Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-21T07:07:11.943Z Has data issue: false hasContentIssue false

2 - The Information in Aggregate Data

Published online by Cambridge University Press:  18 May 2010

Gary King
Affiliation:
Harvard University, Massachusetts
Ori Rosen
Affiliation:
University of Pittsburgh
Martin A. Tanner
Affiliation:
Northwestern University, Illinois
Get access

Summary

ABSTRACT

Ecological inference attempts to draw conclusions concerning individual-level relationships using data in the form of aggregates for groups in the population. The groups are often geographically defined. A fundamental statistical issue is how much information aggregate data contain concerning the relationships and parameters that we are trying to estimate. The information affects the standard errors of estimates as well as the power of any tests of hypothesis. It also affects the ability to tell, from the aggregate data, which different models under consideration are supported by the data.

In this chapter likelihood-based methods are considered. We show in general how aggregation affects the information matrix associated with the maximum likelihood estimates compared with the case when individual-level data are available. Hypothesis testing using aggregate data is also considered.

We apply this general approach to ecological inference in the case of several 2 by 2 tables and show how the information is affected by aggregation. Tests of the hypothesis that the parameters are constant across the groups are developed using aggregate data. We also consider how the addition of a small number of individual-level data obtained from a sample, ignoring the groups, increases the information concerning the parameters. The theory is illustrated through an example.

Type
Chapter
Information
Ecological Inference
New Methodological Strategies
, pp. 51 - 68
Publisher: Cambridge University Press
Print publication year: 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×