1852). Principles of the anatomy and physiology of the vegetable cell (A. Henfrey, Trans.). London: J. Van Voorst
Morelle, J. (1927). La Cellule, 37, 178
Müller, Johannes (1835). Vergleichende Anatomie der Myxinoiden, der Cyclostomen mit durchbohrten Gaumen. Berlin: Königliche Academie der WissenschaftenGoogle Scholar
Mundale, Jennifer (1998). Brain mapping. In Bechtel, W. & Graham, G. (Eds.), A Companion to Cognitive Science. Oxford: Basil BlackwellGoogle Scholar
Murphy, James B., Helmer, Oscar M., & Sturm, Ernest (1928). Association of the causative agent of a chicken tumor with a protein fraction of the tumor filtrate. Science, 68, 18–9CrossRefGoogle ScholarPubMed
Nagel, Ernst (1961). The Structure of Science. New York: Harcourt, BraceGoogle Scholar
Nägeli, Carl Wilhelm von, & Cramer, Carl (1855). Pflanzenphysiologische Untersuchungen. Zürich: SchulthessGoogle Scholar
Nassonov, Dimitry (1923). Das Golgische Binnennetz und seine Beziehungen zu der Sekretion. Untersuchungen über einige Amphibiendrüssen. Archiv für mikroskopische Anatomie, 97, 136–86CrossRefGoogle Scholar
Nassonov, Dimitry (1924). Das Golgischem Binnennetz und seine Beziehungen zu der Sekretion. Archiv für mikroskopische Anatomie und Entwirklungsgeschichte, 100, 433–72CrossRefGoogle Scholar
Needham, Dorothy Moyle (1937). Chemical cycles in muscle contraction. In Needham, J. & Green, D. (Eds.), Perspectives in Biochemistry (pp. 200–14). Cambridge: Cambridge University PressGoogle Scholar
Needham, Joseph (1942). Biochemistry and Morphogenesis. London: Cambridge University PressGoogle Scholar
Needham, Joseph, & Needham, Dorothy Moyle (1930). On phosophorus metabolism in embryonic life. I. Invertebrate frogs. Journal of Experimental Biology, 7, 317–47Google Scholar
Negelein, Erwin Paul, & Brömel, Heinz (1939). R-Diphophoglycerinsäure, ihre Isolierung und Eigenschaften. Biochemische Zeitschrift, 303, 132–44Google Scholar
Neubauer, Otto, & Fromherz, Konrad (1911). Über den Abbau der Aminosäuer bei der Hefegärung. Zeitschrift für physiologische Chemie, 70, 326–50CrossRefGoogle Scholar
Neuberg, Carl, & Kerb, Johannes Wolfgang (1914). Über zukerfreie Hefegärungen. Biochemische Zeitschrift, 58, 158–70Google Scholar
Neuberg, Carl, & Kobel, M. (1925). Zur Frage der künstlichen und natürlichen Phosphoryleirung des Zuckers. Biochemische Zeitschrift, 155, 499–506Google Scholar
Neutra, Marian, & Leblond, Charles P. (1966a). Synthesis of the carbohydrate of mucus in the Golgi complex as shown by electron microscope radioautography of goblet cells from rats injected with glucose-H3. Journal of Cell Biology, 30, 119–36CrossRefGoogle Scholar
Neutra, Marian, & Leblond, Charles P. (1966b). Radioautographic comparison of the uptake of galactose-H3 and glucose-H3 in the Golgi region of various cells secreting glycoproteins or mucopolysaccharides. Journal of Cell Biology, 30, 137–50CrossRefGoogle Scholar
Neutra, Marian, & Leblond, Charles P. (1969). The Golgi apparatus. Scientific American, 222(2), 100–7CrossRefGoogle Scholar
Newman, M. E. J. (2001). The structure of scientific collaboration networks. Proceedings of the National Academy of Sciences, USA, 98, 404–9CrossRefGoogle ScholarPubMed
Newman, Sanford B., Borysko, Emil, & Swerdlow, Max (1949a). Ultra-microtomy by a new method. Journal of Research of the National Bureau of Standards, 43, 183–99CrossRefGoogle Scholar
Newman, Sanford B., Borysko, Emil, & Swerdlow, Max (1949b). New sectioning techniques for light and electron microscopy. Science, 110, 66–8CrossRefGoogle Scholar
Nickles, Thomas (Ed.) (1980a). Scientific Discovery: Case Studies. Dordrecht: ReidelCrossRefGoogle Scholar
Nickles, Thomas (Ed.) (1980b). Scientific Discovery: Logic and Rationality. Dordrecht: ReidelGoogle Scholar
Nicolis, Grégoire, & Prigogine, Ilya (1977). Self-organization in Nonequilibrium Systems: From Dissipative Structures to Order through Fluctuations. New York: WileyGoogle Scholar
Nirenberg, Marshall W., & Matthaei, Heinrich J. (1961). The dependence of cell-free protein synthesis in E. Coli upon naturally occurring or synthetic polyribonucleotides. Proceedings of the National Academy of Sciences, USA, 47, 1588–602CrossRefGoogle ScholarPubMed
Novikoff, Alex B. (1956a). Preservation of the fine structure of isolated liver cell particulates with polyvinylpyrrollidone-sucrose. Journal of Biophysical and Biochemical Cytology, 2(No. 4, Part 2), 65–6CrossRefGoogle Scholar
Novikoff, Alex B. (1956b). Electron microscopy: Cytology of cell fractions. Science, 124(3229), 969–72CrossRefGoogle Scholar
Novikoff, Alex B. (1959). Approaches to the in vivo function of subcellar particles. In Teru, H. (Ed.), Subcellular Particles (pp. 1–22). New York: The Ronald PressGoogle Scholar
Novikoff, Alex B. (1961). Lysosomes. In Brachet, J. & Mirsky, A. E. (Eds.), The Cell (Vol. II). New York: Academic PressGoogle Scholar
Novikoff, Alex B., Beaufay, Henri, & Duve, Christian (1956). Electron microscopy of lysosome-rich fractions from rat liver. Journal of Biophysical and Biochemical Cytology, 2(No. 4, Part 2), 179–84CrossRefGoogle ScholarPubMed
Novikoff, Alex B., & Holtzman, Eric (1970). Cell and Organelles. New York: Holt, Rinehart, and Winston, Inc.Google Scholar
Novikoff, Alex B., Podber, E., Ryan, J., & Noe, E. (1953). Biochemical heterogeneity of the cytoplasmic particles isolated from rat liver homogenate. Journal of Histochemistry and Cytochemistry, 1, 27–46CrossRefGoogle ScholarPubMed
Oberling, Charles, Bernhard, Wilhelm, Guérin, M., & Harrel, J. (1950). Images de cellules cancereuses au microscope electronique. Bulletin du Cancer, 37, 97Google Scholar
O'Brien, H. C., & McKinley, G. M. (1943). New microtome and sectioning method for electron microscopy. Science, 98, 455–6CrossRefGoogle ScholarPubMed
Ochoa, Severo (1940). Nature of oxidative phosphorylation in brain tissue. Nature, 146, 267CrossRefGoogle Scholar
Ochoa, S. (1943). Efficiency of aerobic phosphorylation in cell-free heart extracts. Journal of Biological Chemistry, 151, 493–505Google Scholar
Ochoa, Severo, & Rossiter, (1939). Flavin-Adenine-Dinucleotide in rat tissues. Biochemical Journal, 33, 2008–16CrossRefGoogle ScholarPubMed
Olesko, Kathryn (1991). Physics as a Calling: Discipline and Practice in the Königsberg Seminar for Physics. Ithaca, NY: Cornell University PressGoogle Scholar
Oppenheim, Paul, & Putnam, Hillary (1958). The unity of science as a working hypothesis. In Feigl, H. & Maxwell, G. (Eds.), Concepts, Theories, and the Mind-body Problem (pp. 3–36). Minneapolis: University of Minnesota PressGoogle Scholar
Oppenheimer, Carl (1909). Handbuch der Biochemie. Jena: Gustav FischerGoogle Scholar
Ostwald, Wolfgang (1909). Grundriss der Kolloidchemie. Dresden: T. SteinkopffGoogle Scholar
Overton, Ernest (1895). Über die osmotischen Eigenschaften der lebenden Pflanzen und Thierzelle. Vierteljahrsschrift der Naturforschenden Gesellschaft in Zürich, 40, 159–201Google Scholar
Overton, Ernest (1896). Über die osmotischen Eigenschaften der Zelle und ihre Bedeutung für die Toxikologie und Pharmakologie. Vierteljahrsschrift der Naturforschenden Gesellschaft in Zürich, 41, 383–406Google Scholar
Overton, Ernest (1899). Über die allgemeinen osmotischen Eigenschaften der Zelle, ihre vermutliche Ursachen und ihre Bedeutung für die Physiologie. Vierteljahrsschrift der Naturforschenden Gesellschaft in Zürich, 44, 88–135Google Scholar
Palade, George E. (1952a). The fine structure of mitochondria. Anatomical Record, 114, 427–51CrossRefGoogle Scholar
Palade, George E. (1952b). A study of fixation for electron microscopy. Journal of Experimental Medicine, 95, 285–97CrossRefGoogle Scholar
Palade, George E. (1953). An electron microscope study of mitochondrial structure. Journal of Histochemistry and Cytochemistry, 1, 188–211CrossRefGoogle ScholarPubMed
Palade, George E. (1956a). Electron microscopy of mitochondria and other cytoplasmic structures. In Gaebler, O. H. (Ed.), Enzymes: Units of Biological Structure and Function (pp. 185–215). New York: Academic PressGoogle Scholar
Palade, George E. (1956b). The endoplasmic reticulum. Journal of Biophysical and Biochemical Cytology, 2(Supplement), 85–99CrossRefGoogle Scholar
Palade, George E. (1956c). The fixation of tissues for electron microscopy. In Proceedings of the Third International Conference on Electron Microscopy (pp. 129–42). London: Royal Microscopical SocietyGoogle Scholar
Palade, George E. (1958a). A small particulate component of the cytoplasm. In Palay, S. L. (Ed.), Frontiers in Cytology (pp. 283–304). New Haven: Yale University PressGoogle Scholar
Palade, George E. (1958b). Functional changes in the structure of cell components. In Hayashi, T. (Ed.), Subcellular Particles (pp. 64–83). New York: The Ronald Press CompanyGoogle Scholar
Palade, George E. (1971). Albert Claude and the beginnings of biological electron microscopy. The Journal of Cell Biology, 50, 5D–19DCrossRefGoogle ScholarPubMed
Palade, George E. (1987). Cell fractionation. In Pauly, J. E. (Ed.), The American Association of Anatomists, 1888–1987. Essays on the History of Anatomy in America and a Report on the Membership – Past and Present. Baltimore: Wilkin and WilkinsGoogle Scholar
Palade, George E. (1992). Intracellular aspects of the process of protein secretion. In Lindsten, J. (Ed.), Nobel Lectures, Physiology or Medicine: 1971–1980 (pp. 177–206). Singapore: World Scientific PublishingCrossRefGoogle Scholar
Palade, George E., & Claude, Albert (1949a). The nature of the Golgi apparatus. I. Parallelism between intercellular myelin figures and Golgi apparatus in somatic cells. Journal of Morphology, 85, 35–69CrossRefGoogle Scholar
Palade, George E., & Claude, Albert (1949b). The nature of the Golgi apparatus. II. Identification of the Golgi apparatus with a complex of myelin figures. Journal of Morphology, 85, 71–111CrossRefGoogle Scholar
Palade, George E., & Porter, K. R. (1952). The endoplasmic reticulum of cells in situ. Anatomical Record, 112(2), 68Google Scholar
Palade, George E., & Porter, Keith R. (1954). Studies on the endoplasmic reticulum: I. Its identification in cells in situ. Journal of Experimental Medicine, 100, 641–56CrossRefGoogle ScholarPubMed
Palade, George E., & Siekevitz, Philip (1955). Liver microsomes: An integrated morphological and biochemical study. Journal of Biophysical and Biochemical Cytology, 2, 171–200CrossRefGoogle Scholar
Parat, Marcel (1928). Contributions a l'étude morphologique et physiologique du cytopasme. Archives d'anatomie microscopique et de morphologie experimentale, 24, 73–357Google Scholar
Pardee, Arthur B., Jacob, François, & Monod, Jacques (1959). The genetic control and cytoplasmic expression of ‘inducibility’ in the synthesis of ß-galactosidase by E. coli. Journal of Molecular Biology, 1, 165–78CrossRefGoogle Scholar
Parnas, Jacob Karol, Ostern, Pawel, & Mann, Thaddeus (1934). Über die Verkettung der chemischen Vorgäange im Muskel. Biochemische Zeitschrift, 272, 64–70Google Scholar
Pascual-Leone, Alvaro, & Hamilton, Roy (2001). The metamodal organization of the brain. In Casanova, C. & Ptito, M. (Eds.), Progress in Brain Research (Vol. 134, pp. 425–45). New York: ElsevierGoogle Scholar
Pasteur, Louis (1857). Mémoire sur la fermentation appelée lactique. Comptes rendus de l'Académie des sciences, 45, 913–6Google Scholar
Pasteur, Louis (1858). Mémoire sur la fermentation appelée lactique. Annales de Chimie, 3e Ser, 52, 404–18Google Scholar
Pasteur, Louis (1860). Mémoire sur la fermentation alcoolique. Annales de Chimie, 3e Ser, 58, 323–426Google Scholar
Pasteur, Louis (1861). Sur la fermentation visqueuse et la fermentation butyrique. Bulletin Société chimique de Paris, 11, 30–1Google Scholar
Payen, Anselme, & Persoz, Jean F. (1833). Mémoire sur la diastase, les principaux produits de ses réactions, et leurs applications aux arts industriels. Annales de Chemie et de Physique, 53, 73–92Google Scholar
Pease, Daniel C. (1987). The development of cytological transmission electron microscopy. In Pauly, J. (Ed.), The American Association of Anatomists, 1888–1987: Essays on the History of Anatomy in America and a Report on the Membership – Past and Present. Baltimore: Williams and WilliamsGoogle Scholar
Pease, Daniel C., & Baker, Richard F. (1950). Electron microscopy of the kidney. American Journal of Anatomy, 87, 349–70CrossRefGoogle ScholarPubMed
Pease, Daniel C., & Porter, Keith R. (1981). Electron microscopy and ultramicrotomy. Journal of Cell Biology, 91, 287s–92sCrossRefGoogle ScholarPubMed
Penefsky, Harvey S., Pullman, Maynard E., Datta, Anima, & Racker, Efraim (1960). Partial resolution of the enzymes catalyzing oxidative phosphorylation. Journal of Biological Chemistry, 235, 3330–6Google ScholarPubMed
Petermann, Mary L., Hamilton, Mary G., Balis, M. Earl, Samarth, Kumud, & Pecora, Pauline (1958). Physicochemical and metabolic studies on rat liver nucleoprotein. In Roberts, R. B. (Ed.), Microsomal Particles and Protein Synthesis (pp. 70–5). London: Pergamon PressGoogle Scholar
Petermann, Mary L., Mizen, N. A., & Hamilton, Mary G. (1953). The macromolecular particles of normal and regenerating rat liver. Cancer Research, 13, 372–5Google ScholarPubMed
Peters, Rudolpf A. (1930). Surface structure in the integration of cell activity. Faraday Society Transactions, 26, 797–809CrossRefGoogle Scholar
Petersen, Steven E., Fox, Peter T., Snyder, Abraham Z., & Raichle, Marcus E. (1990). Activation of extrastriate and frontal cortical areas by visual words and word-like stimuli. Science, 249, 1041–4CrossRefGoogle ScholarPubMed
Peterson, Marian, & Leblond, Charles P. (1964a). Uptake by the Golgi region of glucose labelled with tritium in the 1 or 6 position, as an indicator of synthesis of complex carbohydrates. Experimental Cell Research, 34, 420–3CrossRefGoogle Scholar
Peterson, Marian, & Leblond, Charles P. (1964b). Synthesis of complex carbohydrates in the Golgi region, as shown by radioautography after injection of glucose. Journal of Cell Biology, 21, 143–8CrossRefGoogle Scholar
Pfeffer, Wilhelm Friedrich Philipp (1887). Osmotische Untersuchungen: Studien zur Zellmechanik. Leipzig: Wilhelm EngelmannGoogle Scholar
Pflüger, Eduard (1872). Über die Diffusion des Sauerstoffs, den Ort und die Gesetze der Oxydationsprocesse im thierischen Organismus. Pflüger's Archiv für die gesammte Physiologie des Menschen und der Thiere, 6, 43–64CrossRefGoogle Scholar
Pflüger, Eduard (1875). Beiträge zur Lehre von der Respiration: I. Ueber die physiologische Verbrennung in den lebendigen Organismen. Pflüger's Archiv für die gesammte Physiologie des Menschen und der Thiere, 10, 251–367CrossRefGoogle Scholar
Piaget, Jean (1971). The Science of Education and the Psychology of the Child. London: LongmansGoogle Scholar
Pickels, Edward G. (1942). An improved type of electrically driven high speed laboratory centrifuge. Review of Scientific Instruments, 13, 93–100CrossRefGoogle Scholar
Picken, L. E. R. (1940). The fine structures of biological systems. Biological Review, 15, 133–67CrossRefGoogle Scholar
Pinchot, Gifford B. (1953). Phosphorylation coupled to electron transport in cell-free extracts of alcaligenes faecalis. Journal of Biological Chemistry, 205, 65–74Google ScholarPubMed
Pinchot, Gifford B., & Racker, Efraim (1951). Ethyl alcohol oxidation and phosphorylation in extracts of E. coli (Vol. 1, pp. 366–69). In McElroy, W. D. & Glass, B. (Eds.), Phosphorus Metabolism. Baltimore: Johns Hopkins University PressGoogle Scholar
Polanyi, Michael (1966). The Tacit Dimension. New York: DoubledayGoogle Scholar
Porter, Keith R. (1941a). Diploid and androgenetic haploid hybridization between two forms of Rana pipiens. Biological Bulletin, 80, 238CrossRefGoogle Scholar
Porter, Keith R. (1941b). Developmental variations resulting from the androgenetic hybridization of four forms of Rana pipiens. Science, 93, 439Google Scholar
Porter, Keith R. (1953). The fine structure of a submicroscopic, basophilic component of cytoplasm. Journal of Experimental Medicine, 97, 727–50CrossRefGoogle Scholar
Porter, Keith R. (1954). Electron microscopy of basophilic components of cytoplasm. Journal of Histochemistry and Cytochemistry, 2, 346–75CrossRefGoogle ScholarPubMed
Porter, Keith R. (1955–6). The submicroscopic morphology of protoplasm. The Harvey Lectures, 51, 175–228Google Scholar
Porter, Keith R. (1987). Electron microscopy of cultured cells. In Pauly, J. E. (Ed.), The American Association of Anatomists, 1888–1987. Essays on the History of Anatomy in America and a Report on the Membership –Past and Present (pp. 59–67). Baltimore: Williams and WilkinsGoogle Scholar
Porter, Keith R., & Blum, Joseph (1953). A study in microtomy for electron microscopy. The Anatomical Record, 117, 685–707CrossRefGoogle ScholarPubMed
Porter, Keith R., Claude, Albert, & Fullam, Ernest F. (1945). A study of tissue culture cells by electron microscopy. Journal of Experimental Medicine, 81, 233–55CrossRefGoogle ScholarPubMed
Porter, Keith R., & Kallman, Frances L. (1952). Significance of cell particulates as seen by electron microscopy. Annals of the New York Academy of Science, 54, 882–91CrossRefGoogle ScholarPubMed
Porter, Keith R., & Kallman, Frances L. (1953). The properties and effects of osmium tetroxide as a tissue fixative with special reference to its use for electron microscopy. Experimental Cell Research, 4, 127–41CrossRefGoogle Scholar
Porter, Keith R., & Thompson, Helen P. (1947). Some morphological features of cultured rat sarcoma cells as revealed by the electron microscope. Cancer Research, 7, 431–8Google Scholar
Porter, Keith R., & Thompson, Helen P. (1948). A particulate body associated with epithelial cells cultured from mammary carcinomas of mice of a milk-factor strain. Journal of Experimental Medicine, 88, 15–23CrossRefGoogle Scholar
Potter, Rensselaer, & Elvehjem, Conrad A. (1936). A modified method for the study of tissue oxidations. Journal of Biological Chemistry, 114, 495–504Google Scholar
Prebble, John (2002). Peter Mitchell and the ox phos wars. Trends in Biochemical Sciences, 27, 209–12CrossRefGoogle Scholar
Prescott, David M. (Ed.) (1973). Methods in Cell Biology. New York: Academic PressGoogle Scholar
Price, Derek J. de Solla (1961). Science since Babylon. New Haven: Yale University PressGoogle Scholar
Prout, William (1827). On the ultimate composition of simple alimentary substances; with some preliminary remarks on the analysis of organised bodies in general. Philosophical Transactions of the Royal Society of London, 117, 355–88CrossRefGoogle Scholar
Pullman, Maynard E., Penefsky, Harvey S., Datta, Anima, & Racker, Efraim (1960). Partial resolution of the enzyme catalyzing oxidative phosphorylation. Journal of Biological Chemistry, 235, 3322–9Google ScholarPubMed
Pylyshyn, Zenon W. (1981). The imagery debate: Analogue media versus tacit knowledge. Psychological Review, 88, 111–33CrossRefGoogle Scholar
Pylyshyn, Zenon W. (2003). Seeing and Visualizing: It's Not What You Think. Cambridge, MA: MIT PressGoogle Scholar
Racker, Efraim (1965). Mechanisms in Bioenergetics. New York: Academic PressGoogle Scholar
Racker, Efraim (1968). The membrane of the mitochondrion. Scientific American, 218, 32–9CrossRefGoogle Scholar
Racker, Efraim (1975). Reconstitution, mechanism of action and control of ion pumps. Biochemical Society Transactions, 3, 785–802CrossRefGoogle Scholar
Racker, Efraim (1976). A New Look at Mechanisms in Bioenergetics. New York: Academic PressGoogle Scholar
Racker, Efraim, & Horstman, Lawrence L. (1967). Partial resolution of the enzymes catalyzing oxidative phosphorylation ⅫI. Structure and function of submitochondrial particles completely resolved with respect to coupling factor 1. Journal of Biological Chemistry, 242, 2547Google Scholar
Racker, Efraim, Tyler, D. D., Estabrook, Ronald W., Conover, Thomas E., Parsons, D. F., & Chance, Britton (1965). Correlations between electron-transport activity, ATP-ase and morphology of submitochrondrial particles. In King, T. E., Mason, H. S., & Morrison, M. (Eds.), Oxidases and Related Redox Systems (pp. 1077–101). New York: WileyGoogle Scholar
Ramón y Cajal, Santiago (1907). L'appareil reticulaire de Golgi-Holmgren coloré par le nitrate d'argent. Trabajos del Laboratorio de Investigaciones Biológicas, 5, 151–4Google Scholar
Ramón y Cajal, Santiago (1908). Les conduits de Golgi-Holmgren du protoplasme nerveux et le réseau péricéllulaire de la membrane. Trabajos del Laboratorio de Investigaciones Biológicas, 6, 123–35Google Scholar
Ramón y Cajal, Santiago (1914). Algunas variaciones fisiológicas y patológicas del aparato reticular de Golgi. Trabajos del Laboratorio de Investigaciones Biológicas, 12, 127–227Google Scholar
Rasmussen, Nicolas (1995). Mitochondrial structure and the practice of cell biology in the 1950s. Journal of the History of Biology, 28, 381–429CrossRefGoogle ScholarPubMed
Rasmussen, Nicolas (1997). Picture Control: The Electron Microscope and the Transformation of Biology in America. Stanford, CA: Stanford University PressGoogle Scholar
Raspail, François-Vincent (1825). Développement de la fécule dans les organes de la fructification des céréales. Annales des Science Naturelles, 6, 224–39Google Scholar
Redman, Colvin, & Sabatini, David D. (1966). Vectorial discharge of peptides released by puromycin from attached ribosomes. Proceedings of the National Academy of Sciences, USA, 56, 608–15CrossRefGoogle ScholarPubMed
Redman, Colvin, Siekevitz, Philip, & Palade, George E. (1966). Synthesis and transfer of amylase in pigeon pancreatic microsomes. Journal of Biological Chemistry, 241, 1150–8Google Scholar
Regaud, Claudius (1909). Attribution aux ‘formations mitochondriales’ de la fonction generale d'extraction et de fixation electives, exercee par les cellules vivantes sur les substances dissouten dans le milieu ambiant. Comptes Rendus de Societe Biologique, 66, 919–21Google Scholar
Reichenbach, Hans (1966). The Rise of Scientific Philosophy. Berkeley: University of California PressGoogle Scholar
Reichert, Karl Bogislaus (1847). Bericht über die Leistungen in der mikroskopischen Anatomie des Jahres 1846. Archiv für Anatomie, Physiologie und wissenschaftliche Medicin, 1–67Google Scholar
Remak, Robert (1852). Ueber extracellulare Entstehung thierischer Zellen und über Vermehrung derselben durch Theilung. Archiv für Anatomie, Physiologie und wissenschaftliche Medicin, 47–57Google Scholar
Remak, Robert (1855). Untersuchungen über die Entwicklung der Wirbelthiere. Berlin: ReimerGoogle Scholar
Rheinberger, Hans-Jörg (1995). From microsomes to ribosomes: “Strategies” of “representation.”Journal of the History of Biology, 28, 49–89CrossRefGoogle ScholarPubMed
Rheinberger, Hans-Jörg (1997). Toward a History of Epistemic Things: Synthesizing Proteins in the Test Tube. Stanford, CA: Stanford University PressGoogle Scholar
Rhodin, Johannes. (1954). Correlation of Ultrastructural Organization and Function in Normal and Experimentally Changed Proximal Convoluted Tublule Cells of the Mouse Kidney. Karolinska Institut, Aktiebolaget Godvil, StockholmGoogle Scholar
Rich, Alexander (1963). Polyribosomes. Scientific American, 209 (December), 44–53CrossRefGoogle ScholarPubMed
Richardson, K. C. (1934). The Golgi apparatus and other cytoplasmic structures in normal and degenerate cells in vitro. Archiv für experimentelle Zellforschung, 16, 100–15Google Scholar
Ris, Hans, & Mirsky, Alfred E. (1949). Quantitative cytochemical determination of desoxyribonucleic acid with the Feulgen nucleal reaction. Journal of General Physiology, 32, 125–46CrossRefGoogle Scholar
Roberts, Richard B. (1958). Microsomal Particles and Protein Synthesis. New York: PergamonGoogle Scholar
Robertson, J. David (1987). The early days of electron microscopy of nerve tissues and membranes. International Review of Cytology, 100, 129–201CrossRefGoogle ScholarPubMed
Rosenberg, Charles (1979). Toward an ecology of knowledge: On discipline, context, and history. In Oleson, A. & Voss, J. (Eds.), The Organization of Knowledge in Modern America. Baltimore: John HopkinsGoogle Scholar
Rosenblueth, Arturo, Wiener, Norbert, & Bigelow, Julian (1943). Behavior, purpose, and teleology. Philosophy of Science, 10, 18–24CrossRefGoogle Scholar
Ruiz-Mirazo, Kepa, Peretó, Juli, & Moreno, Alvaro (2004). A universal definition of life: Autonomy and open-ended evolution. Origins of Life and Evolution of the Biosphere, 34, 323–46CrossRefGoogle ScholarPubMed
Ruska, Helmut (1941). Die Sichtbarmachung der bakteriophagen Lyse im Übermikroskop and Über ein neues bei der bakteriophagen Lyse auftretendes Formelement. Naturwissenschaften, 29, 367–8CrossRefGoogle Scholar
Sabatini, David D., Tashiro, Yukata, & Palade, George E. (1966). On the attachment of ribosomes to microsomal membranes. Journal of Molecular Biology, 19, 503CrossRefGoogle ScholarPubMed
Salmon, Wesley C. (1984). Scientific Explanation and the Causal Structure of the World. Princeton: Princeton University PressGoogle Scholar
Salmon, Wesley C. (1989). Four decades of scientific explanation. In Kitcher, P. & Salmon, W. C. (Eds.), Scientific Explanation. Minnesota Studies in the Philosophy of Science, Volume ⅫI (pp. 3–219). Minneapolis: University of Minnesota PressGoogle Scholar
Salmon, Wesley C. (1994). Causality without counterfactuals. Philosophy of Science, 61, 297–312CrossRefGoogle Scholar
Sanders, F. K. (1951). Cytological techniques: B. Special methods. In Bourne, G. H. (Ed.), Cytology and Cell Physiology (pp. 20–38). Oxford: OxfordGoogle Scholar
Schleiden, Mathias Jacob (1838). Beiträge zur phytogenesis. Archiv für Anatomie, Physiologie und wissenschaftliche Medecin, 137–76Google Scholar
Schleiden, Matthias J. (1842). Grundzüge der wissenschaftlichen Botanik. Leipzig: Wilhelm EngelmannGoogle Scholar
Schlenk, Fritz (1997). Early research on fermentation – a story of missed opportunities. In Cornish-Bowden, A. (Ed.), New Beer in an Old Bottle: Eduard Buchner and the Growth of Biochemical Knowledge. Valencia, Spain: Universitat de ValènciaGoogle Scholar
Schmitt, Francis O. (1944–5). Ultrastructure and the problem of cellular organization. The Harvey Lectures, 40, 249Google Scholar
Schmitt, Francis O., Hall, Cecil E., & Jakus, Marie A. (1942). Electron microscope investigations of the structure of collagen. Journal of Cellular and Comparative Physiology, 20 (1), 11–33CrossRefGoogle Scholar
Schmitt, Francis O., Hall, Cecil E., & Jakus, Marie A. (1943). The ultrastructure of protoplasmic fibrils. In Hoerr, N. L. (Ed.), Frontiers in Cytochemistry: The Physical and Chemical Organization of the Cytoplasm (Vol. 10, pp. 261–76). Lancaster, PA: The Jaques Cattell PressGoogle Scholar
Schneider, Walter C. (1948). Intracellular distribution of enzymes. III. The oxidation of octanoic acid by rat liver fractions. Journal of Biological Chemistry, 176, 259–66Google Scholar
Schneider, Walter C., & Hogeboom, George H. (1951). Cytochemical studies of mammalian tissue: The isolation of cell components by differential centrifugation: A review. Cancer Research, 11, 1–22Google ScholarPubMed
Schneider, Walter C., & Kuff, Edward L. (1954). On the isolation and some biochemical properties of the Golgi substance. American Journal of Anatomy, 94, 209–24CrossRefGoogle ScholarPubMed
Schneider, Walter C., & Kuff, Edward L. (1964). Centrifugal isolation of subcellular components. In Bourne, G. H. (Ed.), Cytology and Cell Physiology (3rd ed., pp. 19–89). New York: Academic PressGoogle Scholar
Schultze, Max (1861). Über Muskelkörperchen und das, was man eine Zelle zu nennen habe. Müllers Archiv für Anatomie, Physiologie, und wissenschaftliche Medizin, 1–27Google Scholar
Schultze, Max (1865). Archiv für mikroskopische Anatomie und Entwirklungsgeschichte, 1, 124CrossRef
Schwann, Theodor (1836). Über das Wesen des Verdauungsprocesses. Archiv für Anatomie, Physiologie und wissenschaftliche Medecin, 90–138Google Scholar
Schwann, Theodor (1837). Vorläufige Mitteilung, betreffend Versuche über die Weingärung und Faulnis. Poggendorf's Annalen der Physik und Chemie, 41, 184–93CrossRefGoogle Scholar
Schwann, Theodor (1839(1947). Microscopical Researches into the Accordance in the Structure and Growth of Animals and Plants (H. Smith, Trans.). London: Sydenham SocietyGoogle Scholar
Shapere, Dudley (1974). Scientific theories and their domains. In Suppe, F. (Ed.), The Structure of Scientific Theories. Urbana: University of Illinois PressGoogle Scholar
Shapere, Dudley (1984). Reason and the Search for Knowledge. Dordrecht: ReidelGoogle Scholar
Shapin, Steven (1982). History of science and its sociological reconstructions. History of Science, 20, 157–211CrossRefGoogle Scholar
Siekevitz, Philip (1952). Uptake of radioactive alanine in vitro into the proteins of rat liver fractions. Journal of Biological Chemistry, 195, 549–65Google ScholarPubMed
Siekevitz, Philip, & Zamecnik, Paul C. (1951). In vitro incorporation of 1-C14-DL-alanine into proteins of rat-liver granular fractions. Federation Proceedings, 10, 246Google Scholar
Simon, Herbert A. (1996). The Sciences of the Artificial. (Third ed.). Cambridge, MA: MIT PressGoogle Scholar
Sjöstrand, Fritiof S. (1943). Electron microscopic examination of tissues. Nature, 151, 725–26CrossRefGoogle Scholar
Sjöstrand, Fritiof S. (1953a). A new microtome for ultra-thin sectioning for high resolution electron microscopy. Experientia, 9, 114–5CrossRefGoogle Scholar
Sjöstrand, Fritiof S. (1953b). Electron microscopy of mitochondria and cytoplasmic double membranes. Nature, 171, 30–2CrossRefGoogle Scholar
Sjöstrand, Fritiof S. (1955a). The ultrastructure of mitochondria. In Fine Structure of Cells. Symposium Held at the VIIIth Congress of Cell Biology (pp. 16–30). Leiden: Interscience Publishers
Sjöstrand, Fritiof S. (1955b). The ultrastructure of the ground substance of the cytoplasm. In Fine Structure of Cells. Symposium Held at the VIIIth Congress of Cell Biology (pp. 222–8). Leiden: Interscience Publishers
Sjöstrand, Fritiof S. (1956a). The ultrastructure of cells as revealed by the electron microscope. International Review of Cytology, 5, 455–533CrossRefGoogle Scholar
Sjöstrand, Fritiof S. (1956b). Recent advances in the biological application of the electron microscope. In Third International Conference on Electron Microscopy (pp. 26–37). London: Royal Microscopical Society
Sjöstrand, Fritiof S., & Hanzon, Viggo (1954). Membrane structures of cytoplasm and mitochondria in exocrine cells of mouse pancreas as revealed by high resolution electron microscopy. Experimental Cell Research, 7, 393–414CrossRefGoogle ScholarPubMed
Sjöstrand, Fritiof S., & Rhodin, Johannes (1953). The ultrastructure of the proximal convoluted tubules of the mouse kidney as revealed by high resolution electron microscopy. Experimental Cell Research, 4, 426–56CrossRefGoogle Scholar
Slater, Edward Charles (1950). Phosphorylation coupled with the reduction of cytochrome c by α-ketoglutarate in heart muscle granules. Nature, 166, 982–3CrossRefGoogle ScholarPubMed
Slater, Edward Charles (1953). Mechanism of phosphorylation in the respiratory chain. Nature, 172, 975–8CrossRefGoogle ScholarPubMed
Slator, Arthur (1906). Studies in fermentation. I. The chemical dynamics of alcoholic fermentation by yeast. Journal of the Chemical Society, London, 89, 128–42CrossRefGoogle Scholar
Slayter, Henry, Kiho, Yukio, Hall, Cecil E., & Rich, Alexander (1968). An electron microscopic study of large bacterial polyribosomes. Journal of Cell Biology, 37, 583–90CrossRefGoogle ScholarPubMed
Smith, Kendric C., Cordes, Eugene, & Schweet, Richard S. (1959). Fractionation of transfer ribonucleic acid. Biochemica et Biophysica Acta, 33, 286–7CrossRefGoogle ScholarPubMed
Solomon, Miriam (2001). Social Empiricism. Cambridge, MA: MIT PressGoogle Scholar
Stanley, Wendell M, & Anderson, Thomas F. (1941). Study of purified viruses with electron microscope. Journal of Biological Chemistry, 139, 325–38Google Scholar
Stenning, Keith, & Lemon, Oliver (2001). Aligning logical and psychological perspectives on diagrammatic reasoning. Artificial Intelligence Review, 15, 29–62CrossRefGoogle Scholar
Strangeways, Thomas S. P., & Canti, R. G. (1927). The living cell in vitro as shown in dark-ground illumination and the changes induced in such cells by fixing reagents. Quarterly Journal of Microscopical Science, 71, 1–14Google Scholar
Strasburger, Eduard (1884). Neue Untersuchungen uber den Befruchtungsvorgang bei den Phanerogamen als Grunglagefur eine Theorie der Zeugung. Jena: Gustav FischerGoogle Scholar
Straus, Werner (1954). Isolation and biochemical properties of droplets from the cells of rat kidney. Journal of Biological Chemistry, 207, 745–55Google ScholarPubMed
Straus, Werner (1956). Concentration of acid phosphatase, ribonuclease, desoxyribonuclease, ß-glucoronidase, and cathepsin in “droplets” isolated from the kidney cells of normal rats. Journal of Biophysical and Biochemical Cytology, 2, 513–21CrossRefGoogle ScholarPubMed
Svedberg, Theodor, & Fåhraeus, Robin (1926). A new method for the determination of the molecular weight of the proteins. Journal of the American Chemical Society, 48, 430–8CrossRefGoogle Scholar
Svedberg, Theodor, & Rinde, Herman (1924). The ultra-centrifuge, a new instrument for the determination of size and distribution of size of particle in amicroscopic colloids. Journal of the American Chemical Society, 46, 2677–93CrossRefGoogle Scholar
Swift, Hewson (1953). Quantitative aspects of nuclear nucleoproteins. International Review of Cytology, 2, 1–76CrossRefGoogle Scholar
Szent-Györgyi, Albert (1924). Über den Mechanismus der Succin- und Paraphenylen-diaminoxydation. Ein Beitrag zur Theorie der Zellatmung. Biochemische Zeitschrift, 150, 195–210Google Scholar
Szent-Györgyi, Albert (1937). Studies on Biological Oxidation and Some of Its Catalysts. Leipzig: Johann Ambrosius BarthGoogle Scholar
Tabery, James (2004). Synthesizing activities and interactions in the concept of a mechanism. Philosophy of Science, 71, 1–15CrossRefGoogle Scholar
Thénard, Louis Jacques (1803). Mémoire sur la Fermentation vineuse. Annales de Chimie, 46, 294–320Google Scholar
Thunberg, Torsten Ludvig (1913). Zur Kenntnis einiger autoxydabler Thioverbindungen. Skandinavisches Archiv für Physiologie, 20, 289–90Google Scholar
Thunberg, Torsten Ludvig (1916). Über die vitale Dehydrierung der Bernsteinsäure bei Abwesenheit von Sauerstoff. Zentralblatt für Physiologie, 31, 91–3Google Scholar
Thunberg, Torsten Ludvig (1920). Zur Kenntnis des intermediären Stoffwechsels und der dabei wirksamen Enzyme. Skandinavisches Archiv für Physiologie, 40, 9–91CrossRefGoogle Scholar
Tissiéres, Alfred, & Watson, James D. (1958). Ribonucleoprotein particles from Escherichia coli. Nature, 182, 778–80CrossRefGoogle ScholarPubMed
Tissiéres, Alfred, Watson, James D., Schlessinger, David, & Hollingworth, B. R. (1959). Ribonucleoprotein particles from Escherichia coli. Journal of Molecular Biology, 1, 221–33CrossRefGoogle Scholar
Toulmin, Stephen (1972). Human Understanding: The Collective Use and Evolution of Concepts. Princeton: Princeton University PressGoogle Scholar
Turpin, Pierre J. F. (1838). Mémoire sur la cause et les effets de la fermentation alcoolique et acéteuse. Annales de chimie et de physique, 7, 369–402Google Scholar
Beneden, Edouard (1875). La maturation de l'œuf, la fécondation et les premières phases du développement embryonnaire des mammifères d'après des recherches faites chez le Lapin. Annuaire de l'Académie Royale de la Belgique, 40, 686–736Google Scholar
Beneden, Edouard, & Neyt, Adolphe (1887). Nouvelles recherches sur la fécondation et la division mitosique chez l'Ascaride mégalocephale. Annuaire de l'Académie Royale de la Belgique, 14, 238Google Scholar
Essen, David C., & Gallant, Jack L. (1994). Neural mechanisms of form and motion processing in the primate visual system. Neuron, 13, 1–10CrossRefGoogle ScholarPubMed
Varela, Francisco J. (1979). Principles of Biological Autonomy. New York: ElsevierGoogle Scholar
Virchow, Rudolf (1855). Cellular-Pathologie. Archiv für pathologische Anatomie und Physiologie und für klinische Medizin, 8, 3–39Google Scholar
Virchow, Rudolf (1858). Die Cellularpathologie in ihrer Begründung auf physiologische und pathologische Gewebelehre. Berlin: August HirschwaldGoogle Scholar
Ardenne, Manfred (1939). Die Keilschnittmethode, ein Weg zur Herstellung von Mikrotomschnitten mit weniger als Stärke für elektronenmikroskopische Zwecke. Zeitschrift für wissenschaftliche Mikroscopie, 56, 8–23Google Scholar
Waldeyer, Wilhelm (1888). Ueber Karyokinese und ihre Bezeihung zu den Befruchtungsvorgängen. Archiv für mikroskopische Anatomie und Entwirklungsgeschichte, 32, 1–122CrossRefGoogle Scholar
Walker, C. E., & Allen, M. (1927). On the nature of the “Golgi bodies” in fixed material. Proceedings of the Royal Society B, 101, 468CrossRefGoogle Scholar
Walker, P. G. (1952). The preparation and properties of ß-glucuronidase: 3. Fractionation and activity of homogenate in isotonic media. Biochemical Journal, 51, 223–32CrossRefGoogle Scholar
Warburg, Otto Heinrich (1910). Über die Oxidationen in lebenden Zellen nach Versuchen am Seeigelei. Zeitschrift für physiologische Chemie, 59, 305–40CrossRefGoogle Scholar
Warburg, Otto Heinrich (1911). Über Beeinflussung der Sauerstoffatmung. Zeitschrift für physiologische Chemie, 70, 413–32CrossRefGoogle Scholar
Warburg, Otto Heinrich (1913a). Über die Wirkung der Struktur auf chemische Vorgänge in den Zellen. Jena: Gustav FischerGoogle Scholar
Warburg, Otto Heinrich (1913b). Über sauerstoffatmende Körnchen aus Leberzellen und über Sauerstoffatmung in Berkefeld-Filtraten wässriger Leberextrakte. Pflüger's Archiv für Gesammte Physiologie des Menschen und der Thiere, 154, 599–617CrossRefGoogle Scholar
Warburg, Otto Heinrich (1914). Beitrage zur Physiologie der Zelle, insbesondere über die Oxydationsgewchwindigkeit in Zellen. Erggebnisse der Physiologie, 14, 253–337CrossRefGoogle Scholar
Warburg, Otto Heinrich (1923). Versuche an überlebendem Carcinomgewebe. Biochemische Zeitschrift, 142, 317–33Google Scholar
Warburg, Otto Heinrich (1925a). Monometrische Messung des Zellstoffwechsels in Serum. Biochemische Zeitschrift, 164, 481Google Scholar
Warburg, Otto Heinrich (1925b). Iron, the oxygen carrier of the respiration ferment. Science, 61, 575–82CrossRefGoogle Scholar
Warburg, Otto Heinrich (1929). Atmungsferment und Oxydasen. Biochemische Zeitschrift, 214, 1–3Google Scholar
Warburg, Otto Heinrich (1932). Das sauerstoffübertragende Ferment der Atmung. Zeitschrift für angewandte Chemie, 45, 106Google Scholar
Warburg, Otto Heinrich, & Christian, Walter (1932). Über ein neues Oxydationsferment und sein Absorptionsspektrum. Biochemische Zeitschrift, 254, 438–58Google Scholar
Warburg, Otto Heinrich, & Christian, Walter (1935). Co-Fermentproblem. Biochemische Zeitschrift, 275, 364Google Scholar
Warburg, Otto Heinrich, & Christian, Walter (1936). Pyridin, der wasserstoffübertragene Bestandteil von Gärungsfermenten. Biochemische Zeitschrift, 287, 291–328Google Scholar
Warburg, Otto Heinrich, & Christian, Walter (1938). Bemerkung über gelbe Fermente. Biochemische Zeitschrift, 298, 368–77Google Scholar
Warburg, Otto Heinrich, Christian, Walter, & Griese, Alfred (1935). Wasserstoffübertragendes Co-Ferment, seine Zusammensetzung und Wirkungsweise. Biochemische Zeitschrift, 282, 157–65Google Scholar
Warner, Jonathan R., Knopf, Paul M., & Rich, Alexander (1963). A multiple ribosomal structure in protein synthesis. Proceedings of the National Academy of Sciences, USA, 49, 122–9CrossRefGoogle ScholarPubMed
Warshawsky, Hershey, Leblond, Charles P., & Droz, Bernard (1961). Synthesis and migration of proteins in the cells of the exocrine pancreas as revealed by specific activity determination from radioautographs. Journal of Cell Biology, 16, 1–23CrossRefGoogle Scholar
Wasserman, Stanley, & Faust, Katherine (1994). Social Network Analysis: Methods and Applications. New York: CambridgeCrossRefGoogle Scholar
Weismann, August (1885). Die Kontinuität des Keimplasmas als Grundlage einer Theorie der Vererbung. Jena: Gustav FischerGoogle Scholar
Wersäll, J. (1956). Studies on the structure and innervation of the sensory epithelium of the crista ampullares in the guinea pig. Acta Oto-Laryngologica, 126(Supplement), 1–85Google Scholar
Whaley, William G. (1975). The Golgi Apparatus. (Vol. 2). New York: Springer-VerlagCrossRefGoogle ScholarPubMed
Whewell, William (1840). The Philosophy of the Inductive Sciences, Founded upon Their History. London: J. W. ParkerGoogle Scholar
Whitley, Richard (1980). The context of scientific investigation. In Knoor, K. D., Krohn, R., & Whitley, R. (Eds.), The Social Process of Scientific Investigation (pp. 297–321). Dordrecht: ReidelCrossRefGoogle Scholar
Wieland, Heinrich (1913). Über den Mechanismus der Oxydationsvorgänge. Berichte der deutschen chemischen Gesellschaft, 46, 3327–42CrossRefGoogle Scholar
Wiener, Norbert (1948). Cybernetics: Or, Control and Communication in the Animal Machine. New York: WileyGoogle Scholar
Williams, Robley C., & Wyckoff, Ralph W. G. (1946). Applications of metallic-shadow-casting to microscopy. Journal of Applied Physics, 17, 23–33CrossRefGoogle Scholar
Wilson, Edmund B. (1896). The Cell in Development and Inheritance. New York: MacMillanGoogle Scholar
Wilson, Edmund B. (1923). The Physical Basis of Life. New Haven, CT: Yale University PressGoogle ScholarPubMed
Wimsatt, William C. (1976). Reductive explanation: A functional account. In Cohen, R. S., Hooker, C. A., Michalos, A. C., & Evra, J. (Eds.), PSA 1974 (pp. 671–710). Dordrecht: ReidelCrossRefGoogle Scholar
Witter, Robert F., Watson, Michael L., & Cottone, Mary A. (1955). Morphology and ATP-ase of isolated mitochondria. Journal of Biophysical and Biochemical Cytology, 1(No. 2), 127–38CrossRefGoogle ScholarPubMed
Wöhler, Frederich (1828). Ueber künstliche Bildung des Harnstoffs. Annalen der Physik und Chemie, 12, 253–6CrossRefGoogle Scholar
Wöhler, Frederich (1839). Das enträthselte Geheimniss der geistigen Gährung. Annalen der Pharmacie, 29, 100–4Google Scholar
Wyckoff, Ralph W. G. (1959). Optical methods in cytology. In Brachet, J. & Mirsky, A. E. (Eds.), The Cell: Biochemistry, Physiology, Morphology. New York: Academic PressGoogle Scholar
Zamecnik, Paul C. (1958). The microsome. Scientific American, 198(3), 118–24CrossRefGoogle Scholar
Zamecnik, Paul C. (1958–9). Historical and current aspects of the problem of protein synthesis. Harvey Lectures, 54, 256–81Google Scholar
Zamecnik, Paul C., Frantz, Ivan D., Loftfield, Robert B., & Stephenson, Mary L. (1948). Incorporation in vitro of radioactive carbon from carboxyl-labeled DL-alanine and glycine into proteins of normal and malignant rat livers. Journal of Biological Chemistry, 175, 299–314Google ScholarPubMed
Zamecnik, Paul C., Stephenson, Maryl L., Scott, Jesse F., & Hoagland, Mahlon B. (1957). Incorporation of C14-ATP into soluble RNA isolated from 105,000 ⅹ g supernatant from rat liver. Federation Proceedings, 16, 275Google Scholar
Zetterqvist, H. (1956). The Ultrastructural Organization of the Columnar Absorbing Cells of the Mouse Jejunum. Stockholm: PhD Thesis, Karolinska InstituteGoogle Scholar
Ziegler, Daniel M., Linnane, Anthony W., Green, David E., Dass, C. M. S., & Ris, Hans (1958). Studies on the electron transport system: Correlation of the morphology and enzymic properties of mitochondrial and sub-mitochondrial particles. Biochimica et Biophysica Acta, 28, 524–39CrossRefGoogle ScholarPubMed
Afzelius, Björn A. (1962). Chemical fixatives for electron microscopy. In Harris, R. J. C. (Ed.), The Interpretation of Ultrastructure (Vol. 1, pp. 1–19). New York: Academic PressGoogle Scholar
Afzelius, Björn A. (1966). Anatomy of the Cell (B. Satir, Trans.). Chicago: University of Chicago PressGoogle Scholar
Allchin, Douglas (1996). Cellular and theoretical chimeras: Piecing together how cells process energy. Studies in the History and Philosophy of Science, 27, 31–41CrossRefGoogle ScholarPubMed
Allchin, Douglas (1997). A twentieth-century phlogiston: Constructing error and differentiating domains. Perspectives on Science, 5, 81–127Google Scholar
Allchin, Douglas (2002). To err and win a Nobel Prize: Paul Boyer, ATP synthase and the emergence of bioenergetics. Journal of the History of Biology, 35, 149–72CrossRefGoogle Scholar
Allfrey, Vincent G. (1959). The isolation of subcellular components. In Brachet, J. & Mirsky, A. E. (Eds.), The Cell (pp. 193–290). New York: Academic PressGoogle Scholar
Altmann, Richard (1889). Ueber Nucleinsäuren. Archiv für Anatomie Physiologie und wissenschaftliche Medicin, 524–36Google Scholar
Altmann, Richard (1890). Die Elementaroganismen und ihre Beziehungen zu den Zellen. Leipzig: von VeitGoogle Scholar
Anderson, Thomas F. (1956). Electron microscopy of microorganisms. In Oster, G. & Pollister, A. W. (Eds.), Physical Techniques in Biological Research, Vol. 3: Cells and Tissues (pp. 177–240). New York: Academic PressGoogle Scholar
Anderson, Winston A. (2000). The value of mentoring in the career of a young scientist. Molecular Biology of the Cell, 11, 795–7CrossRefGoogle ScholarPubMed
Appel, Toby A. (1987). Founding. In Brobeck, J. R., Reynolds, O. E., & Appel, T. A. (Eds.), History of the American Physiological Society. Bethesda, MD: The American Physiological SocietyCrossRefGoogle Scholar
Bainton, Dorothy F. (1981). The discovery of lysosomes. Journal of Cell Biology, 91, 66s–76sCrossRefGoogle ScholarPubMed
Baker, John R. (1942). Some aspects of cytological technique. In Bourne, G. H. (Ed.), Cytology and Cell Physiology (First ed.). Oxford: Clarendon PressGoogle Scholar
Baker, John R. (1944). The structure and the chemical composition of the Golgi element. Quarterly Journal of Microscopical Science, 85, 1Google Scholar
Baker, John R. (1951). Cytological Technique. London: Methuen & Co. Ltd.Google Scholar
Baker, John R. (1957). The Golgi controversy. Symposia of the Society for Experimental Biology, 10, 1–10Google Scholar
Baker, John R. (1963). New developments in the Golgi controversy. International Review of Cytology, 19, 183–201Google Scholar
Barnes, Barry (1977). Interests and the Growth of Knowledge. London: Routledge and Kegan PaulGoogle Scholar
Barnum, C. P., & Huseby, R. A. (1948). Some quantitative analyses of the particulate fractions from mouse liver cell cytoplasm. Archives of Biochemistry, 19, 17–23Google ScholarPubMed
Barsalou, Lawrence W. (1999). Perceptual symbol systems. Behavioral and Brain Sciences, 22, 577–660Google ScholarPubMed
Battelli, Federico, & Stern, Lina Salomonovna (1911). Die Oxydation der Bersteinsäure durch Tiergewebe. Biochemische Zeitschrift, 30, 172–94Google Scholar
Beams, H. W., & King, R. L. (1934). The effects of ultracentrifuging upon the Golgi apparatus in the uterine gland cells. Anatomical Record, 59, 363CrossRefGoogle Scholar
Beams, Jesse W. (1938). High speed centrifuging. Review of Modern Physics, 10, 245–63CrossRefGoogle Scholar
Bechtel, William (1984). The evolution of our understanding of the cell: A study in the dynamics of scientific progress. Studies in the History and Philosophy of Science, 15, 309–56CrossRefGoogle ScholarPubMed
Bechtel, William (1986a). The nature of scientific integration. In Bechtel, W. (Ed.), Integrating Scientific Disciplines (pp. 3–52). Dordrecht: Martinus NijhoffCrossRefGoogle Scholar
Bechtel, William (1986b). Biochemistry: A cross-disciplinary endeavor that discovered a distinctive domain. In Bechtel, W. (Ed.), Integrating Scientific Disciplines (pp. 77–100). Dordrecht: Martinus NijhoffCrossRefGoogle Scholar
Bechtel, William (1995). Deciding on the data: Epistemological problems surrounding instruments and research techniques in cell biology. In Hull, D., Forbes, M., and Burian, R. M. (Eds.), PSA 1994 (Vol. 2, pp. 167–78). East Lansing, MI: Philosophy of Science AssociationGoogle Scholar
Bechtel, William (2000). From imaging to believing: Epistemic issues in generating biological data. In Creath, R. & Maienschein, J. (Eds.), Biology and Epistemology (pp. 138–63). Cambridge, England: Cambridge University PressGoogle Scholar
Bechtel, William (2001). Decomposing and localizing vision: An exemplar for cognitive neuroscience. In Bechtel, W., Mandik, P., Mundale, J., & Stufflebeam, R. S. (Eds.), Philosophy and the Neurosciences: A Reader (pp. 225–49). Oxford: Basil BlackwellGoogle Scholar
Bechtel, William (2002a). Decomposing the mind-brain: A long-term pursuit. Brain and Mind, 3, 229–42CrossRefGoogle Scholar
Bechtel, William (2002b). Aligning multiple research techniques in cognitive neuroscience: Why is it important?Philosophy of Science, 69, S48–S58CrossRefGoogle Scholar
Bechtel, William, & Richardson, Robert C. (1993). Discovering Complexity: Decomposition and Localization as Strategies in Scientific Research. Princeton, NJ: Princeton University PressGoogle Scholar
Belitzer, Vladimir A., & Tsibakova, Elena T. (1939). [The mechanism of phosphorylation associated with respiration]. Biokhimiya, 4, 516–35Google Scholar
Bell, L. G. E. (1952). The application of freezing and drying techniques in cytology. International Review of Cytology, 1, 35–63CrossRefGoogle Scholar
Benda, Carl (1898). Über die Spermatogenese der Vertebraten und hoeherer Evertebraten. II. Theil. Die Histiogenese der Spermien. Archiv für Anatomie und Physiologie (Physiologische Abteilung), 393–8Google Scholar
Benda, Carl (1899). Weitere Mitteilungen über die Mitochondria. Archiv für Anatomie und Physiologie (Physiologische Abteilung), 376–83Google Scholar
Bensley, Robert R. (1937). On the fat distribution of mitochondria in the guinea pig liver. Anatomical Record, 69, 341–53CrossRefGoogle Scholar
Bensley, Robert R. (1943). Chemical structure of cytoplasm. In Hoerr, N. L. (Ed.), Frontiers in Cytochemistry: The Physical and Chemical Organization of the Cytoplasm (Vol. 10, pp. 323–34). Lancaster, PA: Jacques Cattell PressGoogle Scholar
Bensley, Robert R. (1951). Facts versus artifacts in cytology: The Golgi apparatus. Experimental Cell Research, 2, 1–9CrossRefGoogle Scholar
Bensley, Robert R. (1953). Introduction and greetings: Symposium on the structure and biochemistry of mitochondria. Journal of Histochemistry and Cytochemistry, 1, 179–82Google Scholar
Bensley, Robert R., & Gersh, Isidore (1933a). Studies on the cell structure by the freezing-drying method. I. Introduction. Anatomical Record, 57, 205–15CrossRefGoogle Scholar
Bensley, Robert R., & Gersh, Isidore (1933b). Studies on the cell structure by the freezing-drying method. II. Mitochondria. Anatomical Record, 57, 217CrossRefGoogle Scholar
Bensley, Robert R., & Hoerr, Normand L. (1934a). Studies on cell structure by the freezing-drying method. V. The chemical basis of the organization of the cell. Anatomical Record, 60, 251–66CrossRefGoogle Scholar
Bensley, Robert R., & Hoerr, Normand L. (1934b). Studies on cell structure by the freeze-drying method. VI. The preparation and properties of mitochondria. Anatomical Record, 60, 449–55CrossRefGoogle Scholar
Bernard, Claude (1848). De l'origine du sucre dans l'économic animale. Archives générales de médecine, 18, 303–19Google Scholar
Bernard, C. (1858). Leçons sur les propriétés physiologiques et les altérations pathologiques des liquides de l'organisme. Paris: BaillièreGoogle Scholar
Bernard, Claude (1865). An Introduction to the Study of Experimental Medicine. New York: DoverGoogle Scholar
Bernard, Claude (1878a). Leçons sur les phénomènes de la vie communs aux animaux et aux ⅴégétaux. Paris: BaillièreGoogle Scholar
Bernard, Claude (1878b). La fermentation alcoolique. Dernières expériences de Claude Bernard. Edited posthumously by M. Berthelot. Revue scientifique de la France et de l'étranger, Paris, 16, 49–56Google Scholar
Bernhard, Wilhelm, Gautier, A., & Oberling, Charles (1951). Fibrillary elements of probable ergastoplasmic nature in cytoplasm of hepatic cells revealed by electron microscopy. Comptes rendus des séances de la Société de biologie et de ses filial, 145, 566Google ScholarPubMed
Bernhard, Wilhelm, Haguenau, Francoise, Gautier, A., & Oberling, Charles (1952). La structure submicroscopique des elements basolphes cytoplasmiques dans le foie, le pancreas, et les glandes salivaires. Zeitschrift fur Zellforschung, 37, 281–300CrossRefGoogle Scholar
Berthet, Jacques, Berthet, Lucie, Appelmans, Françoise, & Duve, Christian (1951). Tissue fractionation studies: 2. The nature of the linkage between acid phosphatase and mitochondria in rat-liver tissue. Biochemical Journal, 50, 182–9CrossRefGoogle ScholarPubMed
Berthet, Jacques, & Duve, Christian (1951). Tissue fractionation studies. I. The existence of a mitochondria-linked enzymatically inactive form of acid phosphatase in rat liver tissue. Biochemical Journal, 50, 174–81CrossRefGoogle Scholar
Berthollet, Claude Louis (1780). Recherches sur la nature des substances animales et sur leurs rapports avec les substances ⅴégétales. Mémoires de l'Acadeâmie royale des sciences, 120–5Google Scholar
Bertrand, Gabriel (1895). Sur la laccase et sur le pouvoir oxydant de cette diastase. Comptes rendus de l'Académie des sciences, 120, 266–9Google Scholar
Berzelius, Jöns Jacob (1836). Einige Ideen über bei der Bildung organischer Verbindungen in der lebenden Naturwirksame, aber bisher nicht bemerke Kraft. Jahres-Berkcht über die Fortschritte der Chemie, 15, 237–45Google Scholar
Bichat, Xavier (1805). Recherches Physiologiques sur la Vie et la Mort. (3rd ed.). Paris: MachantCrossRefGoogle Scholar
Bittner, John J. (1936). Some possible effects of nursing on the mammary gland tumor incidence in mice. Science, 84, 162CrossRefGoogle ScholarPubMed
Bloor, David (1991). Knowledge and Social Imagery (2nd ed.). Chicago: University of Chicago PressGoogle Scholar
Boas, Marie (1952). The establishment of the mechanical philosophy. Osiris, 10, 412–541CrossRefGoogle Scholar
Bogen, J., & Woodward, J. (1988). Saving the phenomena. Philosophical Review, 97, 303–52CrossRef
Bonner, John T. (1952). Morphogenesis. Princeton: Princeton University PressGoogle Scholar
Borsook, Henry, Deasy, Clara L., Hagen-Smit, Arie J., Keighley, Geoffrey, & Lowy, Peter H. (1950). The uptake in vitro of C14-labeled glycine, L-leucine, and L-lysine by different components of guinea pig liver homogenate. Journal of Biological Chemistry, 184, 529Google Scholar
Bourne, Geoffrey H. (1942). Mitochondria and the Golgi apparatus. In Bourne, G. (Ed.), Cytology and Cell Physiology (pp. 99–138). Oxford: Oxford University PressGoogle Scholar
Bourne, Geoffrey H. (1962). Division of Labor in Cells. New York: Academic PressGoogle Scholar
Bowen, Robert H. (1924). On a possible relation between the Golgi apparatus and secretory products. American Journal of Anatomy, 33, 197–217CrossRefGoogle Scholar
Bowen, Robert H. (1929). The cytology of glandular secretion. Quarterly Review of Biology, 4, 299–324 and 484–51CrossRefGoogle Scholar
Boyer, Paul D., Chance, Britton, Ernster, Lars, Mitchell, Peter, Racker, Efraim, & Slater, Edward Charles (1977). Oxidative phoshorylation and photophosphorylation. Annual Review of Biochemistry, 46, 955–1026CrossRefGoogle Scholar
Brachet, Jean (1942). La localisation des acides pentosenucléiques dans les tissues animaux et dans les oeufs d'Amphibiens en voie de développement. Archive de Biologie, 43, 207–57Google Scholar
Brachet, Jean (1957). Biochemical Cytology. New York: Academic PressGoogle Scholar
Brachet, Jean, & Jeener, Raymond (1944). Recherches sur les particules cytoplasmiques de dimensions macroméculaires riches en acide pentosenucléique. Pt. I. Propriétés générales, relations avec les hydrolases, les hormones, les protéines de structure. Enymologia, 13, 196–212Google Scholar
Brenner, Sydney, Jacob, Francois, & Meselson, Matthew (1961). An unstable intermediate carrying information from genes to ribosomes for protein synthesis. Nature, 190, 576–81CrossRefGoogle ScholarPubMed
Bretschneider, L. H. (1952). The electron-microscopic investigation of tissue sections. International Review of Cytology, 1, 305–22CrossRefGoogle Scholar
Brodmann, Korbinian (1909/1994). Vergleichende Lokalisationslehre der Grosshirnrinde (L. J. Garvey, Trans.). Leipzig: J. A. BarthGoogle Scholar
Brown, Robert (1833). On the organs and mode of fecundation in Orchideae and Asclediadeae. Transactions of the Linnean Society, 16, 685–745CrossRefGoogle Scholar
Bucher, Nancy (1953). The formation of radioactive cholesterol and fatty acids from C14-labeled acetate by rat liver homogenates. Journal of the American Chemical Society, 75, 498CrossRefGoogle Scholar
Buchner, Eduard (1897). Alkoholische Gärung ohne Hefezellen (Vorläufige Mittheilung). Berichte der deutschen chemischen Gesellschaft, 30, 117–24CrossRefGoogle Scholar
Buchner, Eduard, & Meisenheimer, J. (1904). Die chemische Vorgänge bei der alkoholischen Gärung. Berichte der deutschen chemischen Gesellschaft, 37, 417–28CrossRefGoogle Scholar
Burian, Richard M. (1996). Underappreciated pathways toward molecular genetics as illustrated by Jean Brachet's cytochemical embryology. In Sarkar, S. (Ed.), The Philosophy and History of Molecular Biology: New Perspectives (pp. 67–85). Dordrecht: KluwerCrossRefGoogle Scholar
Cagniard-Latour, Charles (1838). Memoire sur la fermentation vineuse. Annales de chimie et de physique, 68, 206–23. Cajal, Santiago Ramón. See Ramón y Cajal, Santiago
Campbell, Peter N., & Epstein, Michael A. (1966). The Structure and Function of Animal Cell Components. Oxford: Pergamon PressGoogle Scholar
Cannan, C. M., & Berger, R. (1951). Quantitative comparison of submicroscopic cytoplasmic particles observed in normal and malignant cells with the electron microscope. Cancer Research, 2, 242Google Scholar
Cannon, Walter B. (1929). Organization of physiological homeostasis. Physiological Reviews, 9, 399–431CrossRefGoogle Scholar
Caro, Lucien (1961). Electron microscopic radioautography of thin sections: The Golgi zone as a site of protein concentration in pancreatic acinar cells. Journal of Cell Biology, 10, 37–45CrossRefGoogle ScholarPubMed
Caro, Lucien, & Palade, George E. (1964). Protein synthesis, storage, and discharge in the pancreatic exocrine cell. An autoradiographic study. Journal of Cell Biology, 20, 473–95CrossRefGoogle ScholarPubMed
Caspersson, Torbjörn O. (1936). Über den chemischen Aufbau der strukturen des Zellkernes. Skandinavisches archiv für physiologie, 73(Suppl. nr. 8), 1–151Google Scholar
Caspersson, Torbjörn O. (1950). Cell Growth and Cell Function. New York: W. W. Norton & Co.Google Scholar
Caspersson, Torbjörn O., & Schultz, Jack (1938). Nucleic acid metabolism of the chromosomes in relation to gene reproduction. Nature, 142, 294CrossRefGoogle Scholar
Caspersson, Torbjörn O., & Schultz, Jack (1940). Ribonucleic acids in both nucleus and cytoplasm, and the function of the nucleolus. Proceedings of the National Academy of Sciences, USA, 26, 507–15CrossRefGoogle ScholarPubMed
Causey, Robert L. (1977). Unity of Science. Dordrecht: D. Reidel Publishing CompanyCrossRefGoogle Scholar
Champy, Christian (1911). Archives d'anatomie microscopique, 13, 55
Chance, Britton, & Williams, G. R. (1956). The respiratory chain and oxidative phosphorylation. Advances in Enzymology, 17, 65–134Google ScholarPubMed
Chantrenne, Hubert (1947). Hétérogénéité des granules cytoplasmiques du foie de souris. Biochimica et Biophysica Acta, 1, 437–48CrossRefGoogle Scholar
Chao, Fu-Chuan, & Schachmann, Howard K. (1956). The isolation and characterization of a macromolecular ribonucleoprotein from yeast. Archives of Biochemistry and Biophysics, 61, 220–30CrossRefGoogle Scholar
Chubin, Daryl E. (1982). Sociology of Sciences: An Annotated Bibliography on Invisible Colleges, 1972–1981. New York: GarlandGoogle Scholar
Churchland, Patricia S., & Sejnowski, Terrence J. (1992). The Computational Brain. Cambridge, MA: MIT PressGoogle Scholar
Claude, Albert (1935). Properties of the causative agent of a chicken tumor. Ⅺ. Chemical composition of purified chicken tumor extracts containing the active principle. Journal of Experimental Medicine, 61, 41–57CrossRefGoogle ScholarPubMed
Claude, Albert (1937). Preparation of an active agent from inactive tumor extracts. Science, 85, 294–5CrossRefGoogle ScholarPubMed
Claude, Albert (1938a). A fraction from normal chick embryo similar to the tumor producing fraction of chicken tumor I. Proceedings of the Society for Experimental Biology and Medicine, 39, 398–403CrossRefGoogle Scholar
Claude, Albert (1938b). Concentration and purification of Chicken Tumor I agent. Science, 87, 467–8CrossRefGoogle Scholar
Claude, Albert (1939). Chemical composition of the tumor-producing fraction of chicken tumor 1. Science, 90, 213–5CrossRefGoogle Scholar
Claude, Albert (1940). Particulate components of normal and tumor cells. Science, 91, 77–8CrossRefGoogle ScholarPubMed
Claude, Albert (1941). Particulate components of cytoplasm. Cold Springs Harbor Symposia on Quantitative Biology, 9, 263–71CrossRefGoogle Scholar
Claude, Albert (1943a). Distribution of nucleic acids in the cell and the morphological constitution of cytoplasm. In Hoerr, N. L. (Ed.), Frontiers in Cytochemistry: The Physical and Chemical Organization of the Cytoplasm (Vol. 10, pp. 111–29). Lancaster, PA: Jacques Cattell PressGoogle Scholar
Claude, Albert (1943b). The constitution of protoplasm. Science, 97, 451–6CrossRefGoogle Scholar
Claude, Albert (1944). The constitution of mitochondria and microsomes and the distribution of nucleic acid in the cytoplasm of a leukemic cell. Journal of Experimental Medicine, 80, 19–29CrossRefGoogle ScholarPubMed
Claude, Albert (1946). Fractionation of mammalian liver cells by differential centrifugation. II. Experimental procedures and results. Journal of Experimental Medicine, 84, 61–89CrossRefGoogle ScholarPubMed
Claude, Albert (1948). Studies on cells: morphology, chemical constitution, and distribution of biochemical functions. Harvey Lectures, 43, 121–64Google Scholar
Claude, Albert (1950). Studies on cell morphology and functions: Methods and results. Annals of the New York Academy of Sciences, 50, 854–60CrossRefGoogle Scholar
Claude, Albert, & Fullam, Ernest F. (1945). An electron microscope study of isolated mitochondria. Journal of Experimental Medicine, 81, 51–61CrossRefGoogle ScholarPubMed
Claude, Albert, & Fullam, Ernest F. (1946). The preparation of sections of guinea pig liver for electron microscopy. Journal of Experimental Medicine, 89, 499–503CrossRefGoogle Scholar
Claude, Albert, Porter, Keith R., & Pickels, E. G. (1947). Electron microscope study of chicken tumor cells. Cancer Research, 7, 421–30Google Scholar
Cleland, K. W., & Slater, Edward Charles (1953). Respiratory Granules of heart muscles. Biochemical Journal, 53, 547–56CrossRefGoogle Scholar
Collins, Harry (1981). What is TRASP? The radical programme as a methodological imperative. Philosophy of the Social Sciences, 11, 215–24CrossRefGoogle Scholar
Cooper, Cecil, & Lehninger, Albert L. (1956a). Oxidative phosphorylation by an enzyme complex from extracts of mitochndria. I. The span ß-hydroxybutyrate to oxygen. Journal of Biological Chemistry, 219, 489–506Google Scholar
Cooper, Cecil, & Lehninger, Albert L. (1956b). Oxidative phosphorylation by an enzyme complex from extracts of mitochondria. III. The span cytochrome c to oxygen. Journal of Biological Chemistry, 219, 519–29Google Scholar
Cooper, Cecil, & Lehninger, Albert L. (1957a). Oxidative phosphorylation by an enzyme complex from extracts of mitochondria. IV. Adenosinetriphosphatase activity. Journal of Biological Chemistry, 224, 547–60Google Scholar
Cooper, Cecil, & Lehninger, Albert L. (1957b). Oxidative phosphorylation by an enzyme complex from extracts of mitochondria. V. The adenosine triphosphate-phosphate exchange reaction. Journal of Biological Chemistry, 224, 561–78Google Scholar
Copeland, D. Eugene (1999). Origins of cell biology in the United States. FASEB Journal, 13, S181-S4CrossRefGoogle ScholarPubMed
Corner, George W. (1964). A History of the Rockefeller Institute, 1901–1953, Origins and Growth. New York: The Rockefeller Institute PressGoogle Scholar
Correns, Carl (1900). G. Mendel's Regel über das Verhalten der Nachkommenschaft der Rassenbastarde. Berichte der deutschen botanischen Gesellschaft, 18, 158–68Google Scholar
Cosslett, Vernon Ellis (1955). Electron microscopy. In Oster, G. & Pollister, A. W. (Eds.), Physical Techniques in Biological Research, Vol. 1 Optical Techniques (pp. 461–531). New York: Academic PressGoogle Scholar
Cowdry, Edmund Vincent (1918). The mitochondrial constituents of protoplasm. Contributions to Embryology. Carnegie Institution of Washington, Washington, DC, 8, 39–160Google Scholar
Cowdry, Edmund Vincent (1924). Cytological constituents – mitochondria, Golgi apparatus, and chromidial substance. In Cowdry, E. V. (Ed.), General Cytology: A Textbook of Cellular Structure and Function for Students of Biology and Medicine (pp. 313–82). Chicago: University of Chicago PressGoogle Scholar
Cowdry, Edmund Vincent (1943). In appreciation of Dr. R. R. Bensley. In Hoerr, N. L. (Ed.), Frontiers in Cytochemistry: The Physical and Chemical Organization of the Cytoplasm (Vol. 10, pp. 7–8). Lancaster, PA: Jacques Cattell PressGoogle Scholar
Crane, Diana (1972). Invisible Colleges. Chicago: University of Chicago PressGoogle Scholar
Crane, Frederick L., Hatefi, Youssef, Lester, R. L., & Widmer, C. (1957). Isolation of a quinone from beef heart mitochondria. Biochemica et Biophysica Acta, 25, 220–1CrossRefGoogle ScholarPubMed
Cranefield, Paul (1957). The organic physics of 1847 and the biophysics of today. Journal of the History of Medicine, 12, 407–23Google ScholarPubMed
Craver, Carl (forthcoming). Explaining the brain: What a science of the mind-brain could be
Creath, Richard (1988). The pragmatics of observation, PSA 1988 (Vol. 1, pp. 149–53)
Crick, Francis H. C. (1988). What Mad Pursuit: A Personal View of Scientific Discovery. New York: Basic BooksGoogle Scholar
Dalton, Albert J. (1951a). Structural details of some of the epithelial cell types in the kidney of the mouse as revealed by the electron microscope. Journal of the National Cancer Institute, 11, 1163–85Google Scholar
Dalton, Albert J. (1951b). Observations of the Golgi substance with the electron microscope. Nature, 168, 244CrossRefGoogle Scholar
Dalton, Albert J. (1953). Electron microscopy of tissue sections. International Review of Cytology, 2, 403–17CrossRefGoogle Scholar
Dalton, Albert J. (1955). A chrome-osmium tetroxide fixative for electron microscopy. Anatomical Record, 121, 281AGoogle Scholar
Dalton, Albert J., & Felix, Marie D. (1954). Cytological and cytochemical characteristics of the Golgi substance of epithelial cells of the epididymis – in situ, in homogenates and after isolation. American Journal of Anatomy, 94, 171–208CrossRefGoogle Scholar
Dalton, Albert J., & Felix, Marie D. (1955). A study of the Golgi substance and ergastoplasm in a series of mammalian cell types. In Fine Structure of Cells. Symposium Held at the VIIIth Congress of Cell Biology, Leiden, 1954 (pp. 274–93). New York: Interscience Publishers
Dalton, Albert J., & Felix, Marie D. (1956). A comparative study of the Golgi complex. Journal of Biophysical and Biochemical Cytology, 2(No. 4, Part 2), 79–84CrossRefGoogle ScholarPubMed
Dalton, Albert J., Kahler, H., Streibich, M. J., & Lloyd, B. (1950). Finer structure of hepatic, intestinal and retinal cells of the mouse as revealed by the electron microscope. Journal of the National Cancer Institute, 11, 439–61Google Scholar
Danielli, James F. (1953). Cytochemistry: A Critical Approach. New York: John Wiley and SonsGoogle Scholar
Danielli, James F., & Davson, Hugh (1935). A contribution to the theory of permeability of thin films. Journal of Cellular and Comparative Physiology, 5, 495–508CrossRefGoogle Scholar
Darden, Lindley (1990). Diagnosing and fixing faults in theories. In Shrager, J. & Langley, P. (Eds.), Computational Models of Scientific Discovery and Theory Formation (pp. 319–53). San Mateo, CA: Morgan KaufmannGoogle Scholar
Darden, Lindley (1991). Theory Change in Science: Strategies from Mendelian Genetics. New York: Oxford University PressGoogle Scholar
Darden, Lindley (1992). Strategies for anomaly resolution. In Giere, R. (Ed.), Cognitive Models of Science (pp. 251–73). Minneapolis, MN: University of Minnesota PressGoogle Scholar
Darden, Lindley (2005). Relations among fields: Mendelian, cytological and molecular mechanisms. Studies in the History and Philosophy of Biological and Biomedical Science, 36, 349–71CrossRefGoogle ScholarPubMed
Darden, Lindley, & Craver, Carl (2002). Strategies in the interfield discovery of the mechanism of protein synthesis. Studies in the History and Philosophy of the Biological and Biomedical Sciences, 33, 1–28CrossRefGoogle Scholar
Darden, Lindley, & Maull, Nancy (1977). Interfield theories. Philosophy of Science, 43, 44–64Google Scholar
de Duve, Christian (1958). Lysosomes, a new group of cytoplasmic particles. In Hayashi, T. (Ed.), Subcellular Particles (pp. 128–59). New York: The Road Press CompanyGoogle Scholar
Duve, Christian (Ed.) (1959). Lysosomes: A New Group of Cytoplasmic Particles. New York: Ronald Press CompanyGoogle Scholar
Duve, Christian (1963). The lysosome. Scientific American, 208(5), 64–72CrossRefGoogle Scholar
Duve, Christian (1963–4). The separation and characterization of subcellular particles. Harvey Lectures, 59, 49–87Google Scholar
de Duve, Christian (1969). The lysosome in retrospect. In Dingle, J. T. & Fell, H. B. (Eds.), Lysosomes in Biology and Pathology (pp. 3–40). Amsterdam: North HollandGoogle Scholar
Duve, Christian (1971). Tissue fractionation: Past and present. Journal of Cell Biology, 50, 20d–55dCrossRefGoogle ScholarPubMed
Duve, Christian (1984). A Guided Tour of the Living Cell. New York: Scientific American LibraryGoogle Scholar
Duve, Christian, & Berthet, Jacques (1954). The use of differential centrifugation in the study of tissue enzymes. International Review of Cytology, 3, 225–75CrossRefGoogle Scholar
Duve, Christian, Pressman, Burton D., Gianetto, Robert, Wattiaux, Robert, & Appelmans, Françoise (1955). Tissue fractionation studies. 6. Intracellular distribution patterns of enzymes in rat liver tissue. Biochemical Journal, 60, 604–17CrossRefGoogle Scholar
Robertis, Eduardo D. P., Nowinski, Wiktor W., & Saez, Francisco A. (1949). General Cytology. Philadelphia: W. B. Saunders CompanyGoogle Scholar
Robertis, Eduardo D. P., Nowinski, Wiktor W., & Saez, Francisco A. (1954). General Cytology. (Second ed.). Philadelphia: W. B. Saunders CompanyGoogle Scholar
Devlin, Thomas M., & Lehninger, Albert L. (1956). Oxidative phosphorylation by an enzyme complex from extracts of mitochondria II. The span hydroxbutyrate to cytochrome c. Journal of Biological Chemistry, 219, 507–18Google Scholar
Dowe, Phil (1995). Causality and conserved quantities: A reply to Salmon. Philosophy of Science, 62, 321–33CrossRefGoogle Scholar
Dröscher, Ariane (1998). Camillo Golgi and the discovery of the Golgi apparatus. Histochemistry and Cell Biology, 109, 425–30Google Scholar
Drummond, D. G. (1950). The practice of electron microscopy. Journal of the Royal Microscopical Society, 70, 1–158CrossRefGoogle Scholar
du Bois-Reymond, Emil Heinrich (1859). Über die Angeblick saure Reaktion des Muskelfleisches. Monatsbericht der Königlich-Preussischen Akademie der Wissenschaften zu Berlin, 288–324Google Scholar
Dujardin, Felix (1835). Recherches sur les organismes inférieurs. Annales des Science Naturelles: Zoologie, 2nd series, 4, 343–77Google Scholar
Dumortier, Barthélemy Charles (1832). Recherches sur la structure comparée et le développement des animaux et des ⅴégéetaux. Nova Acta Physico Medica Academiae Caesareae Leopoldino Carolinae, 16, 217Google Scholar
Dutrochet, René Henri Joachim (1826). L'agent immédiat du mouvement vital dévoilé dans la nature et dans son mode d'action chez les ⅴégétaux et les animaux. Paris: JB BallièreGoogle Scholar
Dutrochet, René Henri Joachim (1828). Nouvelles recherches sur l'endosmose et l'exosmose. Paris: JB BallièreGoogle Scholar
Eggleton, Philip, & Eggleton, Marion Grace Palmer (1927). The physiological significance of phosphagen. Biochemical Journal, 63, 155–61Google ScholarPubMed
Einbeck, Hans (1914). Über das Vorkommen der Fumarsäure im freschen Fleische. Zeitschrift für physiologische Chemie, 90, 303–7CrossRefGoogle Scholar
Elman, Jeffrey L., Bates, Elizabeth A., Johnson, Mark H., Karmiloff-Smith, Annette, Parisi, Dominico, & Plunkett, Kim (1996). Rethinking Innateness: A Connectionist Perspective on Development. Cambridge, MA: MIT PressGoogle Scholar
Embden, Gustav, Deuticke, H. J., & Kraft, G. (1933). Über die intermediaren Vorgänge bei der Glykolyse in der Muskulatur. Klinische Wochenschrift, 12, 213–5CrossRefGoogle Scholar
Embden, Gustav, Kalberlah, F., & Engel, H. (1912). Über Milchsäurebildung im Muskelpreßsaft. Biochemische Zeitschrift, 45, 45–62Google Scholar
Embden, Gustav, & Laquer, Fritz Oscar (1914). Über der Chemie des Lactacidogens. I. Mitteilung. Isolierungsversuche. Zeitschrift für Physiologische Chemie, 93, 94–123CrossRefGoogle Scholar
Embden, Gustav, & Laquer, Fritz Oscar (1921). Über die Chemie des Lactacidogens. III. Zeitschrift für Physiologische Chemie, 113, 1–9Google Scholar
Englehardt, Vladimir Aleksandrovich (1932). Die Beziehunger zwischen Atmung und Pyrophosphatumsatz in Vogelerythrocyten. Biochemische Zeitschrift, 251, 343–68Google Scholar
Farah, Martha (1988). Is visual imagery really visual? Overlooked evidence from neuropsychology. Psychological Review, 95, 307–17CrossRefGoogle ScholarPubMed
Farquhar, Marilyn Gist, & Palade, George E. (1981). The Golgi apparatus (complex) – (1954–1981) – from artifact to center stage. Journal of Cell Biology, 91, 77s–103sCrossRefGoogle ScholarPubMed
Farquhar, Marilyn Gist, & Palade, George E. (1998). The Golgi apparatus: 100 years of progress and controversy. Trends in Cell Biology, 8, 2–10CrossRefGoogle ScholarPubMed
Farquhar, Marilyn Gist, & Rinehart, J. F. (1954). Cytologic alterations in the anterior pituitary gland following thyroidectomy: An electron microscope studyEndocrinology, 55, 857–76CrossRefGoogle Scholar
Farquhar, Marilyn Gist, & Wellings, Robert S. (1957). Electron microscopic evidence suggesting secretory granule formation within the Golgi apparatus. Journal of Biophysical and Biochemical Cytology, 3(No. 2), 319–22CrossRefGoogle ScholarPubMed
Fawcett, Don W., & Porter, Keith R. (1953). A study of the fine structure of ciliated epithelia. Journal of Morphology, 94, 221–64CrossRefGoogle Scholar
Fernández-Morán, Humberto (1952). The submicroscopic organization of vertebrate nerve fibres: An electron microscope study of myelinated and unmyelinated nerve fibres. Experimental Cell Research, 3, 282–359CrossRefGoogle Scholar
Fernández-Morán, Humberto (1962). Cell-membrane ultrastructure. Low-temperature electron microscopy and X-ray diffraction studies of lipoprotein components in lamellar systems. Circulation, 26, 1039–65CrossRefGoogle ScholarPubMed
Fernández-Morán, Humberto, Oda, T., Blair, P. V., & Green, David E. (1964). A macromolecular repeating unit of mitochondrial structure and function: Correlated electron microscopic and biochemical studies of isolated mitochondria and submitochondrial particles of beef heart muscle. The Journal of Cell Biology, 22, 63–100CrossRefGoogle ScholarPubMed
Feulgen, Robert Joachim, & Rossenbeck, Heinrich (1924). Mikrokopisch-chemischer Nachweis einer Nukleinsäure vom Typus Thymusnukleinsäure und die darauf beruhene elektive Fäbung von Zellkernen in mikrokopischen Präparaten. Zeitschrift für physiologische Chemie, 135, 203–48CrossRefGoogle Scholar
Fischer, Alfred (1899). Fixierung, Färbung und Bau des Protoplasmas. Kritische Untersuchungen über Technik und Theorie in der neueren Zellforschung. Jena: Gustav FischerGoogle Scholar
Fischer, Emil (1894). Einfluss der Konfiguration auf die Wirkung der Enzyme. Berichte der deutschen chemischen Gesellschaft, 27, 2985–93CrossRefGoogle Scholar
Fiske, Cyrus Hartwell, & Subbarow, Yellapragrada (1929). Phosphorus compounds of muscle and liver. Science, 70, 381–2CrossRefGoogle ScholarPubMed
Fleischer, Becca, Fleischer, Sidney, & Ozawa, Hidehiro (1969). Isolation and characterization of Golgi membranes from bovine liver. Journal of Cell Biology, 43, 59–79CrossRefGoogle ScholarPubMed
Flemming, Walther (1878). Zur Kenntnis der Zelle und ihrer Theilungserscheinungen. Schriften des naturwissenschaftlicher Verein für Schleswig-Holstein, 3, 23–7Google Scholar
Flemming, Walther (1879). Ueber das Verhalten des Kerns bei der Zellteilung und über die Bedeutung mehrkerniger Zellen. Archiv für pathologische Anatomie und Physiologie und für klinische Medizin, 77, 1–28Google Scholar
Flemming, Walther (1887). Neue Beiträge zur Kenntniss der Zelle. Archiv für mikroskopische Anatomie und Entwirklungsgeschichte, 29, 389–463CrossRefGoogle Scholar
Fletcher, Walter Morley, & Hopkins, Frederick Gowland (1907). Lactic acid in amphibian muscle. Journal of Physiology, 35, 247–309CrossRefGoogle ScholarPubMed
Florkin, Marcel (1972). A History of Biochemistry. Comprehensive Biochemistry. (Vol. 30). Amsterdam: ElsevierGoogle Scholar
Fodor, Jerry A. (1980). Fixation of belief and concept acquisition. In Piatelli-Palmarini, M. (Ed.), Language and Learning: The Debate between Jean Piaget and Noam Chomsky. Cambridge, MA: Harvard University PressGoogle Scholar
Fol, Hermann (1873). Le premier développement de l'oeuf chez les Géronidés. Archives des sciences physiques et naturelles, 2nd series, 48, 335–40Google Scholar
Fourcroy, Antoine François (1789). Elémens d'histoire naturelle et de chimie (Third ed.) (Vol. Three). Paris: CuchetGoogle Scholar
Frederic, J. (1956). Study of cytoplasms by highly enlarged microscopy with an anoptral device; photography of living cells and after osmic fixation of in vitro cultured cells. Experimental Cell Research, 11, 18–35CrossRefGoogle ScholarPubMed
Frédéricq, Léon (1884). Theodore Schwann: sa vie et ses travaux. LiegeGoogle Scholar
Friedkin, Morris, & Lehninger, Albert L. (1949). Oxidation-coupled incorporation of inorganic radiophosphate into phospholipide and nucleic acid in a cell-free system. Journal of Biological Chemistry, 177, 775–88Google Scholar
Friedmann, Herbert (1997). From Friedrich Wöhler's urine to Eduard Buchner's alcohol. In Cornish-Bowden, A. (Ed.), New Beer in an Old Bottle: Eduard Buchner and the Growth of Biochemical Knowledge (pp. 67–122). Valencia: Universitat de ValènciaGoogle Scholar
Fruton, Joseph S. (1972). Molecules and Life: Historical Essays on the Interplay of Chemistry and Biology. New York: Wiley InterscienceGoogle Scholar
Fullam, Ernest F., & Gessler, Albert E. (1946). A high speed microtome for the electron microscope. Review of Scientific Instruments, 17, 23–5CrossRefGoogle ScholarPubMed
Galilei, Galileo (1638(1914). Dialogues Concerning Two New Sciences. New York: MacMillanGoogle Scholar
Gall, Joseph G. (1996). Views of the Cell. Bethesda, MD: The American Society for Cell BiologyGoogle Scholar
Gánti, T. (2003). The principles of life. New York: OxfordCrossRefGoogle Scholar
Garfield, Eugene (1979). Citation Indexing. New York: WileyGoogle Scholar
Garnier, Charles (1897). Les ‘filaments basaux’ des cellules glandulaires. Bibliographie anatomique, 5, 278–89Google Scholar
Garnier, Charles (1900). Contribution à l'étude de la structure et du fonctionnement des cellules glandulaires séreuses. Du role de l'ergastroplasme dans la sécrétion. Journal de l'Anatomie et de la Physiologie normal es et pathologique de l'homme et des animaux, 36, 22–98Google Scholar
Gaudillière, Jean-Paul (1996). Molecular biologists, biochemists, and messenger RNA: The birth of a scientific network. Journal of the History of Biology, 29, 417–45CrossRefGoogle ScholarPubMed
Gay-Lussac, Joseph Louis (1810). Extrait d'un mémoire sur la Fermentation. Annales de chimie, 76, 245–59Google Scholar
Gersh, Isidore (1932). The Altmann technique for fixation by drying with freezing. Anatomical Record, 53, 309–37CrossRefGoogle Scholar
Gersh, Isidore (1959). Fixation and staining. In Brachet, J. & Mirsky, A. E. (Eds.), The Cell: Biochemistry, Physiology, and Morphology. (Vol. 1, pp. 21–66). New York: Academic PressGoogle Scholar
Gicklhorn, Josef (1932). Intracelluläre Myelinfiguren und ähnliche Bildungen bei der reversiblen Entmischung des Protoplasmas. Protoplasma, 15, 90–108CrossRefGoogle Scholar
Giere, Ronald G. (1999). Science without Laws. Chicago: University of Chicago PressGoogle Scholar
Glennan, Stuart (1996). Mechanisms and the nature of causation. Erkenntnis, 44, 50–71CrossRefGoogle Scholar
Glennan, Stuart (2002). Rethinking mechanistic explanation. Philosophy of Science, 69, S342–S53CrossRefGoogle Scholar
Glick, David (1953). A critical survey of current approaches in quantitative histo- and cytochemistry. International Review of Cytology, 2, 447–74CrossRefGoogle Scholar
Golgi, Camilo (1898). Intorno alla struttura delle cellule nervose. Bollettino della Società Medico-Chirurgica di Pavia, 13, 3–16Google Scholar
Gorter, Evert, & Grendel, F. (1925). On bimolecular layers of lipoids on the chromocytes of the blood. Journal of Experimental Medicine, 41, 439–43CrossRefGoogle ScholarPubMed
Graham, Thomas (1861). Liquid diffusion applied to analysis. Philosophical Transactions of the Royal Society, London, 151, 183–224CrossRefGoogle Scholar
Grassé, P. P. (1957). Ultrastructure, polarité et reproduction de l'appareil de Golgi. Comptes rendus de l'Académie des sciences, 245, 1278–81Google Scholar
Green, David E. (1936a). α-Glycerophosphate dehydrogenase. Biochemical Journal, 30, 629–44CrossRefGoogle Scholar
Green, David E. (1936b). The malic dehydrogenase of animal tissue. Biochemical Journal, 30, 2095–110CrossRefGoogle Scholar
Green, David E. (1951a). The cyclophorase system of enzymes. Biological Reviews, 26, 410–55CrossRefGoogle Scholar
Green, David E. (1951b). The cyclophorase system. In Edsall, J. T. (Ed.), Enzymes and Enzyme Systems (pp. 17–46). Cambridge, MA: Harvard University PressGoogle Scholar
Green, David E. (1957–8). Studies in organized enzyme systems. Harvey Lectures, 53, 177–227Google Scholar
Green, David E. (1964). The mitochondrion. Scientific American, 210(1), 63–74CrossRefGoogle ScholarPubMed
Green, David E., & Brosteaux, Jeanne (1936). The lactic dehydrogenase of animal tissue. Biochemical Journal, 30, 1489–508CrossRefGoogle Scholar
Green, David E., Dewan, John G., & Leloir, Luis F. (1937). The ß-hydroxybutyric dehydrogenase of animal tissues. Biochemical Journal, 31, 934–49CrossRefGoogle Scholar
Green, David E., & Dixon, Malcolm (1934). Studies on xanthine oxidase. Ⅺ. Xanthine oxidase and lactoflavine. Biochemical Journal, 28, 237–43CrossRefGoogle ScholarPubMed
Green, David E., Loomis, W. F., & Auerbach, V. H. (1948). Studies on the cyclophorase system. I. Journal of Biological Chemistry, 172, 389–402Google Scholar
Gregory, Richard L. (1961). The brain as an engineering problem. In Thorpe, W. H. & Zangwill, O. L. (Eds.), Current Problems in Animal Behavior (pp. 307–30). Cambridge: Cambridge University PressGoogle Scholar
Gregory, Richard L. (1968). Models and the localization of function in the central nervous system. In Evans, C. R. & Robertson, A. D. J. (Eds.), Key Papers: Cybernetics (pp. 91–102). London: ButterworthsGoogle Scholar
Hacking, Ian (1983). Representing and Intervening. Cambridge: Cambridge U.P.CrossRefGoogle Scholar
Haguenau, Françoise (1958). The ergastoplasm: Its history, ultrastructure, and biochemistry. International Review of Cytology, 7, 425CrossRefGoogle Scholar
Hanson, Norwood Russell (1958). Patterns of Discovery. Cambridge: CambridgeGoogle Scholar
Harden, Arthur (1903). Über alkoholische Gärung mit Hefe-Presstoff (Buchners zymase) bein Gegenwart von Blutserum. Berichte der deutschen chemischen Gesellschaft, 36, 715–6CrossRefGoogle Scholar
Harden, Arthur, & Young, William J. (1908). The alcoholic fermentation of yeast-juice, Part III – The function of phosphates in the fermentation of glucose. Proceedings of the Royal Society, London, B80, 299–311CrossRefGoogle Scholar
Hardy, W. B. (1899). Structure of cell protoplasm. Journal of Physiology, 24, 158–210CrossRefGoogle ScholarPubMed
Harman, J. W. (1950a). Studies on mitochondria: I. The association of cyclophorase with mitochondria. Experimental Cell Research, 1, 382–93CrossRefGoogle Scholar
Harman, J. W. (1950b). Studies of mitochondria: II. The structure of mitochondria in relation to enzymatic activity. Experimental Cell Research, 1, 394–402CrossRefGoogle Scholar
Harris, Henry (1999). The Birth of the Cell. New Haven: Yale University PressGoogle Scholar
Hatefi, Youssef, Haavik, A. G., Fowler, L. R., & Griffiths, D. E. (1962). Studies on the electron transfer system. 42. Reconstitution of the electron transfer system. Journal of Biological Chemistry, 237, 2661–9Google Scholar
Hegarty, Mary (1992). Mental animation: Inferring motion from static displays of mechanical systems. Journal of Experimental Psychology: Learning, Memory, and Cognition, 18, 1084–102Google ScholarPubMed
Heidenhain, Rudolf (1875). Beiträge zur Kenntniss des Pancreas. Archiv für die gesammte Physiologie des Menschen und der Thiere, 10, 557–632CrossRefGoogle Scholar
Hempel, Carl G., & Oppenheim, Paul (1948). Studies in the logic of explanation. Philosophy of Science, 15, 137–75CrossRefGoogle Scholar
Hewson, William (1773). On the figure and composition of the red particles of the blood, commonly called the red globules. Philosophical Transactions of the Royal Society of London, 63, 306–24CrossRefGoogle Scholar
Hill, Archibald Vivian (1910). The heat produced by contracture and muscular tone. Journal of Physiology, 40, 389–403CrossRefGoogle ScholarPubMed
Hill, Archibald Vivian (1913). The energy degraded in the recovery processes of stimulated muscles. Journal of Physiology, 46, 28–80CrossRefGoogle ScholarPubMed
Hill, Arthur Croft (1898). Reversible zymohydrolysis. Journal of the Chemical Society, 73, 634–58CrossRefGoogle Scholar
Hoagland, Mahlon B. (1955). An enzymatic mechanism for amino acid activation in animal tissues. Biochimica et Biophysica Acta, 16, 288–9CrossRefGoogle Scholar
Hoagland, Mahlon B., Keller, Elizabeth B., & Zamecnik, Paul C. (1956). Enzymatic carboxyl activation of amino acids. Journal of Biological Chemistry, 218, 345–58Google ScholarPubMed
Hoagland, Mahlon B., Zamecnik, Paul C., & Stephenson, Mary L. (1959). A hypothesis concerning the roles of particulate and soluble ribonucleic acids in protein synthesis. In Zirkle, R. E. (Ed.), A Symposium on Molecular Biology (pp. 105–14). Chicago: University of Chicago PressGoogle Scholar
Hoerr, Normand L. (1943). Methods of isolation of morphological constituents of the liver cell. In Hoerr, N. L. (Ed.), Frontiers in Cytochemistry: The Physical and Chemical Organization of the Cytoplasm (Vol. 10, pp. 185–231). Lancaster, PA: Jaques Cattell PressGoogle Scholar
Hofmeister, Franz (1901). Der chemische Organization der Zelle. Braunschweig: ViewegGoogle Scholar
Hofmeister, Wilhelm (1849). Die Entstehung des Embryos der Phanerogamen. Leipzig: Friedrich HofmeisterGoogle Scholar
Hogeboom, George H., & Adams, Mark H. (1942). Mammalian tyrosinase and dopa oxidaase. Journal of Biological Chemistry, 145, 273–9Google Scholar
Hogeboom, George H., Claude, Albert, & Hotchkiss, Rollin D. (1946). The distribution of cytochrome oxidase and succinoxidase in the cytoplasm of the mammalian liver cell. Journal of Biological Chemistry, 165, 615–29Google ScholarPubMed
Hogeboom, George H., Schneider, Walter C., & Palade, George E. (1948). Cytochemical studies of mammalian tissues. I. Isolation of intact mitochondria from rat liver; some biochemical properties of mitochondria and submicroscopic particulate matter. Journal of Biological Chemistry, 172, 619–35Google Scholar
Holmes, Frederic Lawrence (1963). Elementary analysis and the origins of physiological chemistry. Isis, 54, 50–81CrossRefGoogle Scholar
Holmes, Frederic Lawrence (1986). Intermediary metabolism in the early 20th century. In Bechtel, W. (Ed.), Integrating Scientific Disciplines (pp. 59–76). Dordrecht: Martinus NijhoffCrossRefGoogle Scholar
Holmes, Frederic Lawrence (1992). Between Biology and Medicine: The Formation of Intermediary Metabolism. Berkeley, CA: Office for History of Science and Technology, University of California at BerkeleyGoogle Scholar
Holmgren, Emil (1902). Einige Worte über das “Trophospongium” verschiedener Zellarten. Anatomischer Anzeiger, 20, 433–40Google Scholar
Holtzman, Eric, Novikoff, Alex B., & Villaverdi, H. (1967). Lysosomes and GERL in normal chromatolytic neurons of the rat ganglion nodosum. Journal of Cell Biology, 33, 419–35CrossRefGoogle ScholarPubMed
Hooke, Robert (1665). Micrographia: or some physiological descriptions of minute bodies made by magnifying glasses with observations and inquiries thereupon. London: John Martin and James AllestryCrossRefGoogle Scholar
Huennekens, Frank M., & Green, David E. (1950). Studies on the cyclophorase system. Ⅺ. The effect of various treatments on the requirement for pyridine nucleotide. Archives of Biochemistry, 27, 428–40Google ScholarPubMed
Hughes, Arthur (1959). A History of Cytology. London: Abelard-SchumanGoogle Scholar
Hultin, T. (1950). Incorporation in vivo of 15N-labeled glycine into liver fractions of newly hatched chicks. Experimental Cell Research, 1, 376–81CrossRefGoogle Scholar
Huxley, Thomas H. (1869). On the physical basis of life. The Fortnightly Review, 26, 129–45Google Scholar
Jamieson, James D., & Palade, George E. (1966). Role of the Golgi complex in the intracellular transport of secretory proteins. Proceedings of the National Academy of Sciences, USA, 55, 424–31CrossRefGoogle ScholarPubMed
Jamieson, James D., & Palade, George E. (1967a). Intracellular transport of secretory proteins in the pancreatic exocrine cell. I. Role of the peripheral elements of the Golgi complex. Journal of Cell Biology, 34, 577–96CrossRefGoogle Scholar
Jamieson, James D., & Palade, George E. (1967b). Intracellular transport of secretory proteins in the pancreatic exocrine cell. II. Transport of condensing vacuoles and zymogen granules. Journal of Cell Biology, 34, 597–615CrossRefGoogle Scholar
Jamieson, James D., & Palade, George E. (1968a). Intracellular transport of secretory proteins in the pancreatic exocrine cell. III. Dissociation of intracellular transport from protein synthesis. Journal of Cell Biology, 39, 580–8CrossRefGoogle Scholar
Jamieson, James D., & Palade, George E. (1968b). Intracellular transport of secretory proteins in the pancreatic exocrine cell. IV. Metabolic requirements. Journal of Cell Biology, 39, 589–603CrossRefGoogle Scholar
Jonker, Catholijn, Treur, Jan, & Wijngaards, Wouter C. A. (2002). Reductionist and anti-reductionist perspectives on dynamics. Philosophical Psychology, 15, 381–409CrossRefGoogle Scholar
Kalckar, Herman (1939). The nature of phosphoric esters formed in kidney extracts. Biochemical Journal, 33, 631–41CrossRefGoogle ScholarPubMed
Kauffman, Stuart A. (1971). Articulation of parts explanation in biology and the rational search for them. In Bluck, R. C. & Cohen, R. S. (Eds.), PSA 1970 (pp. 257–72). Dordrecht: ReidelGoogle Scholar
Keilin, David (1925). On cytochrome, a respiratory pigment, common to animals, yeast, and higher plants. Proceedings of the Royal Society B, 98, 312–39CrossRefGoogle Scholar
Keilin, David (1966). The History of Cell Respiration and Cytochrome. Cambridge: Cambridge University PressGoogle Scholar
Keilin, David, & Hartree, Edward F. (1939). Cytochrome and cytochrome oxidase. Proceedings of the Royal Society B, 127, 167–91CrossRefGoogle Scholar
Keilin, David, & Hartree, Edward F. (1940). Succinic dehydrogenase-cytochrome system of cells. Intracellular respiratory system catalyzing aerobic oxidation of succinic acid. Proceedings of the Royal Society B, 129, 277–306CrossRefGoogle Scholar
Keilin, David, & Hartree, Edward F. (1949). Activity of the succinic dehydrogenase-cytochrome system in different tissue preparation. Biochemical Journal, 44, 205–18CrossRefGoogle Scholar
Keller, Elizabeth B. (1951). Turnover of proteins of cell fractions of adult rat liver in vivo. Federation Proceedings, 10, 206Google Scholar
Keller, Elizabeth B., & Zamecnik, Paul C. (1956). The effect of guanosine diphosphate and triphosphate on the incorporation of labeled amino acids into proteins. Journal of Biological Chemistry, 221, 45–9Google ScholarPubMed
Kennedy, Eugene P., & Lehninger, Albert L. (1949). Oxidation of fatty acids and tricarboxylic acid cycle intermediaries by isolated rat liver mitochondria. Journal of Biological Chemistry, 179, 957–72Google Scholar
Kingsbury, B. F. (1913). Cytoplasmic Fixation. Anatomical Record, 6, 39–52CrossRefGoogle Scholar
Kirchhoff, Gottlieb Sigismund (1816). Formation du sucre dans les graines cereals converties en malt et dans la farine infusée dans l'eau bouillante. Journal de Pharmacie et de Chimie, 2, 250–8Google Scholar
Kirkman, Hadley, & Severinghaus, Aura E. (1938a). Review of the Golgi apparatus. Part I. Anatomical Record, 70, 413–30CrossRefGoogle Scholar
Kirkman, Hadley, & Severinghaus, Aura E. (1938b). Review of the Golgi apparatus. Part III. Anatomical Record, 71, 79–103CrossRefGoogle Scholar
Kitcher, Philip (1989). Explanatory unification and the causal structure of the world. In Kitcher, P. & Salmon, W. C. (Eds.), Scientific Explanation. (Vol. ⅫI, pp. 410–505). Minneapolis, MN: University of Minnesota PressGoogle Scholar
Kitcher, Philip (2001). Science, Truth, and Democracy. Oxford: Oxford University PressCrossRefGoogle Scholar
Knoop, Franz (1904). Der Abbau aromatischer Fettsäuren im Tierkörper. Freiburg: KuttruffGoogle Scholar
Koertge, Noretta (Ed.) (1998). A House Built on Sand: Exposing Postmodernist Myths about Science. New York: Oxford University PressCrossRefGoogle Scholar
Kohler, Robert E. (1971). The background to Eduard Buchner's discovery of cell-free fermentation. Journal of the History of Biology, 4, 35–61CrossRefGoogle ScholarPubMed
Kohler, Robert E. (1973). The enzyme theory and the origin of biochemistry. Isis, 64, 181–96Google ScholarPubMed
Kohler, Robert E. (1982). From Medical Chemistry to Biochemistry: The Making of a Biomedical Discipline. Cambridge: Cambridge University PressCrossRefGoogle Scholar
Kosslyn, Stephen Michael (1981). The medium and the message in mental imagery: A theory. Psychological Review, 88, 46–66CrossRefGoogle Scholar
Kosslyn, Stephen Michael (1994). Image and Brain: The Resolution of the Imagery Debate. Cambridge, MA: MIT PressGoogle Scholar
Krebs, Hans Adolf, & Johnson, William Arthur (1937). The role of citric acid in intermediate metabolism in animal tissues. Enzymologia, 4, 148–56Google Scholar
Kuhn, Thomas S. (1962(1970). The Structure of Scientific Revolutions. (Second ed.). Chicago: University of Chicago PressGoogle Scholar
Kühne, Wilhelm Friedrich (1877a). Erfahrungen und Bemerkungen über Enzyme und Fermente. Untersuchungen aus dem physiologischen Institut Heidelberg, 1, 291–324Google Scholar
Kühne, Wilhelm Friedrich (1877b). Ueber das Verhalten verschiedener organisirter und soganannte ungeformter Fermente. Verhandlungen des naturhistorisch-medicinischen Vereins zu Heidelberg, new series, 1, 190–3Google Scholar
Kützing, Friedrich Traugott (1837). Microscopische Untersuchungen über die Hefe und Essigmutter, nebst mehreren andern dazu gehörigen vegetabilischen Gebilden. Journal für praktische Chemie, 11, 385–409CrossRefGoogle Scholar
Lakatos, Imre (1970). Falsification and the methodology of scientific research programmes. In Lakatos, I. & Musgrave, A. (Eds.), Criticism and the Growth of Knowledge (pp. 91–196). Cambridge: Cambridge University PressCrossRefGoogle Scholar
Lardy, Henry A., & Elvehjem, Conrad A. (1945). Biological oxidations and reductions. Annual Review of Biochemistry, 14, 1–30CrossRefGoogle Scholar
Larkin, Jill H., & Simon, Herbert A. (1987). Why a diagram is (sometimes) worth ten thousand words. Cognitive Science, 11, 65–99CrossRefGoogle Scholar
Latour, Bruno, & Woolgar, Steven (1979). Laboratory Life: The Social Construction of Scientific Facts. Beverly Hills: Sage PublicationsGoogle Scholar
Latta, H., & Hartman, J. F. (1950). Use of a glass edge in thin sectioning for electron microscopy. Proceedings of the Society for Experimental Biology and Medicine, 74, 436–9CrossRefGoogle ScholarPubMed
Laudan, Larry (1977). Progress and Its Problems. Berkeley: University of California PressGoogle Scholar
Laudan, Larry (1981). The pseudo-science of science. Philosophy of the Social Sciences, 11, 173–98CrossRefGoogle Scholar
Lavoisier, Antoine Laurent, & LaPlace, Pierre Simon (1780). Mémoire sur la Chaleur. Mémoires de l'Acadeâmie royale des sciences, 35–408. Article IV reprinted in Oeuvres de Lavoisier, Vol. II, pp. 318–33. Paris, Imprimerie Impériale (1886)Google Scholar
Lavoisier, Antoine Laurent. (1781). Mémoire sur la formation de l'acide nommé air fixe ou acide crayeux, que je désignerai désormais sous le nom d'acide du charbon. Mémoires de l'Acadeâmie royale des sciences, 448–58Google Scholar
Lavoisier, Antoine Laurent. (1789). Traité élémentaire de chimie, présenté dans un ordre nouveau et d'après les découvertes modernes. Paris: CuchetGoogle Scholar
Ledingham, C. G., & Gye, W. E. (1935). On the nature of the filterable tumour-exciting agent in avian sacromata. Lancet, 228, 376–7CrossRefGoogle Scholar
Lehninger, Albert L. (1951). The organized respiratory activity of isolated rat-liver mitochondria. In Edsall, J. (Ed.), Enzymes and Enzyme Systems (pp. 1–14). Cambridge, MA: Harvard University PressGoogle Scholar
Lehninger, Albert L. (1954). Oxidative phosphorylation. Harvey Lectures, 49, 176–215Google Scholar
Lehninger, Albert L. (1964). The Mitochondrion: Molecular Basis of Structure and Function. New York: W. A. Benjamin, IncGoogle Scholar
Lehninger, Albert L., Wadkins, Charles L., Cooper, Cecil, Devlin, Thomas M., & Gamble, James L. Jr. (1958). Oxidative phosphorylation. Science, 128, 450–6CrossRefGoogle ScholarPubMed
Levene, Phoebus A., & Mori, Takajiro (1929). Ribodesose and xylodesose and their bearing on the structure of the thyminose. Journal of Biological Chemistry, 83, 803–16Google Scholar
Lewontin, Richard C. (1970). The units of selection. Annual Review of Ecology and Systematics, 1, 1–18CrossRefGoogle Scholar
Liebig, Justus (1831). Ueber einen neuen Apparat zur Analyse orgaischer Körper, und über die Zusammensetzung einiger organischer Substanzen. Annalen der Physik und Chemie, 21, 1–43CrossRefGoogle Scholar
Liebig, Justus (1842). Animal Chemistry: Or Organic Chemistry in Its Application to Physiology and Pathology. Cambridge: John OwenGoogle Scholar
Lipmann, Fritz (1939). An analysis of the pyruvic acid oxidation system. Cold Spring Harbor Symposium, 7, 248–59CrossRefGoogle Scholar
Lipmann, Fritz (1941). Metabolic generation and utilization of phosphate bond energy. Advances in Enzymology, 1, 99–160Google Scholar
Lipmann, Fritz (1945). Acetylation of sulfanilamide by liver homogenates and extracts. Journal of Biological Chemistry, 160, 173–90Google Scholar
Lipmann, Fritz (1946). Metabolic process patterns. In Green, D. E. (Ed.), Currents in Biochemical Research (pp. 137–48). New York: InterscienceGoogle Scholar
Locker, Ronald H., & Schmitt, Francis O. (1957). Some chemical and structural properties of paramyosin. Journal of Biophysical and Biochemical Cytology, 3, 889–96CrossRefGoogle ScholarPubMed
Lohmann, Karl (1929). Über die Pyrophosphatfraktion im Muskel. Naturwissenschaften, 17, 624–5Google Scholar
Longino, Helen (1990). Science as Social Knowledge. Princeton: Princeton University PressGoogle Scholar
Longino, Helen (2002). The Fate of Knowledge. Princeton: Princeton University PressGoogle Scholar
Ludford, R. J., Smiles, J., & Welch, F. V. (1948). The study of malignant cells by phase contrast and ultra-violet microscopy. Journal of the Royal Microscopical Society, 68, 1CrossRefGoogle Scholar
Lynen, Feodor, & Reichert, Ernestine (1951). Zur chemischen Struktur der ‘aktivierten Essigsäure.’Angewandte Chemie, 63, 47–8CrossRefGoogle Scholar
Machamer, Peter, Darden, Lindley, & Craver, Carl (2000). Thinking about mechanisms. Philosophy of Science, 67, 1–25CrossRefGoogle Scholar
MacMunn, Charles A. (1884). On myohaematin, an intrinsic muscle-pigment of vetrebrates and invertebrates, on histohaematin, and on the spectrum of the supra-renal bodies. Journal of Physiology, 5, ⅹⅹⅳGoogle Scholar
MacMunn, Charles A. (1886). Researches on myohaematin and the histohaematins. Philosophical Transactions of the Royal Society of London, 177, 267–98CrossRefGoogle Scholar
Manasseïn, Marie Mikhailovna (1872). Zur Frage von der alkoholischen Gährung ohne lebende Hefezellen. Berichte der deutschen chemischen Gesellschaft, 30, 3061–2CrossRefGoogle Scholar
Marton, Ladislaus (1934). Electron microscopy of biological objects. Nature, 133, 911CrossRefGoogle Scholar
Maxwell, J. C. (1868). On governors. Proceedings of the Royal Society of London, 16, 270–83
McIntosch, James (1935). The sedimentation of the virus of Rous sarcoma and the bacteriophage by a high-speed centrifuge. Journal of Pathology and Bacteriology, 41, 215–7Google Scholar
Mercer, Edgar H. (1962). Cells: Their Structure and Function. Garden City, NY: Anchor BooksGoogle Scholar
Mercer, Edgar H., & Birbeck, M. S. C. (1972). Electron Microscopy: A Handbook for Biologists. (Third ed.). Oxford: Blackwell Scientific PublicationsGoogle Scholar
Merton, Robert K. (1973). The Sociology of Science. Chicago: University of Chicago PressGoogle Scholar
Merzenich, Michael M., Recanzone, Gregg H., Jenkins, William M., & Grajski, K. A. (1990). Adaptive mechanisms in cortical networks underlying cortical contributions to learning and nondeclarative memory. Cold Spring Harbor Symposia on Quantitative Biology, 55, 873–87CrossRefGoogle ScholarPubMed
Meyerhof, Otto (1918). Über das Vorkommen des Coferments der alkoholischen Hefegärung im Muskelgewebe und sein mutmass Bedeutung im Atmungsmechanismus. Zeitschrift für physiologische Chemie, 101, 165–75CrossRefGoogle Scholar
Meyerhof, Otto (1920). Die Energieumwandlungen im Muskel. Archiv für die gesammte Physiologie des Menschen und der Thiere, 182, 232–83CrossRefGoogle Scholar
Meyerhof, Otto (1924). Chemical Dynamics of Life Phenomena. Philadelphia: LippincottGoogle Scholar
Meyerhof, Otto, Lohmann, Karl, & Meyer, Kurt Otto Hans (1931). Über anaerobe Bildung und Schwund von Brenztraubensäure in der Muskulatur. Biochemische Zeitschrift, 260, 417–45Google Scholar
Meyerhof, Otto, Ohlmeyer, Paul, & Möhle, Walter (1938). Über die Koppelung zwischen Oxydoreuktion und Phosphatveresterung bei der anaeroben Kohlenhydratspaltung. Biochemische Zeitschrift, 297, 90–133Google Scholar
Michaelis, Leonor (1899). Die vitale Färbung, eine Darstellungsmethode der Zellgranula. Archiv für mikrokopische Anatomie, 55, 558–75CrossRefGoogle Scholar
Miescher, Johann Friedrich (1871). Ueber die chemische Zusammensetzung des Eiters. Hoppe-Seyler's medicinisch-chemische Untersuchungen, 4, 441–60Google Scholar
Milne-Edwards, Henri (1823). Mémoire sur la structure élémentaire des pincipaux tissus organiques des animaux. Paris: LejeuneGoogle Scholar
Mirsky, Alfred E., & Ris, Hans (1951). The composition and structure of isolated chromosomes. Journal of General Physiology, 34, 475–92CrossRefGoogle ScholarPubMed
Mitchell, Peter (1961). Coupling of phosphorylation to electron and hydrogen transfer by a chemi-osmotic type of mechanism. Nature, 191, 144–8CrossRefGoogle Scholar
Mitchell, Peter (1966). Chemiosmotic Coupling in Oxidative and Photosynthetic Phosphorylation. Bodmin: Glynn Research Ltd.Google ScholarPubMed
Mohl, Hugo (1837). Ueber die Vermehrung der Pflanzenzellen durch Theilung. Flora, 20, 1–16Google Scholar
Mohl, Hugo von (1852). Principles of the anatomy and physiology of the vegetable cell (A. Henfrey, Trans.). London: J. Van Voorst
Morelle, J. (1927). La Cellule, 37, 178
Müller, Johannes (1835). Vergleichende Anatomie der Myxinoiden, der Cyclostomen mit durchbohrten Gaumen. Berlin: Königliche Academie der WissenschaftenGoogle Scholar
Mundale, Jennifer (1998). Brain mapping. In Bechtel, W. & Graham, G. (Eds.), A Companion to Cognitive Science. Oxford: Basil BlackwellGoogle Scholar
Murphy, James B., Helmer, Oscar M., & Sturm, Ernest (1928). Association of the causative agent of a chicken tumor with a protein fraction of the tumor filtrate. Science, 68, 18–9CrossRefGoogle ScholarPubMed
Nagel, Ernst (1961). The Structure of Science. New York: Harcourt, BraceGoogle Scholar
Nägeli, Carl Wilhelm von, & Cramer, Carl (1855). Pflanzenphysiologische Untersuchungen. Zürich: SchulthessGoogle Scholar
Nassonov, Dimitry (1923). Das Golgische Binnennetz und seine Beziehungen zu der Sekretion. Untersuchungen über einige Amphibiendrüssen. Archiv für mikroskopische Anatomie, 97, 136–86CrossRefGoogle Scholar
Nassonov, Dimitry (1924). Das Golgischem Binnennetz und seine Beziehungen zu der Sekretion. Archiv für mikroskopische Anatomie und Entwirklungsgeschichte, 100, 433–72CrossRefGoogle Scholar
Needham, Dorothy Moyle (1937). Chemical cycles in muscle contraction. In Needham, J. & Green, D. (Eds.), Perspectives in Biochemistry (pp. 200–14). Cambridge: Cambridge University PressGoogle Scholar
Needham, Joseph (1942). Biochemistry and Morphogenesis. London: Cambridge University PressGoogle Scholar
Needham, Joseph, & Needham, Dorothy Moyle (1930). On phosophorus metabolism in embryonic life. I. Invertebrate frogs. Journal of Experimental Biology, 7, 317–47Google Scholar
Negelein, Erwin Paul, & Brömel, Heinz (1939). R-Diphophoglycerinsäure, ihre Isolierung und Eigenschaften. Biochemische Zeitschrift, 303, 132–44Google Scholar
Neubauer, Otto, & Fromherz, Konrad (1911). Über den Abbau der Aminosäuer bei der Hefegärung. Zeitschrift für physiologische Chemie, 70, 326–50CrossRefGoogle Scholar
Neuberg, Carl, & Kerb, Johannes Wolfgang (1914). Über zukerfreie Hefegärungen. Biochemische Zeitschrift, 58, 158–70Google Scholar
Neuberg, Carl, & Kobel, M. (1925). Zur Frage der künstlichen und natürlichen Phosphoryleirung des Zuckers. Biochemische Zeitschrift, 155, 499–506Google Scholar
Neutra, Marian, & Leblond, Charles P. (1966a). Synthesis of the carbohydrate of mucus in the Golgi complex as shown by electron microscope radioautography of goblet cells from rats injected with glucose-H3. Journal of Cell Biology, 30, 119–36CrossRefGoogle Scholar
Neutra, Marian, & Leblond, Charles P. (1966b). Radioautographic comparison of the uptake of galactose-H3 and glucose-H3 in the Golgi region of various cells secreting glycoproteins or mucopolysaccharides. Journal of Cell Biology, 30, 137–50CrossRefGoogle Scholar
Neutra, Marian, & Leblond, Charles P. (1969). The Golgi apparatus. Scientific American, 222(2), 100–7CrossRefGoogle Scholar
Newman, M. E. J. (2001). The structure of scientific collaboration networks. Proceedings of the National Academy of Sciences, USA, 98, 404–9CrossRefGoogle ScholarPubMed
Newman, Sanford B., Borysko, Emil, & Swerdlow, Max (1949a). Ultra-microtomy by a new method. Journal of Research of the National Bureau of Standards, 43, 183–99CrossRefGoogle Scholar
Newman, Sanford B., Borysko, Emil, & Swerdlow, Max (1949b). New sectioning techniques for light and electron microscopy. Science, 110, 66–8CrossRefGoogle Scholar
Nickles, Thomas (Ed.) (1980a). Scientific Discovery: Case Studies. Dordrecht: ReidelCrossRefGoogle Scholar
Nickles, Thomas (Ed.) (1980b). Scientific Discovery: Logic and Rationality. Dordrecht: ReidelGoogle Scholar
Nicolis, Grégoire, & Prigogine, Ilya (1977). Self-organization in Nonequilibrium Systems: From Dissipative Structures to Order through Fluctuations. New York: WileyGoogle Scholar
Nirenberg, Marshall W., & Matthaei, Heinrich J. (1961). The dependence of cell-free protein synthesis in E. Coli upon naturally occurring or synthetic polyribonucleotides. Proceedings of the National Academy of Sciences, USA, 47, 1588–602CrossRefGoogle ScholarPubMed
Novikoff, Alex B. (1956a). Preservation of the fine structure of isolated liver cell particulates with polyvinylpyrrollidone-sucrose. Journal of Biophysical and Biochemical Cytology, 2(No. 4, Part 2), 65–6CrossRefGoogle Scholar
Novikoff, Alex B. (1956b). Electron microscopy: Cytology of cell fractions. Science, 124(3229), 969–72CrossRefGoogle Scholar
Novikoff, Alex B. (1959). Approaches to the in vivo function of subcellar particles. In Teru, H. (Ed.), Subcellular Particles (pp. 1–22). New York: The Ronald PressGoogle Scholar
Novikoff, Alex B. (1961). Lysosomes. In Brachet, J. & Mirsky, A. E. (Eds.), The Cell (Vol. II). New York: Academic PressGoogle Scholar
Novikoff, Alex B., Beaufay, Henri, & Duve, Christian (1956). Electron microscopy of lysosome-rich fractions from rat liver. Journal of Biophysical and Biochemical Cytology, 2(No. 4, Part 2), 179–84CrossRefGoogle ScholarPubMed
Novikoff, Alex B., & Holtzman, Eric (1970). Cell and Organelles. New York: Holt, Rinehart, and Winston, Inc.Google Scholar
Novikoff, Alex B., Podber, E., Ryan, J., & Noe, E. (1953). Biochemical heterogeneity of the cytoplasmic particles isolated from rat liver homogenate. Journal of Histochemistry and Cytochemistry, 1, 27–46CrossRefGoogle ScholarPubMed
Oberling, Charles, Bernhard, Wilhelm, Guérin, M., & Harrel, J. (1950). Images de cellules cancereuses au microscope electronique. Bulletin du Cancer, 37, 97Google Scholar
O'Brien, H. C., & McKinley, G. M. (1943). New microtome and sectioning method for electron microscopy. Science, 98, 455–6CrossRefGoogle ScholarPubMed
Ochoa, Severo (1940). Nature of oxidative phosphorylation in brain tissue. Nature, 146, 267CrossRefGoogle Scholar
Ochoa, S. (1943). Efficiency of aerobic phosphorylation in cell-free heart extracts. Journal of Biological Chemistry, 151, 493–505Google Scholar
Ochoa, Severo, & Rossiter, (1939). Flavin-Adenine-Dinucleotide in rat tissues. Biochemical Journal, 33, 2008–16CrossRefGoogle ScholarPubMed
Olesko, Kathryn (1991). Physics as a Calling: Discipline and Practice in the Königsberg Seminar for Physics. Ithaca, NY: Cornell University PressGoogle Scholar
Oppenheim, Paul, & Putnam, Hillary (1958). The unity of science as a working hypothesis. In Feigl, H. & Maxwell, G. (Eds.), Concepts, Theories, and the Mind-body Problem (pp. 3–36). Minneapolis: University of Minnesota PressGoogle Scholar
Oppenheimer, Carl (1909). Handbuch der Biochemie. Jena: Gustav FischerGoogle Scholar
Ostwald, Wolfgang (1909). Grundriss der Kolloidchemie. Dresden: T. SteinkopffGoogle Scholar
Overton, Ernest (1895). Über die osmotischen Eigenschaften der lebenden Pflanzen und Thierzelle. Vierteljahrsschrift der Naturforschenden Gesellschaft in Zürich, 40, 159–201Google Scholar
Overton, Ernest (1896). Über die osmotischen Eigenschaften der Zelle und ihre Bedeutung für die Toxikologie und Pharmakologie. Vierteljahrsschrift der Naturforschenden Gesellschaft in Zürich, 41, 383–406Google Scholar
Overton, Ernest (1899). Über die allgemeinen osmotischen Eigenschaften der Zelle, ihre vermutliche Ursachen und ihre Bedeutung für die Physiologie. Vierteljahrsschrift der Naturforschenden Gesellschaft in Zürich, 44, 88–135Google Scholar
Palade, George E. (1952a). The fine structure of mitochondria. Anatomical Record, 114, 427–51CrossRefGoogle Scholar
Palade, George E. (1952b). A study of fixation for electron microscopy. Journal of Experimental Medicine, 95, 285–97CrossRefGoogle Scholar
Palade, George E. (1953). An electron microscope study of mitochondrial structure. Journal of Histochemistry and Cytochemistry, 1, 188–211CrossRefGoogle ScholarPubMed
Palade, George E. (1956a). Electron microscopy of mitochondria and other cytoplasmic structures. In Gaebler, O. H. (Ed.), Enzymes: Units of Biological Structure and Function (pp. 185–215). New York: Academic PressGoogle Scholar
Palade, George E. (1956b). The endoplasmic reticulum. Journal of Biophysical and Biochemical Cytology, 2(Supplement), 85–99CrossRefGoogle Scholar
Palade, George E. (1956c). The fixation of tissues for electron microscopy. In Proceedings of the Third International Conference on Electron Microscopy (pp. 129–42). London: Royal Microscopical SocietyGoogle Scholar
Palade, George E. (1958a). A small particulate component of the cytoplasm. In Palay, S. L. (Ed.), Frontiers in Cytology (pp. 283–304). New Haven: Yale University PressGoogle Scholar
Palade, George E. (1958b). Functional changes in the structure of cell components. In Hayashi, T. (Ed.), Subcellular Particles (pp. 64–83). New York: The Ronald Press CompanyGoogle Scholar
Palade, George E. (1971). Albert Claude and the beginnings of biological electron microscopy. The Journal of Cell Biology, 50, 5D–19DCrossRefGoogle ScholarPubMed
Palade, George E. (1987). Cell fractionation. In Pauly, J. E. (Ed.), The American Association of Anatomists, 1888–1987. Essays on the History of Anatomy in America and a Report on the Membership – Past and Present. Baltimore: Wilkin and WilkinsGoogle Scholar
Palade, George E. (1992). Intracellular aspects of the process of protein secretion. In Lindsten, J. (Ed.), Nobel Lectures, Physiology or Medicine: 1971–1980 (pp. 177–206). Singapore: World Scientific PublishingCrossRefGoogle Scholar
Palade, George E., & Claude, Albert (1949a). The nature of the Golgi apparatus. I. Parallelism between intercellular myelin figures and Golgi apparatus in somatic cells. Journal of Morphology, 85, 35–69CrossRefGoogle Scholar
Palade, George E., & Claude, Albert (1949b). The nature of the Golgi apparatus. II. Identification of the Golgi apparatus with a complex of myelin figures. Journal of Morphology, 85, 71–111CrossRefGoogle Scholar
Palade, George E., & Porter, K. R. (1952). The endoplasmic reticulum of cells in situ. Anatomical Record, 112(2), 68Google Scholar
Palade, George E., & Porter, Keith R. (1954). Studies on the endoplasmic reticulum: I. Its identification in cells in situ. Journal of Experimental Medicine, 100, 641–56CrossRefGoogle ScholarPubMed
Palade, George E., & Siekevitz, Philip (1955). Liver microsomes: An integrated morphological and biochemical study. Journal of Biophysical and Biochemical Cytology, 2, 171–200CrossRefGoogle Scholar
Parat, Marcel (1928). Contributions a l'étude morphologique et physiologique du cytopasme. Archives d'anatomie microscopique et de morphologie experimentale, 24, 73–357Google Scholar
Pardee, Arthur B., Jacob, François, & Monod, Jacques (1959). The genetic control and cytoplasmic expression of ‘inducibility’ in the synthesis of ß-galactosidase by E. coli. Journal of Molecular Biology, 1, 165–78CrossRefGoogle Scholar
Parnas, Jacob Karol, Ostern, Pawel, & Mann, Thaddeus (1934). Über die Verkettung der chemischen Vorgäange im Muskel. Biochemische Zeitschrift, 272, 64–70Google Scholar
Pascual-Leone, Alvaro, & Hamilton, Roy (2001). The metamodal organization of the brain. In Casanova, C. & Ptito, M. (Eds.), Progress in Brain Research (Vol. 134, pp. 425–45). New York: ElsevierGoogle Scholar
Pasteur, Louis (1857). Mémoire sur la fermentation appelée lactique. Comptes rendus de l'Académie des sciences, 45, 913–6Google Scholar
Pasteur, Louis (1858). Mémoire sur la fermentation appelée lactique. Annales de Chimie, 3e Ser, 52, 404–18Google Scholar
Pasteur, Louis (1860). Mémoire sur la fermentation alcoolique. Annales de Chimie, 3e Ser, 58, 323–426Google Scholar
Pasteur, Louis (1861). Sur la fermentation visqueuse et la fermentation butyrique. Bulletin Société chimique de Paris, 11, 30–1Google Scholar
Payen, Anselme, & Persoz, Jean F. (1833). Mémoire sur la diastase, les principaux produits de ses réactions, et leurs applications aux arts industriels. Annales de Chemie et de Physique, 53, 73–92Google Scholar
Pease, Daniel C. (1987). The development of cytological transmission electron microscopy. In Pauly, J. (Ed.), The American Association of Anatomists, 1888–1987: Essays on the History of Anatomy in America and a Report on the Membership – Past and Present. Baltimore: Williams and WilliamsGoogle Scholar
Pease, Daniel C., & Baker, Richard F. (1950). Electron microscopy of the kidney. American Journal of Anatomy, 87, 349–70CrossRefGoogle ScholarPubMed
Pease, Daniel C., & Porter, Keith R. (1981). Electron microscopy and ultramicrotomy. Journal of Cell Biology, 91, 287s–92sCrossRefGoogle ScholarPubMed
Penefsky, Harvey S., Pullman, Maynard E., Datta, Anima, & Racker, Efraim (1960). Partial resolution of the enzymes catalyzing oxidative phosphorylation. Journal of Biological Chemistry, 235, 3330–6Google ScholarPubMed
Petermann, Mary L., Hamilton, Mary G., Balis, M. Earl, Samarth, Kumud, & Pecora, Pauline (1958). Physicochemical and metabolic studies on rat liver nucleoprotein. In Roberts, R. B. (Ed.), Microsomal Particles and Protein Synthesis (pp. 70–5). London: Pergamon PressGoogle Scholar
Petermann, Mary L., Mizen, N. A., & Hamilton, Mary G. (1953). The macromolecular particles of normal and regenerating rat liver. Cancer Research, 13, 372–5Google ScholarPubMed
Peters, Rudolpf A. (1930). Surface structure in the integration of cell activity. Faraday Society Transactions, 26, 797–809CrossRefGoogle Scholar
Petersen, Steven E., Fox, Peter T., Snyder, Abraham Z., & Raichle, Marcus E. (1990). Activation of extrastriate and frontal cortical areas by visual words and word-like stimuli. Science, 249, 1041–4CrossRefGoogle ScholarPubMed
Peterson, Marian, & Leblond, Charles P. (1964a). Uptake by the Golgi region of glucose labelled with tritium in the 1 or 6 position, as an indicator of synthesis of complex carbohydrates. Experimental Cell Research, 34, 420–3CrossRefGoogle Scholar
Peterson, Marian, & Leblond, Charles P. (1964b). Synthesis of complex carbohydrates in the Golgi region, as shown by radioautography after injection of glucose. Journal of Cell Biology, 21, 143–8CrossRefGoogle Scholar
Pfeffer, Wilhelm Friedrich Philipp (1887). Osmotische Untersuchungen: Studien zur Zellmechanik. Leipzig: Wilhelm EngelmannGoogle Scholar
Pflüger, Eduard (1872). Über die Diffusion des Sauerstoffs, den Ort und die Gesetze der Oxydationsprocesse im thierischen Organismus. Pflüger's Archiv für die gesammte Physiologie des Menschen und der Thiere, 6, 43–64CrossRefGoogle Scholar
Pflüger, Eduard (1875). Beiträge zur Lehre von der Respiration: I. Ueber die physiologische Verbrennung in den lebendigen Organismen. Pflüger's Archiv für die gesammte Physiologie des Menschen und der Thiere, 10, 251–367CrossRefGoogle Scholar
Piaget, Jean (1971). The Science of Education and the Psychology of the Child. London: LongmansGoogle Scholar
Pickels, Edward G. (1942). An improved type of electrically driven high speed laboratory centrifuge. Review of Scientific Instruments, 13, 93–100CrossRefGoogle Scholar
Picken, L. E. R. (1940). The fine structures of biological systems. Biological Review, 15, 133–67CrossRefGoogle Scholar
Pinchot, Gifford B. (1953). Phosphorylation coupled to electron transport in cell-free extracts of alcaligenes faecalis. Journal of Biological Chemistry, 205, 65–74Google ScholarPubMed
Pinchot, Gifford B., & Racker, Efraim (1951). Ethyl alcohol oxidation and phosphorylation in extracts of E. coli (Vol. 1, pp. 366–69). In McElroy, W. D. & Glass, B. (Eds.), Phosphorus Metabolism. Baltimore: Johns Hopkins University PressGoogle Scholar
Polanyi, Michael (1966). The Tacit Dimension. New York: DoubledayGoogle Scholar
Porter, Keith R. (1941a). Diploid and androgenetic haploid hybridization between two forms of Rana pipiens. Biological Bulletin, 80, 238CrossRefGoogle Scholar
Porter, Keith R. (1941b). Developmental variations resulting from the androgenetic hybridization of four forms of Rana pipiens. Science, 93, 439Google Scholar
Porter, Keith R. (1953). The fine structure of a submicroscopic, basophilic component of cytoplasm. Journal of Experimental Medicine, 97, 727–50CrossRefGoogle Scholar
Porter, Keith R. (1954). Electron microscopy of basophilic components of cytoplasm. Journal of Histochemistry and Cytochemistry, 2, 346–75CrossRefGoogle ScholarPubMed
Porter, Keith R. (1955–6). The submicroscopic morphology of protoplasm. The Harvey Lectures, 51, 175–228Google Scholar
Porter, Keith R. (1987). Electron microscopy of cultured cells. In Pauly, J. E. (Ed.), The American Association of Anatomists, 1888–1987. Essays on the History of Anatomy in America and a Report on the Membership –Past and Present (pp. 59–67). Baltimore: Williams and WilkinsGoogle Scholar
Porter, Keith R., & Blum, Joseph (1953). A study in microtomy for electron microscopy. The Anatomical Record, 117, 685–707CrossRefGoogle ScholarPubMed
Porter, Keith R., Claude, Albert, & Fullam, Ernest F. (1945). A study of tissue culture cells by electron microscopy. Journal of Experimental Medicine, 81, 233–55CrossRefGoogle ScholarPubMed
Porter, Keith R., & Kallman, Frances L. (1952). Significance of cell particulates as seen by electron microscopy. Annals of the New York Academy of Science, 54, 882–91CrossRefGoogle ScholarPubMed
Porter, Keith R., & Kallman, Frances L. (1953). The properties and effects of osmium tetroxide as a tissue fixative with special reference to its use for electron microscopy. Experimental Cell Research, 4, 127–41CrossRefGoogle Scholar
Porter, Keith R., & Thompson, Helen P. (1947). Some morphological features of cultured rat sarcoma cells as revealed by the electron microscope. Cancer Research, 7, 431–8Google Scholar
Porter, Keith R., & Thompson, Helen P. (1948). A particulate body associated with epithelial cells cultured from mammary carcinomas of mice of a milk-factor strain. Journal of Experimental Medicine, 88, 15–23CrossRefGoogle Scholar
Potter, Rensselaer, & Elvehjem, Conrad A. (1936). A modified method for the study of tissue oxidations. Journal of Biological Chemistry, 114, 495–504Google Scholar
Prebble, John (2002). Peter Mitchell and the ox phos wars. Trends in Biochemical Sciences, 27, 209–12CrossRefGoogle Scholar
Prescott, David M. (Ed.) (1973). Methods in Cell Biology. New York: Academic PressGoogle Scholar
Price, Derek J. de Solla (1961). Science since Babylon. New Haven: Yale University PressGoogle Scholar
Prout, William (1827). On the ultimate composition of simple alimentary substances; with some preliminary remarks on the analysis of organised bodies in general. Philosophical Transactions of the Royal Society of London, 117, 355–88CrossRefGoogle Scholar
Pullman, Maynard E., Penefsky, Harvey S., Datta, Anima, & Racker, Efraim (1960). Partial resolution of the enzyme catalyzing oxidative phosphorylation. Journal of Biological Chemistry, 235, 3322–9Google ScholarPubMed
Pylyshyn, Zenon W. (1981). The imagery debate: Analogue media versus tacit knowledge. Psychological Review, 88, 111–33CrossRefGoogle Scholar
Pylyshyn, Zenon W. (2003). Seeing and Visualizing: It's Not What You Think. Cambridge, MA: MIT PressGoogle Scholar
Racker, Efraim (1965). Mechanisms in Bioenergetics. New York: Academic PressGoogle Scholar
Racker, Efraim (1968). The membrane of the mitochondrion. Scientific American, 218, 32–9CrossRefGoogle Scholar
Racker, Efraim (1975). Reconstitution, mechanism of action and control of ion pumps. Biochemical Society Transactions, 3, 785–802CrossRefGoogle Scholar
Racker, Efraim (1976). A New Look at Mechanisms in Bioenergetics. New York: Academic PressGoogle Scholar
Racker, Efraim, & Horstman, Lawrence L. (1967). Partial resolution of the enzymes catalyzing oxidative phosphorylation ⅫI. Structure and function of submitochondrial particles completely resolved with respect to coupling factor 1. Journal of Biological Chemistry, 242, 2547Google Scholar
Racker, Efraim, Tyler, D. D., Estabrook, Ronald W., Conover, Thomas E., Parsons, D. F., & Chance, Britton (1965). Correlations between electron-transport activity, ATP-ase and morphology of submitochrondrial particles. In King, T. E., Mason, H. S., & Morrison, M. (Eds.), Oxidases and Related Redox Systems (pp. 1077–101). New York: WileyGoogle Scholar
Ramón y Cajal, Santiago (1907). L'appareil reticulaire de Golgi-Holmgren coloré par le nitrate d'argent. Trabajos del Laboratorio de Investigaciones Biológicas, 5, 151–4Google Scholar
Ramón y Cajal, Santiago (1908). Les conduits de Golgi-Holmgren du protoplasme nerveux et le réseau péricéllulaire de la membrane. Trabajos del Laboratorio de Investigaciones Biológicas, 6, 123–35Google Scholar
Ramón y Cajal, Santiago (1914). Algunas variaciones fisiológicas y patológicas del aparato reticular de Golgi. Trabajos del Laboratorio de Investigaciones Biológicas, 12, 127–227Google Scholar
Rasmussen, Nicolas (1995). Mitochondrial structure and the practice of cell biology in the 1950s. Journal of the History of Biology, 28, 381–429CrossRefGoogle ScholarPubMed
Rasmussen, Nicolas (1997). Picture Control: The Electron Microscope and the Transformation of Biology in America. Stanford, CA: Stanford University PressGoogle Scholar
Raspail, François-Vincent (1825). Développement de la fécule dans les organes de la fructification des céréales. Annales des Science Naturelles, 6, 224–39Google Scholar
Redman, Colvin, & Sabatini, David D. (1966). Vectorial discharge of peptides released by puromycin from attached ribosomes. Proceedings of the National Academy of Sciences, USA, 56, 608–15CrossRefGoogle ScholarPubMed
Redman, Colvin, Siekevitz, Philip, & Palade, George E. (1966). Synthesis and transfer of amylase in pigeon pancreatic microsomes. Journal of Biological Chemistry, 241, 1150–8Google Scholar
Regaud, Claudius (1909). Attribution aux ‘formations mitochondriales’ de la fonction generale d'extraction et de fixation electives, exercee par les cellules vivantes sur les substances dissouten dans le milieu ambiant. Comptes Rendus de Societe Biologique, 66, 919–21Google Scholar
Reichenbach, Hans (1966). The Rise of Scientific Philosophy. Berkeley: University of California PressGoogle Scholar
Reichert, Karl Bogislaus (1847). Bericht über die Leistungen in der mikroskopischen Anatomie des Jahres 1846. Archiv für Anatomie, Physiologie und wissenschaftliche Medicin, 1–67Google Scholar
Remak, Robert (1852). Ueber extracellulare Entstehung thierischer Zellen und über Vermehrung derselben durch Theilung. Archiv für Anatomie, Physiologie und wissenschaftliche Medicin, 47–57Google Scholar
Remak, Robert (1855). Untersuchungen über die Entwicklung der Wirbelthiere. Berlin: ReimerGoogle Scholar
Rheinberger, Hans-Jörg (1995). From microsomes to ribosomes: “Strategies” of “representation.”Journal of the History of Biology, 28, 49–89CrossRefGoogle ScholarPubMed
Rheinberger, Hans-Jörg (1997). Toward a History of Epistemic Things: Synthesizing Proteins in the Test Tube. Stanford, CA: Stanford University PressGoogle Scholar
Rhodin, Johannes. (1954). Correlation of Ultrastructural Organization and Function in Normal and Experimentally Changed Proximal Convoluted Tublule Cells of the Mouse Kidney. Karolinska Institut, Aktiebolaget Godvil, StockholmGoogle Scholar
Rich, Alexander (1963). Polyribosomes. Scientific American, 209 (December), 44–53CrossRefGoogle ScholarPubMed
Richardson, K. C. (1934). The Golgi apparatus and other cytoplasmic structures in normal and degenerate cells in vitro. Archiv für experimentelle Zellforschung, 16, 100–15Google Scholar
Ris, Hans, & Mirsky, Alfred E. (1949). Quantitative cytochemical determination of desoxyribonucleic acid with the Feulgen nucleal reaction. Journal of General Physiology, 32, 125–46CrossRefGoogle Scholar
Roberts, Richard B. (1958). Microsomal Particles and Protein Synthesis. New York: PergamonGoogle Scholar
Robertson, J. David (1987). The early days of electron microscopy of nerve tissues and membranes. International Review of Cytology, 100, 129–201CrossRefGoogle ScholarPubMed
Rosenberg, Charles (1979). Toward an ecology of knowledge: On discipline, context, and history. In Oleson, A. & Voss, J. (Eds.), The Organization of Knowledge in Modern America. Baltimore: John HopkinsGoogle Scholar
Rosenblueth, Arturo, Wiener, Norbert, & Bigelow, Julian (1943). Behavior, purpose, and teleology. Philosophy of Science, 10, 18–24CrossRefGoogle Scholar
Ruiz-Mirazo, Kepa, Peretó, Juli, & Moreno, Alvaro (2004). A universal definition of life: Autonomy and open-ended evolution. Origins of Life and Evolution of the Biosphere, 34, 323–46CrossRefGoogle ScholarPubMed
Ruska, Helmut (1941). Die Sichtbarmachung der bakteriophagen Lyse im Übermikroskop and Über ein neues bei der bakteriophagen Lyse auftretendes Formelement. Naturwissenschaften, 29, 367–8CrossRefGoogle Scholar
Sabatini, David D., Tashiro, Yukata, & Palade, George E. (1966). On the attachment of ribosomes to microsomal membranes. Journal of Molecular Biology, 19, 503CrossRefGoogle ScholarPubMed
Salmon, Wesley C. (1984). Scientific Explanation and the Causal Structure of the World. Princeton: Princeton University PressGoogle Scholar
Salmon, Wesley C. (1989). Four decades of scientific explanation. In Kitcher, P. & Salmon, W. C. (Eds.), Scientific Explanation. Minnesota Studies in the Philosophy of Science, Volume ⅫI (pp. 3–219). Minneapolis: University of Minnesota PressGoogle Scholar
Salmon, Wesley C. (1994). Causality without counterfactuals. Philosophy of Science, 61, 297–312CrossRefGoogle Scholar
Sanders, F. K. (1951). Cytological techniques: B. Special methods. In Bourne, G. H. (Ed.), Cytology and Cell Physiology (pp. 20–38). Oxford: OxfordGoogle Scholar
Schleiden, Mathias Jacob (1838). Beiträge zur phytogenesis. Archiv für Anatomie, Physiologie und wissenschaftliche Medecin, 137–76Google Scholar
Schleiden, Matthias J. (1842). Grundzüge der wissenschaftlichen Botanik. Leipzig: Wilhelm EngelmannGoogle Scholar
Schlenk, Fritz (1997). Early research on fermentation – a story of missed opportunities. In Cornish-Bowden, A. (Ed.), New Beer in an Old Bottle: Eduard Buchner and the Growth of Biochemical Knowledge. Valencia, Spain: Universitat de ValènciaGoogle Scholar
Schmitt, Francis O. (1944–5). Ultrastructure and the problem of cellular organization. The Harvey Lectures, 40, 249Google Scholar
Schmitt, Francis O., Hall, Cecil E., & Jakus, Marie A. (1942). Electron microscope investigations of the structure of collagen. Journal of Cellular and Comparative Physiology, 20 (1), 11–33CrossRefGoogle Scholar
Schmitt, Francis O., Hall, Cecil E., & Jakus, Marie A. (1943). The ultrastructure of protoplasmic fibrils. In Hoerr, N. L. (Ed.), Frontiers in Cytochemistry: The Physical and Chemical Organization of the Cytoplasm (Vol. 10, pp. 261–76). Lancaster, PA: The Jaques Cattell PressGoogle Scholar
Schneider, Walter C. (1948). Intracellular distribution of enzymes. III. The oxidation of octanoic acid by rat liver fractions. Journal of Biological Chemistry, 176, 259–66Google Scholar
Schneider, Walter C., & Hogeboom, George H. (1951). Cytochemical studies of mammalian tissue: The isolation of cell components by differential centrifugation: A review. Cancer Research, 11, 1–22Google ScholarPubMed
Schneider, Walter C., & Kuff, Edward L. (1954). On the isolation and some biochemical properties of the Golgi substance. American Journal of Anatomy, 94, 209–24CrossRefGoogle ScholarPubMed
Schneider, Walter C., & Kuff, Edward L. (1964). Centrifugal isolation of subcellular components. In Bourne, G. H. (Ed.), Cytology and Cell Physiology (3rd ed., pp. 19–89). New York: Academic PressGoogle Scholar
Schultze, Max (1861). Über Muskelkörperchen und das, was man eine Zelle zu nennen habe. Müllers Archiv für Anatomie, Physiologie, und wissenschaftliche Medizin, 1–27Google Scholar
Schultze, Max (1865). Archiv für mikroskopische Anatomie und Entwirklungsgeschichte, 1, 124CrossRef
Schwann, Theodor (1836). Über das Wesen des Verdauungsprocesses. Archiv für Anatomie, Physiologie und wissenschaftliche Medecin, 90–138Google Scholar
Schwann, Theodor (1837). Vorläufige Mitteilung, betreffend Versuche über die Weingärung und Faulnis. Poggendorf's Annalen der Physik und Chemie, 41, 184–93CrossRefGoogle Scholar
Schwann, Theodor (1839(1947). Microscopical Researches into the Accordance in the Structure and Growth of Animals and Plants (H. Smith, Trans.). London: Sydenham SocietyGoogle Scholar
Shapere, Dudley (1974). Scientific theories and their domains. In Suppe, F. (Ed.), The Structure of Scientific Theories. Urbana: University of Illinois PressGoogle Scholar
Shapere, Dudley (1984). Reason and the Search for Knowledge. Dordrecht: ReidelGoogle Scholar
Shapin, Steven (1982). History of science and its sociological reconstructions. History of Science, 20, 157–211CrossRefGoogle Scholar
Siekevitz, Philip (1952). Uptake of radioactive alanine in vitro into the proteins of rat liver fractions. Journal of Biological Chemistry, 195, 549–65Google ScholarPubMed
Siekevitz, Philip, & Zamecnik, Paul C. (1951). In vitro incorporation of 1-C14-DL-alanine into proteins of rat-liver granular fractions. Federation Proceedings, 10, 246Google Scholar
Simon, Herbert A. (1996). The Sciences of the Artificial. (Third ed.). Cambridge, MA: MIT PressGoogle Scholar
Sjöstrand, Fritiof S. (1943). Electron microscopic examination of tissues. Nature, 151, 725–26CrossRefGoogle Scholar
Sjöstrand, Fritiof S. (1953a). A new microtome for ultra-thin sectioning for high resolution electron microscopy. Experientia, 9, 114–5CrossRefGoogle Scholar
Sjöstrand, Fritiof S. (1953b). Electron microscopy of mitochondria and cytoplasmic double membranes. Nature, 171, 30–2CrossRefGoogle Scholar
Sjöstrand, Fritiof S. (1955a). The ultrastructure of mitochondria. In Fine Structure of Cells. Symposium Held at the VIIIth Congress of Cell Biology (pp. 16–30). Leiden: Interscience Publishers
Sjöstrand, Fritiof S. (1955b). The ultrastructure of the ground substance of the cytoplasm. In Fine Structure of Cells. Symposium Held at the VIIIth Congress of Cell Biology (pp. 222–8). Leiden: Interscience Publishers
Sjöstrand, Fritiof S. (1956a). The ultrastructure of cells as revealed by the electron microscope. International Review of Cytology, 5, 455–533CrossRefGoogle Scholar
Sjöstrand, Fritiof S. (1956b). Recent advances in the biological application of the electron microscope. In Third International Conference on Electron Microscopy (pp. 26–37). London: Royal Microscopical Society
Sjöstrand, Fritiof S., & Hanzon, Viggo (1954). Membrane structures of cytoplasm and mitochondria in exocrine cells of mouse pancreas as revealed by high resolution electron microscopy. Experimental Cell Research, 7, 393–414CrossRefGoogle ScholarPubMed
Sjöstrand, Fritiof S., & Rhodin, Johannes (1953). The ultrastructure of the proximal convoluted tubules of the mouse kidney as revealed by high resolution electron microscopy. Experimental Cell Research, 4, 426–56CrossRefGoogle Scholar
Slater, Edward Charles (1950). Phosphorylation coupled with the reduction of cytochrome c by α-ketoglutarate in heart muscle granules. Nature, 166, 982–3CrossRefGoogle ScholarPubMed
Slater, Edward Charles (1953). Mechanism of phosphorylation in the respiratory chain. Nature, 172, 975–8CrossRefGoogle ScholarPubMed
Slator, Arthur (1906). Studies in fermentation. I. The chemical dynamics of alcoholic fermentation by yeast. Journal of the Chemical Society, London, 89, 128–42CrossRefGoogle Scholar
Slayter, Henry, Kiho, Yukio, Hall, Cecil E., & Rich, Alexander (1968). An electron microscopic study of large bacterial polyribosomes. Journal of Cell Biology, 37, 583–90CrossRefGoogle ScholarPubMed
Smith, Kendric C., Cordes, Eugene, & Schweet, Richard S. (1959). Fractionation of transfer ribonucleic acid. Biochemica et Biophysica Acta, 33, 286–7CrossRefGoogle ScholarPubMed
Solomon, Miriam (2001). Social Empiricism. Cambridge, MA: MIT PressGoogle Scholar
Stanley, Wendell M, & Anderson, Thomas F. (1941). Study of purified viruses with electron microscope. Journal of Biological Chemistry, 139, 325–38Google Scholar
Stenning, Keith, & Lemon, Oliver (2001). Aligning logical and psychological perspectives on diagrammatic reasoning. Artificial Intelligence Review, 15, 29–62CrossRefGoogle Scholar
Strangeways, Thomas S. P., & Canti, R. G. (1927). The living cell in vitro as shown in dark-ground illumination and the changes induced in such cells by fixing reagents. Quarterly Journal of Microscopical Science, 71, 1–14Google Scholar
Strasburger, Eduard (1884). Neue Untersuchungen uber den Befruchtungsvorgang bei den Phanerogamen als Grunglagefur eine Theorie der Zeugung. Jena: Gustav FischerGoogle Scholar
Straus, Werner (1954). Isolation and biochemical properties of droplets from the cells of rat kidney. Journal of Biological Chemistry, 207, 745–55Google ScholarPubMed
Straus, Werner (1956). Concentration of acid phosphatase, ribonuclease, desoxyribonuclease, ß-glucoronidase, and cathepsin in “droplets” isolated from the kidney cells of normal rats. Journal of Biophysical and Biochemical Cytology, 2, 513–21CrossRefGoogle ScholarPubMed
Svedberg, Theodor, & Fåhraeus, Robin (1926). A new method for the determination of the molecular weight of the proteins. Journal of the American Chemical Society, 48, 430–8CrossRefGoogle Scholar
Svedberg, Theodor, & Rinde, Herman (1924). The ultra-centrifuge, a new instrument for the determination of size and distribution of size of particle in amicroscopic colloids. Journal of the American Chemical Society, 46, 2677–93CrossRefGoogle Scholar
Swift, Hewson (1953). Quantitative aspects of nuclear nucleoproteins. International Review of Cytology, 2, 1–76CrossRefGoogle Scholar
Szent-Györgyi, Albert (1924). Über den Mechanismus der Succin- und Paraphenylen-diaminoxydation. Ein Beitrag zur Theorie der Zellatmung. Biochemische Zeitschrift, 150, 195–210Google Scholar
Szent-Györgyi, Albert (1937). Studies on Biological Oxidation and Some of Its Catalysts. Leipzig: Johann Ambrosius BarthGoogle Scholar
Tabery, James (2004). Synthesizing activities and interactions in the concept of a mechanism. Philosophy of Science, 71, 1–15CrossRefGoogle Scholar
Thénard, Louis Jacques (1803). Mémoire sur la Fermentation vineuse. Annales de Chimie, 46, 294–320Google Scholar
Thunberg, Torsten Ludvig (1913). Zur Kenntnis einiger autoxydabler Thioverbindungen. Skandinavisches Archiv für Physiologie, 20, 289–90Google Scholar
Thunberg, Torsten Ludvig (1916). Über die vitale Dehydrierung der Bernsteinsäure bei Abwesenheit von Sauerstoff. Zentralblatt für Physiologie, 31, 91–3Google Scholar
Thunberg, Torsten Ludvig (1920). Zur Kenntnis des intermediären Stoffwechsels und der dabei wirksamen Enzyme. Skandinavisches Archiv für Physiologie, 40, 9–91CrossRefGoogle Scholar
Tissiéres, Alfred, & Watson, James D. (1958). Ribonucleoprotein particles from Escherichia coli. Nature, 182, 778–80CrossRefGoogle ScholarPubMed
Tissiéres, Alfred, Watson, James D., Schlessinger, David, & Hollingworth, B. R. (1959). Ribonucleoprotein particles from Escherichia coli. Journal of Molecular Biology, 1, 221–33CrossRefGoogle Scholar
Toulmin, Stephen (1972). Human Understanding: The Collective Use and Evolution of Concepts. Princeton: Princeton University PressGoogle Scholar
Turpin, Pierre J. F. (1838). Mémoire sur la cause et les effets de la fermentation alcoolique et acéteuse. Annales de chimie et de physique, 7, 369–402Google Scholar
Beneden, Edouard (1875). La maturation de l'œuf, la fécondation et les premières phases du développement embryonnaire des mammifères d'après des recherches faites chez le Lapin. Annuaire de l'Académie Royale de la Belgique, 40, 686–736Google Scholar
Beneden, Edouard, & Neyt, Adolphe (1887). Nouvelles recherches sur la fécondation et la division mitosique chez l'Ascaride mégalocephale. Annuaire de l'Académie Royale de la Belgique, 14, 238Google Scholar
Essen, David C., & Gallant, Jack L. (1994). Neural mechanisms of form and motion processing in the primate visual system. Neuron, 13, 1–10CrossRefGoogle ScholarPubMed
Varela, Francisco J. (1979). Principles of Biological Autonomy. New York: ElsevierGoogle Scholar
Virchow, Rudolf (1855). Cellular-Pathologie. Archiv für pathologische Anatomie und Physiologie und für klinische Medizin, 8, 3–39Google Scholar
Virchow, Rudolf (1858). Die Cellularpathologie in ihrer Begründung auf physiologische und pathologische Gewebelehre. Berlin: August HirschwaldGoogle Scholar
Ardenne, Manfred (1939). Die Keilschnittmethode, ein Weg zur Herstellung von Mikrotomschnitten mit weniger als Stärke für elektronenmikroskopische Zwecke. Zeitschrift für wissenschaftliche Mikroscopie, 56, 8–23Google Scholar
Waldeyer, Wilhelm (1888). Ueber Karyokinese und ihre Bezeihung zu den Befruchtungsvorgängen. Archiv für mikroskopische Anatomie und Entwirklungsgeschichte, 32, 1–122CrossRefGoogle Scholar
Walker, C. E., & Allen, M. (1927). On the nature of the “Golgi bodies” in fixed material. Proceedings of the Royal Society B, 101, 468CrossRefGoogle Scholar
Walker, P. G. (1952). The preparation and properties of ß-glucuronidase: 3. Fractionation and activity of homogenate in isotonic media. Biochemical Journal, 51, 223–32CrossRefGoogle Scholar
Warburg, Otto Heinrich (1910). Über die Oxidationen in lebenden Zellen nach Versuchen am Seeigelei. Zeitschrift für physiologische Chemie, 59, 305–40CrossRefGoogle Scholar
Warburg, Otto Heinrich (1911). Über Beeinflussung der Sauerstoffatmung. Zeitschrift für physiologische Chemie, 70, 413–32CrossRefGoogle Scholar
Warburg, Otto Heinrich (1913a). Über die Wirkung der Struktur auf chemische Vorgänge in den Zellen. Jena: Gustav FischerGoogle Scholar
Warburg, Otto Heinrich (1913b). Über sauerstoffatmende Körnchen aus Leberzellen und über Sauerstoffatmung in Berkefeld-Filtraten wässriger Leberextrakte. Pflüger's Archiv für Gesammte Physiologie des Menschen und der Thiere, 154, 599–617CrossRefGoogle Scholar
Warburg, Otto Heinrich (1914). Beitrage zur Physiologie der Zelle, insbesondere über die Oxydationsgewchwindigkeit in Zellen. Erggebnisse der Physiologie, 14, 253–337CrossRefGoogle Scholar
Warburg, Otto Heinrich (1923). Versuche an überlebendem Carcinomgewebe. Biochemische Zeitschrift, 142, 317–33Google Scholar
Warburg, Otto Heinrich (1925a). Monometrische Messung des Zellstoffwechsels in Serum. Biochemische Zeitschrift, 164, 481Google Scholar
Warburg, Otto Heinrich (1925b). Iron, the oxygen carrier of the respiration ferment. Science, 61, 575–82CrossRefGoogle Scholar
Warburg, Otto Heinrich (1929). Atmungsferment und Oxydasen. Biochemische Zeitschrift, 214, 1–3Google Scholar
Warburg, Otto Heinrich (1932). Das sauerstoffübertragende Ferment der Atmung. Zeitschrift für angewandte Chemie, 45, 106Google Scholar
Warburg, Otto Heinrich, & Christian, Walter (1932). Über ein neues Oxydationsferment und sein Absorptionsspektrum. Biochemische Zeitschrift, 254, 438–58Google Scholar
Warburg, Otto Heinrich, & Christian, Walter (1935). Co-Fermentproblem. Biochemische Zeitschrift, 275, 364Google Scholar
Warburg, Otto Heinrich, & Christian, Walter (1936). Pyridin, der wasserstoffübertragene Bestandteil von Gärungsfermenten. Biochemische Zeitschrift, 287, 291–328Google Scholar
Warburg, Otto Heinrich, & Christian, Walter (1938). Bemerkung über gelbe Fermente. Biochemische Zeitschrift, 298, 368–77Google Scholar
Warburg, Otto Heinrich, Christian, Walter, & Griese, Alfred (1935). Wasserstoffübertragendes Co-Ferment, seine Zusammensetzung und Wirkungsweise. Biochemische Zeitschrift, 282, 157–65Google Scholar
Warner, Jonathan R., Knopf, Paul M., & Rich, Alexander (1963). A multiple ribosomal structure in protein synthesis. Proceedings of the National Academy of Sciences, USA, 49, 122–9CrossRefGoogle ScholarPubMed
Warshawsky, Hershey, Leblond, Charles P., & Droz, Bernard (1961). Synthesis and migration of proteins in the cells of the exocrine pancreas as revealed by specific activity determination from radioautographs. Journal of Cell Biology, 16, 1–23CrossRefGoogle Scholar
Wasserman, Stanley, & Faust, Katherine (1994). Social Network Analysis: Methods and Applications. New York: CambridgeCrossRefGoogle Scholar
Weismann, August (1885). Die Kontinuität des Keimplasmas als Grundlage einer Theorie der Vererbung. Jena: Gustav FischerGoogle Scholar
Wersäll, J. (1956). Studies on the structure and innervation of the sensory epithelium of the crista ampullares in the guinea pig. Acta Oto-Laryngologica, 126(Supplement), 1–85Google Scholar
Whaley, William G. (1975). The Golgi Apparatus. (Vol. 2). New York: Springer-VerlagCrossRefGoogle ScholarPubMed
Whewell, William (1840). The Philosophy of the Inductive Sciences, Founded upon Their History. London: J. W. ParkerGoogle Scholar
Whitley, Richard (1980). The context of scientific investigation. In Knoor, K. D., Krohn, R., & Whitley, R. (Eds.), The Social Process of Scientific Investigation (pp. 297–321). Dordrecht: ReidelCrossRefGoogle Scholar
Wieland, Heinrich (1913). Über den Mechanismus der Oxydationsvorgänge. Berichte der deutschen chemischen Gesellschaft, 46, 3327–42CrossRefGoogle Scholar
Wiener, Norbert (1948). Cybernetics: Or, Control and Communication in the Animal Machine. New York: WileyGoogle Scholar
Williams, Robley C., & Wyckoff, Ralph W. G. (1946). Applications of metallic-shadow-casting to microscopy. Journal of Applied Physics, 17, 23–33CrossRefGoogle Scholar
Wilson, Edmund B. (1896). The Cell in Development and Inheritance. New York: MacMillanGoogle Scholar
Wilson, Edmund B. (1923). The Physical Basis of Life. New Haven, CT: Yale University PressGoogle ScholarPubMed
Wimsatt, William C. (1976). Reductive explanation: A functional account. In Cohen, R. S., Hooker, C. A., Michalos, A. C., & Evra, J. (Eds.), PSA 1974 (pp. 671–710). Dordrecht: ReidelCrossRefGoogle Scholar
Witter, Robert F., Watson, Michael L., & Cottone, Mary A. (1955). Morphology and ATP-ase of isolated mitochondria. Journal of Biophysical and Biochemical Cytology, 1(No. 2), 127–38CrossRefGoogle ScholarPubMed
Wöhler, Frederich (1828). Ueber künstliche Bildung des Harnstoffs. Annalen der Physik und Chemie, 12, 253–6CrossRefGoogle Scholar
Wöhler, Frederich (1839). Das enträthselte Geheimniss der geistigen Gährung. Annalen der Pharmacie, 29, 100–4Google Scholar
Wyckoff, Ralph W. G. (1959). Optical methods in cytology. In Brachet, J. & Mirsky, A. E. (Eds.), The Cell: Biochemistry, Physiology, Morphology. New York: Academic PressGoogle Scholar
Zamecnik, Paul C. (1958). The microsome. Scientific American, 198(3), 118–24CrossRefGoogle Scholar
Zamecnik, Paul C. (1958–9). Historical and current aspects of the problem of protein synthesis. Harvey Lectures, 54, 256–81Google Scholar
Zamecnik, Paul C., Frantz, Ivan D., Loftfield, Robert B., & Stephenson, Mary L. (1948). Incorporation in vitro of radioactive carbon from carboxyl-labeled DL-alanine and glycine into proteins of normal and malignant rat livers. Journal of Biological Chemistry, 175, 299–314Google ScholarPubMed
Zamecnik, Paul C., Stephenson, Maryl L., Scott, Jesse F., & Hoagland, Mahlon B. (1957). Incorporation of C14-ATP into soluble RNA isolated from 105,000 ⅹ g supernatant from rat liver. Federation Proceedings, 16, 275Google Scholar
Zetterqvist, H. (1956). The Ultrastructural Organization of the Columnar Absorbing Cells of the Mouse Jejunum. Stockholm: PhD Thesis, Karolinska InstituteGoogle Scholar
Ziegler, Daniel M., Linnane, Anthony W., Green, David E., Dass, C. M. S., & Ris, Hans (1958). Studies on the electron transport system: Correlation of the morphology and enzymic properties of mitochondrial and sub-mitochondrial particles. Biochimica et Biophysica Acta, 28, 524–39CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • William Bechtel, University of California, San Diego
  • Book: Discovering Cell Mechanisms
  • Online publication: 05 June 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9781139164962.010
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • William Bechtel, University of California, San Diego
  • Book: Discovering Cell Mechanisms
  • Online publication: 05 June 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9781139164962.010
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • William Bechtel, University of California, San Diego
  • Book: Discovering Cell Mechanisms
  • Online publication: 05 June 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9781139164962.010
Available formats
×