Skip to main content Accessibility help
×
  • Cited by 39
Publisher:
Cambridge University Press
Online publication date:
May 2015
Print publication year:
2015
Online ISBN:
9780511795039

Book description

Combining the classical theories of contact mechanics and lubrication with the study of friction on the nanometer range, this multi-scale book for researchers and students alike guides the reader deftly through the mechanisms governing friction processes, based on state-of-the-art models and experimental results. The first book in the field to incorporate recent research on nanotribology with classical theories of contact mechanics, this unique text explores atomic scale scratches, non-contact friction and fishing of molecular nanowires as observed in the lab. Beginning with simple key concepts, the reader is guided through progressively more complex topics, such as contact of self-affine surfaces and nanomanipulation, in a consistent style, encompassing both macroscopic and atomistic descriptions of friction, and using unified notations to enable use by physicists and engineers across the scientific community.

Refine List

Actions for selected content:

Select all | Deselect all
  • View selected items
  • Export citations
  • Download PDF (zip)
  • Save to Kindle
  • Save to Dropbox
  • Save to Google Drive

Save Search

You can save your searches here and later view and run them again in "My saved searches".

Please provide a title, maximum of 40 characters.
×

Contents


Page 1 of 2



Page 1 of 2


References
[1] Abdurixit, A., Baratoff, A. and Meyer, E. 2000. Molecular dynamics simulations of dynamic force microscopy: applications to the Si(111)7x7 surface.Appl. Surf. Sci., 157, 355.
[2] Airy, G. B. 1862. On the strains in the interior of beams.Phil. Trans. Roy. Soc. London, 153, 49.
[3] Albrecht, T. R., Griitter, P., Horne, D. and Rugar, D. 1991. Frequency modulation detection using high-Q cantilevers for enhanced force microscope sensitivity.J. Appl. Phys., 69, 668.
[4] Alireza Ghasemi, S., Goedecker, S., Baratoff, A., Lenosky, T., Meyer, E. and Hug, H. J. 2008. Ubiquitous mechanisms of energy dissipation in noncontact atomic force microscopy.Phys. Rev. Lett., 100, 236106.
[5] Amontons, G. 1699. On the resistance caused in machines (in French).Mem. R. Acad., Paris, 257.
[6] Archard, J. F. 1957. Elastic deformation and the laws of friction.Proc. Roy. Soc. A, 243, 190.
[7] Archard, J. F. 1959. The temperature of rubbing surfaces.Wear, 2, 438.
[8] Aruliah, D. A., Muser, M. and Schwarz, U. D. 2005. Calculations of the threshold force and threshold power to move adsorbed nanoparticles.Phys. Rev. B, 71, 085406.
[9] Ashegi, M., Leung, Y. K., Wong, S. S. and Goodson, K. E. 1997. Phonon-boundary scattering in thin silicon layers.Appl. Phys. Lett., 71 1798.
[10] Barabasi, A. L. and Stanley, H. E. 1995. Fractal Concepts in Surface Growth. Cambridge University Press.
[11] Barel, I., Urbakh, M., Jansen, L. and Schirmeisen, A. 2010. Multibond dynamics of nanoscale friction: the role of temperature.Phys. Rev. Lett., 104, 066104.
[12] Bartels, L., Meyer, G. and Rieder, K. H. 1997. Basic steps of lateral manipulation of single atoms and diatomic clusters with a scanning tunneling microscope tip.Phys. Rev. Lett., 79, 697.
[13] Barus, C. 1893. Isotherms, isopiestics and isometrics relative to viscosity.Am. J. Sci., 45, 87.
[14] Baumberger, T., Heslot, F. and Perrin, B. 1994. Crossover from creep to inertial motion in friction dynamics.Nature, 367, 544.
[15] Bauschinger, J. 1881. On the the variation of yield strength and modulus of elasticity of different metals (in German).Zivilingenieur, 299, 289.
[16] Becker, T. and Mugele, F. 2003. Collapse of molecularly thin lubricant layers between elastic substrates.J. Phys.: Condens. Matter, 15, S321.
[17] Belak, J. and Stowers, I. F. 1990. A molecular dynamics model of the orthogonal cutting process.Proc. Am. Soc. Precision Eng., 76.
[18] Bennewitz, R., Gyalog, T., Guggisberg, M., Bammerlin, M., Meyer, E. and Guntherodt, H. J. 1999. Atomic stick-slip processes on Cu(111).Phys.Rev.B, 60, R11301.
[19] Bentall, R. H. and Johnson, K. R. 1967. Slip in the rolling contact of two dissimilar elastic rollers.Int. J. Mech. Sci., 9, 389.
[20] Benz, M., Rosenberg, K. J., Kramer, E. J. and Israelachvili, J. N. 2006. The defor-mation and adhesion of randomly rough and patterned surfaces.J. Phys. Chem. B, 110, 11884.
[21] Berkovich, E. S. 1950. Three-faceted diamond pyramid for studying mechanical microhardness by indentation (in Russian).Zavodskaya Laboratoria, 13, 345.
[22] Berry, M. V. and Lewis, Z. V. 1980. On the Weierstrass-Mandelbrot fractal function.Proc. R. Soc. A., 370, 459.
[23] Binnig, G., Rohrer, H., Gerber, C. and Weibel, E. 1982. Surface studies by scanning tunneling microscopy.Phys. Rev. Lett., 49, 57.
[24] Binnig, G., Quate, C. F. and Gerber, C. 1986. Atomic force microscope.Phys. Rev. Lett., 56, 930.
[25] Blasius, H. 1908. Boundary layers in fluids with low friction (in German).Z. Math. Phys., 56, 1.
[26] Bocquet, L., Charlaix, E., Ciliberto, S. and Crassous, J. 1998. Moisture-induced ageing in granular media and the kinetics of capillary condensation.Nature, 396, 735.
[27] Bohlein, T., Mikhael, J. and Bechinger, C. 2012. Observation of kinks and antikinks in colloidal monolayers driven across ordered surfaces.Nature Materials, 11, 126.
[28] Bouchbinder, E., Goldman, T. and Fineberg, J. 2014. The dynamics of rapid fracture: instabilities, nonlinearities and length scales.Rep. Prog. Phys., 77, 046501.
[29] Bouhacina, T., Aimé, J. P., Gauthier, S., Michel, D. and Heroguez, V. 1997. Tri-bological behaviour of a polymer grafted in silanized silica probed with a nanotip.Phys. Rev. B, 56, 7694.
[30] Boussinesq, J. V. 1885. Applications of potentials to the study of equilibrium and motion ofelastic solids (in French). Gauthier-Villars.
[31] Bowden, F. P. 1953. Friction on snow and ice.Proc. Roy. Soc. London A, 217, 462.
[32] Bowden, F. P. and Tabor, D. 1986. Friction and Lubrication. Clarendon Press.
[33] Brace, W. F. and Byerlee, J. D. 1966. Stick slip as a mechanism for earthquakes.Science, 153, 990.
[34] Bradley, R. S. 1932. The cohesive force between solid surfaces and the surface energy of solids.Phil. Mag., 13, 853.
[35] Braun, O. M. and Kivshar, Y. S. 2004. The Frenkel-Kontorova Model: Concepts, Methods, and Applications. Springer.
[36] Braun, O. M. and Naumovets, A. G. 2006. Nanotribology: microscopic mechanisms of friction.Surf. Sci. Rep., 60, 79.
[37] Bufler, H. 1959. On the theory of rolling friction (in German).Ing. Arch., 27, 137.
[38] Buldum, A., Ciraci, S., and Batra, I. P. 1998. Contact, nanoindentation, and sliding friction.Phys. Rev. B, 57, 2468.
[39] Burridge, R. and Knopoff, L. 1967. Model and theoretical seismicity.Bull. Seismol. Sec. Am., 57, 341.
[40] Bush, A. W., Gibson, R. D., and Thomas, T. R. 1975. The elastic contact of a rough surface.Wear, 35, 87.
[41] Butt, H. J. and Jaschke, M. 1995. Calculation of thermal noise in atomic-force microscopy.Nanotechnology, 6, 1.
[42] Cannara, R. J., Brukman, M. J., Cimatu, K., Sumant, A., Baldelli, S., and Carpick, R. 2007. Nanoscale friction varied by isotopic shifting of surface vibrational frequencies.Science, 318, 780.
[43] Car, R. and Parrinello, M. 1985. Unified approach for molecular dynamics and density-functional theory.Phys. Rev. Lett., 55, 2471.
[44] Carlson, J. M. and Batista, A. A. 1996. Constitutive relation for the friction between lubricated surfaces.Phys.Rev.E, 53, 4153.
[45] Carlson, J. M. and Langer, J. S. 1989. Properties of earthquakes generated by fault dynamics.Phys. Rev. Lett., 62, 2632.
[46] Carpick, R. W., Agrait, N., Ogletree, D. F., and Salmeron, M. 1996. Measurement of interfacial shear (friction) with an ultrahigh vacuum atomic force microscope.J. Vac. Sci. Technol. B, 14, 1289.
[47] Carpick, R. W., Ogletree, D. F. and M., Salmeron. 1999. A general equation for fitting contact area and friction vs load measurements.J. Coll. Int. Sci., 211, 395.
[48] Carter, F. W. 1926. On the action of a locomotive driving wheel.Proc. Roy. Soc. A, 112, 151.
[49] Cattaneo, C. 1938. On the contact of two elastic bodies: local distribution of stresses (in Italian).Rend. R. Acc. Naz. dei Lincei, 27, 342, 434, 474.
[50] Cerruti, V. 1882. Memoirs of Mathematical Physics (in Italian). Acc. Lincei.
[51] Chapman, S. 1916. On the law of distribution of molecular velocities, and on the theory of viscosity, in a non-uniform single monatomic gas.Phil. Trans. Roy. Soc. A, 216, 279.
[52] Chen, J., Ratera, I., Park, J. Y. and Salmeron, M. 2006. Velocity dependence of friction and hydrogen bonding effects.Phys. Rev. Lett., 96, 236102.
[53] Chen, L. B., Zukoski, C. F., Ackerson, B. J. et al. 1992. Structural changes and orientational order in a sheared colloidal suspension.Phys. Rev. Lett., 69, 688.
[54] Childs, T. H. C. 1973. The persistence of asperities in indentation experiments.Wear, 25, 3.
[55] Choi, J. S., Kim, J. S., Byun, I. S.et al. 2011. Friction anisotropy-driven domain imaging on exfoliated monolayer graphene.Science, 333, 607.
[56] Chumak, A. A., Milonni, P. W. and Berman, G. P. 2004. Effects of electrostatic fields and Casimir force on cantilever vibrations.Phys. Rev. B, 70, 085407.
[57] Ciavarella, M. and Decuzzi, P. 2001. The state of stress induced by the plane fric-tionless cylindrical contact. II. The general case (elastic dissimilarity).Int. J. Sol. Struc., 38, 4525.
[58] Cleveland, J. P., Anczykowski, B. and Elings, V. B. 1991. Energy dissipation in tapping-mode atomic force microscopy.Appl. Phys. Lett., 59, 2171.
[59] Cleveland, J. P., Manne, S., Bocek, D. and Hansma, P. K. 1993. A nondestructive method for determining the spring constant of cantilevers for scanning force microscopy.Rev. Sci. Instrum., 64, 403.
[60] Colebrook, C. F. 1939. Turbulent flow in pipes, with particular reference to the transition regime between smooth and rough pipe laws.J. Inst. Civ. Eng. London, 11, 133.
[61] Cumings, J. and Zettl, A. 2000. Low-friction nanoscale linear bearing realized from multiwall carbon nanotubes.Science, 289, 602.
[62] Das, B. M. 2006. Principles of Geotechnical Engineering. Thompson.
[63] Daw, M. S. and Baskes, M. I. 1984. Embedded-atom method: derivation and application to impurities, surfaces, and other defects in metals.Phys. Rev. B, 29, 6443.
[64] Dayo, A., Alnasrallah, W. and Krim, J. 1998. Superconductivity-dependent sliding friction.Phys. Rev. Lett., 80, 1690.
[65] de Gennes, P. G. 1985. Wetting: statics and dynamics.Rev. Mod. Phys., 57, 827.
[66] Deacon, R. F. and Goodman, J. F. 1958. Lubrication by lamellar solids.Proc. Roy. Soc. London A, 243, 464.
[67] Del Rio, F. W., Dunn, M. L., Phinney, L. M., Bourdon, C. J. and de Boer, M. P. 2007. Rough surface adhesion in the presence of capillary condensation.Appl. Phys. Lett., 90, 163104.
[68] Denk, W. and Pohl, D. 1991. Local electrical dissipation imaged by scanning force microscopy.Appl. Phys. Lett., 59, 2171.
[69] Deresiewicz, H. 1954. Contact of elastic spheres under an oscillating torsional couple.Trans. ASME, J. App. Mech., 21, 52.
[70] Deresiewicz, H. 1968. A note on Hertz impact.Acta Mech., 6, 110.
[71] Derjaguin, B. V., Muller, V. M. and Toporov, Y. P. 1975. Effect of contact deformations on the adhesion of particles.J. Colloid Interface Sci., 53, 314.
[72] Dienwiebel, M., Verhoeven, G. S., Pradeep, N., Frenken, J. W. M., Heimberg, J. A. and Zandbergen, H. W. 2004. Superlubricity of graphite.Phys. Rev. Lett., 92, 126101.
[73] Dieterich, J. H. 1979. Modelling of rock friction: 1. Experimental results and constitutive equations.J. Geophys. Res., 84, 2161.
[74] Dieterich, J. H. and Kilgore, B. D. 1994. Direct observation of frictional contacts: new insights for state-dependent properties.Pure Appl. Geoph., 143, 283.
[75] Dietzel, D., Feldmann, M., Fuchs, H., Schwarz, U. D. and Schirmeisen, A. 2009. Transition from static friction to kinetic friction of metallic nanoparticles.App. Phys. Lett., 95, 053104.
[76] Dong, Y., Li, Q. and Martini, A. 2013. Molecular dynamics simulation of atomic friction: a review and guide.J. Vac. Sci. Technol. A, 31, 030801.
[77] Doolittle, A. K. 1951. Studies in newtonian flow II, The dependence of the viscosity of liquids on free-space.J. Appl. Phys., 22, 1471.
[78] Dorofeyef, I., Fuchs, H., Wenning, G. and Gotsmann, B. 1999. Brownian motion of microscopic solids under the action of fluctuating electromagnetic fields.Phys. Rev. Lett., 83, 2404.
[79] Drucker, D. C. and Prager, W. 1952. Soil mechanics and plasticity analysis of limit design.Q. Appl. Math., 10, 157.
[80] Dürig, U. 1999. Conservative and dissipative interactions in dynamic force microscopy.Surf. Interface Anal., 27, 467.
[81] Dürig, U. 2000. Extracting interaction forces and complementary observables in dynamic probe microscopy.Appl. Phys. Lett., 76, 1203.
[82] Eason, G. and Shield, R. T. 1960. The plastic indentation of a semi-infinite solid by a perfectly rough punch.ZAMP, 11, 33.
[83] Einstein, A. 1906. A new determination of molecular dimensions (in German).Annalen der Phys., 19, 289.
[84] Einzel, D., Panzer, P. and Liu, M. 1990. Boundary condition for fluid flow: curved or rough surfaces.Phys. Rev. Lett., 64, 2269.
[85] Elkaakour, Z., Aime, J. P., Bouhacina, T., Odin, C. and Masuda, T. 1994. Bundle formation of polymers with an atomic force microscope in contact mode: a friction versus peeling process.Phys. Rev. Lett., 73, 3231.
[86] Enskog, D. 1917. The kinetic theory of phenomena in fairly rare gases (in German). PhD Thesis, University of Uppsala.
[87] Erlandsson, R., Olsson, L. and Martensson, P. 1996. Inequivalent atoms and imaging mechanisms in ac-mode atomic-force microscopy of Si(111)7x7.Phys. Rev. B, 54, R8309.
[88] Fajardo, O. Y., Gnecco, E. and Mazo, J. J. 2014. Out-of-plane and in-plane actuation effects on atomic-scale friction.Phys.Rev.B, 89, 075423.
[89] Falvo, M. R., Taylor, R. M., Helser, A. et al. 1999. Nanometre-scale rolling and sliding of carbon nanotubes.Nature, 397, 236.
[90] Filippov, A., Dienwiebel, M., Frenken, J. W. M., Klafter, J. and Urbakh, M. 2008. Torque and twist against superlubricity.Phys. Rev. Lett., 100, 046102.
[91] Filippov, A. E., Popov, V. L. and Urbakh, M. 2011. Mechanism of wear and ripple formation induced by the mechanical action of an atomic force microscope tip.Phys. Rev. Lett., 106, 025502.
[92] Filleter, T. and Bennewitz, R. 2010. Structural and frictional properties of graphene lms on SiC(0001) studied by atomic force microscopy.Phys. Rev. B, 81, 155412.
[93] Flamant, A. 1892. On the pressure distribution in a rectangular solid transversely loaded (in French).Comptes Rendus Acad. Sci. Paris, 114, 1465.
[94] Frank, F. C. and Read, W. T. Jr. 1950. Multiplication processes for slow moving dislocations.Phys. Rev., 79, 722.
[95] Frenkel, Y. I. and T. Kontorova. 1938. On the theory of plastic deformation and doubling (in Russian).Zh. Eksp. Teor. Fiz., 8, 1340.
[96] Freund, L. B. 1998. Dynamic Fracture Mechanics. Cambridge University Press.
[97] Fusco, C. and Fasolino, A. 2005. Velocity dependence of atomic-scale friction: a comparative study of the one- and two-dimensional Tomlinson model.Phys. Rev. B, 71, 045413.
[98] Gao, J. P., Luedtke, W. D., Gourdon, D., Ruths, M., Israelachvili, J. N. and Landman, U. 2004. Frictional forces and Amontons law: from the molecular to the macroscopic scale.J. Phys. Chem. B, 108, 3410.
[99] Gauthier, M. and Tsukada, M. 1999. Theory of noncontact dissipation force microscopy.Phys. Rev. B., 60, 11716.
[100] Gauthier, M. and Tsukada, M. 2000. Damping mechanism in dynamic force microscopy.Phys. Rev. Lett., 85, 5348.
[101] Gee, M. L., McGuiggan, P. M. and Israelachvili, J. N. 1990. Liquid to solidlike transitions of molecularly thin films under shear.J. Chem. Phys., 93, 1895.
[102] Giessibl, F. 1997. Forces and frequency shifts in atomic-resolution dynamic-force microscopy.Phys. Rev. B., 56, 16010.
[103] Gladwell, G. M. L. 1976. On some unbounded contact problems in plane elasticity theory.Trans. ASME, Series E, J. App. Mech., 43, 263.
[104] Glasston, S., Laidler, K. J. and Eyring, H. 1941. The Theory of Rate Processes. McGraw Hill.
[105] Gnecco, E. 2010a. A collisional model for AFM manipulation of rigid nanoparticles.Beilstein J. Nanotechnol., 1, 158.
[106] Gnecco, E. 2010b. Quasi-isotropy of static friction on hexagonal surface lattices.Europhys. Lett., 91, 66008.
[107] Gnecco, E., Bennewitz, R., Gyalog, T. et al. 2000. Velocity dependence of atomic friction.Phys. Rev. Lett., 84, 1172.
[108] Gnecco, E., Bennewitz, R. and Meyer, E. 2002. Abrasive wear on the atomic scale.Phys. Rev. Lett., 88, 215501.
[109] Gnecco, E., Socoliuc, A., Maier, S.et al. 2009a. Dynamic superlubricity on insulating and conductive surfaces in ultra-high vacuum and ambient environment.Nanotechnology, 20, 025501.
[110] Gnecco, E., Riedo, E., King, W. P., Marder, S. R. and Szoszkiewicz, R. 2009b. Linear ripples and traveling circular ripples produced on polymers by thermal AFM probes.Phys. Rev. B, 79, 235421.
[111] Gnecco, E., Rao, A., Mougin, K., Chandrasekar, G. and Meyer, E. 2010. Controlled manipulation of rigid nanorods by atomic force microscopy.Nanotechnology, 21, 215702.
[112] Gnecco, E., Roth, R. and Baratoff, A. 2012. Analytical expressions for the kinetic friction in the Prandtl-Tomlinson model.Phys. Rev. B, 86, 035443.
[113] Goldman, T., Livne, A. and Fineberg, J. 2010. Acquisition of inertia by a moving crack.Phys. Rev. Lett., 104, 114301.
[114] Goldstein, H., Poole, C. P. Jr. and Safko, J. L. 2001. Mechanics. Third edn. Pearson International Editions.
[115] Goodman, L. E. 1962. Contact stress analysis of normally loaded rough spheres.Trans. ASME, Series E, J. App. Mech., 29, 515.
[116] Goodman, L. E. and Keer, L. M. 1965. The contact stress problem for an elastic sphere indenting an elastic cavity.Int. J. Sol. Struc., 1, 407.
[117] Goryl, M., Budzioch, J., Krok, F. et al. 2012. Probing atomic-scale friction on reconstructed surfaces of single-crystal semiconductors.Phys.Rev.B, 85, 085308.
[118] Gotsmann, B. and Durig, U. 2004. Thermally activated nanowear modes of a polymer surface induced by a heated tip.Langmuir, 20, 1495.
[119] Gotsmann, B. and Fuchs, H. 2001. Dynamic force spectroscopy of conservative and dissipative forces in Al-Au(111) tip-sample system.Phys. Rev. Lett., 86, 2597.
[120] Gotsmann, B., Seidel, B., Anczykowski, B. and Fuchs, H. 1999. Conservative and dissipative tip-sample interaction forces probed with dynamic AFM.Phys. Rev. B, 60, 11051.
[121] Green, C. P., Lioe, H., Cleveland, J. P., Proksch, R., Mulvaney, P. and Sader, J. E. 2004. Normal and torsional spring constants of atomic force microscope cantilevers.Rev. Sci. Instr., 75, 1988.
[122] Greenwood, J. A. and Williamson, J. B. 1966. Contact of nominally flat surfaces.Proc. Roy. Soc. A, 295, 300.
[123] Griffith, A. A. 1921. The phenomena of rupture and flow in solids.Phil. Trans. Roy. Soc. A, 221, 163.
[124] Guggisberg, M., Bammerlin, M., Loppacher, C. et al. 2000. Separation of interactions by noncontact force microscopy.Phys.Rev.B, 61, 11151.
[125] Gürgöze, M. 2005. On the representation of a cantilevered beam carrying a tip mass by an equivalent springmass system.J. Sound Vib., 202, 538.
[126] Gutenberg, B. and Richter, C. F. 1956. Magnitude and energy of earthquakes.Ann. Geofis., 9, 1.
[127] Gysin, U., Rast, S., Ruff, P., Lee, D. W., Vettiger, P. and Gerber, C. 2004. Temperature dependence of the force sensitivity of silicon cantilevers.Phys. Rev. B, 69, 045403.
[128] Hadamard, J. 1911. Permanent slow motion of a liquid viscous sphere in a viscous liquid (in French).Comptes Rendus, 152, 1735.
[129] Haddow, J. B. 1967. On a plane strain wedge indentation paradox.Int. J. Mech. Sci., 9, 159.
[130] Hamilton, G. M. 1983. Explicit equations for the stresses beneath a sliding spherical contact.Proc. Inst. Mech. Eng. C, 197, 53.
[131] Hamrock, B. J. and Dowson, D. 1981. Ball Bearing Lubrication, the Elastohydro-dynamics of Elliptical Contacts. John Willey & Sons.
[132] Hardy, C., Baronet, C. M. and Tordion, G. V. 1971. Elastoplastic indentation of a half-space by a rigid sphere.J. Num. Meth. Eng., 3, 451.
[133] Haucke, H., Liu, X., Vignola, J. F., Houston, B. H., Marcus, M. H. and Bald win, J. W. 2005. Effects of annealing and temperature on acoustic dissipation in a micromechanical silicon oscillator.Appl. Phys. Lett., 86, 181903.
[134] Heathcote, H. L. 1921. The ball bearing: in the making, under test and on service.Proc. Inst. Automobile Engineers, 15, 569.
[135] Hencky, H. 1923. On some statically determinate cases of equilibrium in plastic bodies (in German).Z. angew. Math. Mech., 3, 241.
[136] Hertz, H. 1882. On the contact of elastic solids (in German).Z. reine angew. Math. Mech., 92, 156.
[137] Heslot, F., Cazabat, A. M. and Levinson, P. 1989. Dynamics of wetting of tiny drops: ellipsometric study of the late stages of spreading.Phys. Rev. Lett., 62, 1286.
[138] Hill, R. 1950. Mathematical Theory of Plasticity. Oxford University Press.
[139] Hill, R., Lee, E. H. and Tupper, S. J. 1947. Theory of wedge-indentation of ductile metals.Proc. R. Soc. A, 188, 273.
[140] Hirano, M., Shinjo, K., Kaneko, R. and Murata, Y. 1991. Anisotropy of frictional forces in muscovite mica.Phys. Rev. Lett., 67, 2642.
[141] Hirano, M., Shinjo, K., Kaneko, R. and Murata, Y. 1997. Observation of superlubricity by scanning tunneling microscopy.Phys. Rev. Lett., 78, 1448.
[142] Howald, L., Lüthi, R., Meyer, E. and Güntherodt, H.J. 1995. Atomic-force microscopy on the Si(111)7 x 7 surface.Phys.Rev.B, 51, 5484.
[143] Hutter, J. L. and Bechhoefer, J. 1993. Calibration of atomic- force microscope tips.Rev. Sci. Instrum., 64, 1868.
[144] Hyun, S., Pei, L., Molinari, J.-F. and Robbins, M. O. 2004. Finite-element analysis of contact between elastic self-affine surfaces.Phys. Rev. E, 70, 026117.
[145] Inglis, C.E. 1913. Stresses in a plate due to the presence of cracks and sharp corners.Proc. Inst. Naval. Arch., 55, 163.
[146] Irwin, G. 1957. Analysis of stresses and strains near the end of a crack traversing a plate.J. App. Mech., 24, 361.
[147] Ishikawa, M., Okita, S., Minami, N. and Miura, K. 2000. Load dependence of lateral force and energy dissipation at NaF(001) surface.Surf. Sci., 445, 488.
[148] Israelachvili, J. N. 1991. Intermolecular and Surface Forces. Academic Press.
[149] Israelachvili, J. N. 1992. Adhesion forces between surfaces in liquids and condensable vapours.Surf. Sci. Rep., 14, 109.
[150] Jacobs, T. D. B. and Carpick, R. 2013. Nanoscale wear as a stress-assisted chemical reaction.Nature Mat., 8, 108.
[151] Jansen, L., Hölscher, H., Fuchs, H. and Schirmeisen, A. 2010. Temperature dependence of atomic-scale stick-slip friction.Phys. Rev. Lett., 104, 256101.
[152] Jarvis, S. P., Uchihashi, T., Ishida, T., Tokumoto, H. and Nakayama, Y. 2000. Temperature dependence of atomic-scale stick-slip friction.J. Phys. Chem., 104, 6091.
[153] Johnson, K. L. 1955. Surface interaction between elastically loaded bodies under tangential forces.Proc. Roy. Soc. A, 230, 521.
[154] Johnson, K. L. 1961. Energy dissipation at spherical surfaces in contact transmitting oscillating forces.J. Mech. Eng. Sci., 3, 362.
[155] Johnson, K. L. 1968. Deformation of a plastic wedge by a rigid flat die under the action of a tangential force.J. Mech. Phys. Sol., 16, 395.
[156] Johnson, K. L. 1987. Contact Mechanics. Cambridge University Press.
[157] Johnson, K. L., Kendall, K. and Roberts, A. D. 1971. Surface energy and the contact of elastic solids.Proc. Roy. Soc. A, 324, 301.
[158] Johnson, K. L., Greenwood, J. A. and Higginson, J. G. 1985. The contact of elastic regular wavy surfaces.Int. J. Mech. Sci., 27, 383.
[159] Johnson, W., Mahtab, F. U. and Haddow, J. B. 1964. Indentation of a semi-infinite block by a wedge of comparable hardness.Int. J. Mech. Sci., 6, 329.
[160] Jost, H. P. 1966. Lubrication (Tribology) Education and Research. A Report on the Present Position and Industry's Needs. Dept. of Education and Science, Her Majesty's Stationery Office.
[161] Kalker, J. J. 1967a. On the rolling contact of two elastic bodies in the presence of dry friction. PhD Thesis, Technical University Delft.
[162] Kalker, J. J. 1967b. A strip theory for rolling with slip and spin.Proc. Kon. Ned. Akad. van Wetenschappen., B70, 10.
[163] Kato, K. 1915. Mathematical investigation on the mechanical problems of transmission line (in Japanese).J. Jap. Soc. Mech. Eng., 19, 41.
[164] Kawai, S., Canova, F. F., Glatzel, T., Foster, A. S. and Meyer, E. 2011. Atomic-scale dissipation processes in dynamic force spectroscopy.Phys. Rev. B, 84, 115415.
[165] Kawai, S., Koch, M., Gnecco, E.et al. 2014. Quantifying the atomic-level mechanics of single long physisorbed molecular chains.PNAS, 111, 3968.
[166] Kisiel, M., Gnecco, E., Gysin, U., Marot, L., Rast, S. and Meyer, E. 2011. Suppression of electronic friction on Nb films in the superconducting state.Nat. Mat., 10, 119.
[167] Koch, S., Stradi, D., Gnecco, E. et al. 2013. Elastic response of graphene nanodomes.ACS Nano, 7, 2927.
[168] Kopta, S. and Salmeron, M. 2000. The atomic scale origin of wear on mica and its contribution to friction.J. Chem. Phys., 113, 8249.
[169] Kramers, H. A. 1940. Brownian motion in a field of force and the diffusion model of chemical reactions.Physica, 7, 284.
[170] Krim, J. and Widom, A. 1988. Damping of a crystal oscillator by an adsorbed monolayer and its relation to interfacial viscosity.Phys.Rev.B, 38, 12184.
[171] Krylov, S. Y., Jinesh, K. B., Valk, H., Dienwiebel, M. and Frenken, J. W. M. 2005. Thermally induced suppression of friction at the atomic scale.Phys. Rev. E, 71, 65101.
[172] Lakes, R. S. 1987. Foam structures with a negative Poisson's ratio.Science, 235, 1038.
[173] Lamb, H. 1911. On the uniform motion of a sphere through a viscous fluid.Phil. Mag., 21, 112.
[174] Lamb, H. 1932. Hydrodynamics. Cambridge University Press.
[175] Landau, L. D. and Lifshitz, E. M. 1976. Mechanics. Third edn. Butterworth-Heinemann.
[176] Landau, L. D. and Lifshitz, E. M. 1987. Fluid Mechanics. Second edn. Butterworth-Heinemann.
[177] Landau, L. D., Pitaevskii, L. P., Lifshitz, E. M. and Kosevich, M. 1986. Theory of Elasticity. Third edn. Butterworth-Heinemann.
[178] Landman, U., Luedtke, W. D. and Ringer, E. M. 1992. Atomistic mechanisms of adhesive contact formation and interfacial processes.Wear, 153, 3.
[179] Langer, M., Kisiel, M., Pawlak, R. et al. 2014. Giant frictional dissipation peaks and charge-density wave slips at the NbSe2 surface.Nature Mat., 13, 173.
[180] Langewisch, G., Falter, J., Fuchs, H. and Schirmeisen, A. 2013. Giant frictional dissipation peaks and charge-density wave slips at the NbSe2 surface.Phys. Rev. Lett., 110, 036101.
[181] Lantz, M. A., OShea, S. J., Welland, M. E. and Johnson, K. L. 1997. Atomic-force-microscope study of contact area and friction on NbSe2.Phys.Rev.B, 55, 10776.
[182] Lantz, M. A., Wiesmann, D. and Gotsmann, B. 2009. Dynamic superlubricity and the elimination of wear on the nanoscale.Nature Nanotech., 4, 586.
[183] Lee, D. W., Kang, J. H., Gysin, U. et al. 2005. Fabrication and evaluation of single-crystal silicon cantilevers with ultra-low spring constants. J. Micromech. Microeng., 15, 2179.
[184] Leung, O. M. and Goh, M. C., 1992. Orientational ordering of polymers by atomic force microscope tip–surface interaction. Science, 255, 64.
[185] Lifshitz, R. and Roukes, M. 2000. Thermoelastic damping in micro- and nanomechanical systems. Phys. Rev. B, 61, 5600.
[186] Linnemann, R., Gotszalk, T., Rangelow, I. W., Dumania, P. and Oesterschulze, E. 1996. Atomic force microscopy and lateral force microscopy using piezoresistive cantilevers. J. Vac. Sci. Technol. B, 14, 856.
[187] Livshits, A. I. and Shluger, A. L. 1997. Self-lubrication in scanning-forcemicroscope image formation on ionic surfaces,. Phys. Rev. B, 56, 12482.
[188] Lockett, F. 1963. Indentation of a rigid/plastic material by a conical indenter. J. Mech. Phys. Sol., 11, 345.
[189] Loppacher, C., Bammerlin, M., Guggisberg, M. et al. 1999. Phase variation experiments in non-contact dynamic force microscopy using phase locked loop techniques. Appl. Surf. Sci., 140, 287.
[190] Lorenz, B. and Persson, B. N. J. 2009. Leak rate of seals: comparison of theory with experiment. Europhys. Lett., 86, 44006.
[191] Lorenz, B. and Persson, B. N. J. 2010. Time-dependent fluid squeeze-out between solids with rough surfaces. Eur. Phys. J. E, 32, 281.
[192] Lorenz, B., Persson, B. N. J., Dieluweit, S. and Tada, T. 2011. Rubber friction: comparison of theory with experiment. Eur. Phys. J. E, 34, 129.
[193] Love, A. E. H. 1888. On the small free vibrations and deformations of elastic shells. Phil. Trans. Roy. Soc., 17, 491.
[194] Love, A. E. H. 1929. Stress produced in a semi-infinite solid by pressure on part of the boundary. Phil. Trans. Roy. Soc. A, 228, 377.
[195] Love, A. E. H. 1939. Boussinesq's problem for a rigid cone. Quart. J. Math. (Oxford series), 10, 161.
[196] Luan, B. and Robbins, M. O. 2006. The breakdown of continuum models for mechanical contacts. Nature, 435, 929.
[197] Lubkin, J. L. 1951. Torsion of elastic spheres in contact. Trans. ASME, Series E, J. App. Mech., 18, 183.
[198] Luebbe, J., Troeger, L., Torbruegge, S. et al. 2010. Achieving high effective Q-factors in ultra-high vacuum dynamic force microscopy. Meas. Sci. Technol., 21, 125501.
[199] Lüthi, R., Meyer, E., Haefke, H., Howald, L., Gutmannsbauer, W. and Güntherodt, H. J. 1994. Sled-type motion on the nanometer scale: determination of dissipation and cohesive energies of C60. Science, 266, 1979.
[200] Lüthi, R., Meyer, E., Bammerlin, M. et al. 1997. Ultrahigh vacuum atomic force microscopy: true atomic resolution. Surf. Rev. Lett., 4, 1025.
[201] Maier, S., Sang, Y., Filleter, T. et al. 2005. Fluctuations and jump dynamics in atomic friction experiments. Phys. Rev. B, 72, 245418.
[202] Maier, S., Gnecco, E., Baratoff, A. and Meyer, E. 2008. Atomic-scale friction modulated by a buried interface: combined atomic and friction force microscopy experiments. Phys. Rev. B, 78, 045432.
[203] Mandel, J. 1967. Rolling resistance of an undeformable cylinder on a perfectly plastic solid. Friction and Wear (in French). GAMI, Paris.
[204] Marder, M. 1991. New dynamical equation for crack. Phys. Rev. Lett., 66, 2484.
[205] Marti, O., Colchero, J. and Mlynek, J. 1990. Combined scanning force and friction microscopy of mica. Nanotechnology, 1, 141.
[206] Mate, C. M., McClelland, G. M., Erlandsson, R. and Chiang, S. 1987. Atomic-scale friction of a tungsten tip on a graphite surface. Phys. Rev. Lett., 59, 1942.
[207] Maugis, D. 1992. Adhesion of spheres – the JKR-DMT transition using a Dugdale model. J. Colloid Interface Sci., 150, 243.
[208] Maxwell, J. C. 1866. On the viscosity or internal friction of air and other gases. Phil. Trans. Roy. Soc. Lond., 156, 249.
[209] Maxwell, J. C. 1868. On the dynamical theory of gases. Phil. Mag., 35, 129.
[210] May, W. D., Morris, E. L. and Atack, D. 1959. Rolling friction of a hard cylinder over a viscoelastic material. J. App. Phys., 30, 1713.
[211] McClelland, G. M. and Glosli, J. N. 1992. Friction at the atomic scale. NATO ASI Series E, eds. L., Singer and H. M., Pollock, vol. 220. Kluwer, Dordrecht.
[212] McGuiggan, P. M. and Israelachvili, J. N. 1990. Adhesion and short-range force between surfaces. Part II: Effects of surface lattice mismatch. J. Mater. Res., 5, 2232.
[213] Mecke, K. R. and Dietrich, S. 1999. Effective Hamiltonian for liquid–vapor interfaces. Phys. Rev. E, 59, 6766.
[214] Medyanik, S. N., Liu, W. K., Sung, I. H. and Carpick, R. W. 2006. Predictions and observations of transitions in atomic-scale stick-slip friction. Phys. Rev. Lett., 97, 136106.
[215] Melan, E. 1938. On the plasticity of the spatial continuum (in German). Ing. Arch., 9, 116.
[216] Merkle, A. P. and Marks, L. D. 2007. Friction in full view. Appl. Phys. Lett., 90, 064101.
[217] Meyer, E., Hug, H. and Bennewitz, R. 2004. Scanning Probe Microscopy: The Lab on the Tip. Springer.
[218] Meyer, E., Lüthi, R., Howald, L., Bammerlin, M., Guggisberg, M. and Güntherodt, H. J. 1996. Site-specific friction force spectroscopy. J. Vac. Sci. Technol. B, 14, 1285.
[219] Meyer, G. and Amer, N. 1990. Simultaneous measurement of lateral and normal forces with an optical-beam-deflection atomic force microscope. Appl. Phys. Lett., 57, 2089.
[220] Mindlin, R. D. and Deresiewicz, H. 1953. Elastic spheres in contact under varying oblique forces. Trans. ASME E, J. App. Mech., 20, 327.
[221] Mindlin, R. D., Mason, W. P., Osmer, J. F. and Deresiewicz, H. 1952. Effects of an oscillating tangential force on the contact surfaces of elastic spheres. Proc. 1st US Nat. Congress ofApp. Mech., E., Sternberg (ed.).
[222] Minor, A. M., Morris, J. W. and Stach, E. A. 2001. Quantitative in-situ nanoindentation in an electron microscope. Appl. Phys. Lett., 79, 1625.
[223] Moriwaki, T. and Okuda, K. 1989. Machinability of copper in ultra-precision micro diamond cutting. Ann. CIRP, 38, 115.
[224] Mougin, K., Rao, A., Cuberes, M. T. et al. 2008. Manipulation of gold nanoparticles: influence of surface chemistry, temperature, and environment (vacuum versus ambient atmosphere). Langmuir, 24, 1577.
[225] Murakami, Y. (ed.). 1987. Stress Intensity Factor Handbook. Pergamon Press.
[226] Müser, M. H. and Robbins, M. O. 2000. Conditions for static friction between flat crystalline surfaces. Phys. Rev. B, 61, 2335.
[227] Müser, M. H. 2004. Structural lubricity: role of dimension and symmetry. Europhys. Lett., 66, 97.
[228] Müser, M. H., Wenning, L. and Robbins, M. O. 2001. Simple microscopic theory of Amontons's laws for static friction. Phys. Rev. Lett., 86, 1295.
[229] Napolitano, S., DAcunto, M., Baschieri, P., Gnecco, E. and Pingue, P. 2012. Ordered rippling of polymer surfaces by nanolithography: influence of scan pattern and boundary effects. Nanotechnology, 23, 475301.
[230] Navier, C. L. M. H. 1822. Memoir on the laws of fluid motion (in French). Mem. Acad. Sci. Inst. France, 6, 380.
[231] Nayak, P. R. 1971. Random process model of rough surfaces. ASME J. Lubr. Technol., 93, 398.
[232] Neubauer, G., Cohen, S. R., McClelland, G. M., Horn, D. E. and Mate, C. M. 1990. Force microscopy with a bidirectional capacitance sensor. Rev. Sci. Instrum., 61, 2296.
[233] Neumeister, J. M. and Ducker, W. A. 1994. Lateral, normal, and longitudinal spring constants of atomic-force microscopy cantilevers. Rev. Sci. Instrum., 65, 2527.
[234] Nieminen, J. A. 1992. Mechanism of lubrication by a thin solid film on a metal-surface. Modelling Simul. Mater. Sci. Eng., 1, 83.
[235] Nita, P., Casado, S., Dietzel, D., Schirmeisen, A. and Gnecco, E. 2013. Spinning and translational motion of Sb nanoislands manipulated on MoS2. Nanotechnology, 24, 325302.
[236] Nita, P., Pimentel, C., Luo, F. et al. 2014. Molecular resolution friction microscopy of Cu phthalocyanine thin films on dolomite (104) in water. Nanoscale, 6, 8334.
[237] Oliver, W. C. and Pharr, G. M. 1992. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res., 7, 1564.
[238] Oseen, C. W. 1910. On the Stokes' formula and a related problem in hydrodynamics (in German). Ark. Mat. Astron. Fys., 6, 1.
[239] Park, J. Y., Ogletree, D. F., Thiel, P. A. and Salmeron, M. 2006. Electronic control of friction in silicon pn junctions. Science, 313, 186.
[240] Peressadko, A. G., Hosoda, N. and Persson, B. N. J. 2005. Influence of surface roughness on adhesion between elastic bodies. Phys. Rev. Lett., 95, 124301.
[241] Persson, A. 1964. On the stress distribution of cylindrical elastic bodies in contact. Doctoral dissertation, Chalmers Tekniska Hogskola, Göteborg.
[242] Persson, B. N. J. 1991. Surface resistivity and vibrational damping in adsorbed layers. Phys. Rev. B, 44, 3277.
[243] Persson, B. N. J. 1993. Theory of friction and boundary lubrication. Phys. Rev. B, 48, 18140.
[244] Persson, B. N. J. 1996. On the origin of the stick-slip motion of lubricated surfaces. Chem. Phys. Lett., 254, 114.
[245] Persson, B. N. J. 2000. Sliding Friction: Physical Principles and Applications. Second edn. Springer.
[246] Persson, B. N. J. 2001a. Theory of rubber friction and contact mechanics. J. Chem. Phys., 155, 3840.
[247] Persson, B. N. J. 2001b. Theory of time-dependent plastic deformation in disordered solids. Phys. Rev. B, 61, 5949.
[248] Persson, B. N. J. 2002. Adhesion between an elastic body and a randomly rough hard surface. Eur. Phys. J. E., 8, 385.
[249] Persson, B. N. J. 2003. On the mechanism of adhesion in biological systems. J. Chem. Phys., 118, 7614.
[250] Persson, B. N. J. 2006a. Contact mechanics for randomly rough surfaces. Surf. Sci. Rep., 61, 201.
[251] Persson, B. N. J. 2006b. Rubber friction: role of the flash temperature. J. Phys.: Condens. Matter, 18, 7789.
[252] Persson, B. N. J. 2007. Relation between interfacial separation and load: a general theory of contact mechanics. Phys. Rev. Lett., 99, 125502.
[253] Persson, B. N. J. 2010. Fluid dynamics at the interface between contacting elastic solids with randomly rough surfaces. J. Phys.: Condens. Matter, 22, 265004.
[254] Persson, B. N. J. 2012. Contact mechanics for layered materials with randomly rough surfaces. J. Phys.: Condens. Matter, 24, 095008.
[255] Persson, B. N. J. and Brener, E. A. 2005. Crack propagation in viscoelastic solids. Phys. Rev. E, 71, 036123.
[256] Persson, B. N. J. and Rydberg, R. 1985. Brownian motion and vibrational phase relaxation at surfaces: CO on Ni(111). Phys. Rev. B, 32, 3586.
[257] Persson, B. N. J. and Tosatti, E. 1994. Layering transition in con ned molecular thin lms: nucleation, growth and analogy with spreading of wetting drop. Phys. Rev. B, 50, 5590.
[258] Persson, B. N. J. and Tosatti, E. 1999. Theory of friction: elastic coherence length and earthquake dynamics. Solid State Commun., 109, 739.
[259] Persson, B. N. J. and Tosatti, E. 2000. Qualitative theory of rubber friction and wear. J. Chem. Phys., 112, 2021.
[260] Persson, B. N. J. and Tosatti, E. 2001. The effect of surface roughness on the adhesion of elastic solids. J. Phys. Chem., 115, 5597.
[261] Persson, B. N. J. and Volokitin, A. I. 1995. Electronic friction of physisorbed molecules. J. Chem. Phys., 103, 8659.
[262] Persson, B. N. J. and Yang, C. 2008. Theory of the leak-rate of seals. J. Phys.: Condens. Matter, 20, 315011.
[263] Persson, B. N. J., Albohr, O., Creton, C. and Peveri, V. 2004. Contact area between a viscoelastic solid and a hard, randomly rough substrate. J. Chem. Phys., 120, 8779.
[264] Persson, B. N. J., Albohr, O., Heinrich, G. and Ueba, H. 2005a. Crack propagation in rubber-like materials. J. Phys.: Condens. Matter, 17, R1071.
[265] Persson, B. N. J., Albohr, O., Tartaglino, U., Volokitin, A. I. and Tosatti, E. 2005b. On the nature of surface roughness with application to contact mechanics, sealing, rubber friction and adhesion. J. Phys.: Condens. Matter, 17, R1.
[266] Persson, B. N. J., Lorenz, B. and Volokitin, A. I. 2010. Heat transfer between elastic solids with randomly rough surfaces. Eur. Phys. J. E, 31, 3.
[267] Petroff, N. P. 1883. Friction in machines and the effect of lubricant (in Russian). Inzh. Zh. St. Petersburg, 1, 71.
[268] Peyrard, M. and Aubry, S. 1983. Critical behaviour at the transition by breaking of analyticity in the discrete Frenkel–Kontorova model. J. Phys. C, 16, 1593.
[269] Pfeiffer, O., Loppacher, C., Wattinger, C. et al. 2000. Using higher flexural modes in non-contact force microscopy. Appl. Surf. Sci., 157, 337.
[270] Pietrement, O. and Troyon, M. 2001. Study of the interfacial shear strength pressure dependence by modulated lateral force microscopy. Langmuir, 17, 6540.
[271] Pimentel, C., Pina, C. M. and Gnecco, E. 2013. Epitaxial growth of calcite crystals on dolomite and kutnahorite (104) surfaces. Cryst. Growth Des., 13, 2557.
[272] Pina, C. M., Miranda, R. and Gnecco, E. 2012. Anisotropic surface coupling while sliding on dolomite and calcite crystals. Phys. Rev. B, 85, 073402.
[273] Poiseuille, J. L. M. 1840. Experimental research on the motion of liquids in tubes of very small diameter (in French)Computes Reduces, 11, 961.
[274] Polaczyk, C., Schneider, T., Schöfer, J. and Santner, E. 1998. Microtribological behavior of Au(001) studied by AFM/FFM. Surf. Sci., 402, 454.
[275] Prandtl, L. 1903. On the torsion of prismatic rods (in German). Phys. Zeitschr., 4, 758.
[276] Prandtl, L. 1918. Theory of lifting surfaces (in German). Nachr. Ges. Wiss. Göttingen. Math.-Phys. Kl., 151.
[277] Prandtl, L. 1928. A conceptual model for the kinetic theory of solids (in German). Z. angew. Math. Mech., 8, 85.
[278] Qi, Y., Cheng, Y. T., Cagin, T. and GoddardIII, W. A. 2002. Friction anisotropy at Ni(100)/(100) interfaces: molecular dynamics studies. Phys. Rev. B, 66, 085420.
[279] Rabe, U., Janser, K. and Arnold, W. 1996. Vibrations of free and surface-coupled atomic force microscope cantilevers: theory and experiment. Rev. Sci. Instrum., 67, 3281.
[280] Radok, J. R. M. 1957. Viscoelastic stress analysis. Q. App. Math., 15, 198.
[281] Rao, A., Gnecco, E., Marchetto, D. et al. 2009a. The analytical relations between particles and probe trajectories in atomic force microscope nanomanipulation. Nanotechnology, 20, 115706.
[282] Rao, A., Wille, M. L., Gnecco, E., Mougin, K. and Meyer, E. 2009b. Trajectory fluctuations accompanying the manipulation of spherical nanoparticles. Phys. Rev. B, 80, 193405.
[283] Rast, S., Gysin, U., Ruff, P., Gerber, C., Meyer, E. and Lee, D. W. 2006. Force microscopy experiments with ultrasensitive cantilevers. Nanotechnology, 17, 189.
[284] Rayleigh, L. 1917. On the dynamics of revolving fluids. Proc. Roy. Soc. London A, 93, 148.
[285] Reynolds, O. 1883. An experimental investigation of the circumstances which determine whether the motion of water shall be direct or sinuous, and of the law of resistance in parallel channels. Phil. Trans. Roy. Soc. London, 174, 935.
[286] Reynolds, O. 1886. On the theory of lubrication and its application to Mr Beauchamp Tower's experiments including an experimental determination of the viscosity of olive oil. Phil. Trans. Roy. Soc. London, 177, 157.
[287] Ribeiro, R., Shan, Z., Minor, A. M. and Liang, H. 2007. In situ observation of nano-abrasive wear. Wear, 263, 1556.
[288] Rice, J. R. 1993. Spatio-temporal complexity of slip on a fault. J. Geophys. Res., 98, 9885.
[289] Richmond, O., Morrison, H. L. and Devenpeck, M. L. 1974. Sphere indentation with application to the Brinell hardness test. Int. J. Mech. Sci., 16, 75.
[290] Riedo, E., Levy, F. and Brune, H. 2002. Kinetics of capillary condensation in nanoscopic sliding friction. Phys. Rev. Lett., 88, 185505.
[291] Riedo, E., Gnecco, E., Bennewitz, R., Meyer, E. and Brune, H. 2003. Interaction potential and hopping dynamics governing sliding friction. Phys. Rev. Lett., 91, 084502.
[292] Risken, H. 1989. The Fokker-Planck Equation, 2nd edn. Springer.
[293] Ritter, C., Heyde, M., Schwarz, U. D. and Rademann, K. 2002. Controlled translational manipulation of small latex spheres by dynamic force microscopy. Langmuir, 18, 7798.
[294] Roth, R., Fajardo, O. Y., Mazo, J. J., Meyer, E. and Gnecco, E. 2014. Lateral vibration effects in atomic-scale friction. Appl. Phys. Lett., 104, 083103.
[295] Rubio, G., Agrait, N. and Vieira, S. 1996. Atomic-sized metallic contacts: mechanical properties and electronic transport. Phys. Rev. Lett., 76, 2302.
[296] Rugar, D., Budakian, R., Mamin, H. J. and Chui, B. W. 2004. Single spin detection by magnetic resonance force microscopy. Nature, 43, 329.
[297] Ruina, A. I. 1983. Slip instability and state variable friction laws. J. Geophys. Res., 88, 10359.
[298] Rybczynski, W. 1911. On the progressive motion of a liquid sphere in a viscous medium (in German). Bull. Acad. Sci. Cracovie A, 40.
[299] Sader, J. E., Chon, J. W. M. and Mulvaney, P. 1999. Calibration of rectangular atomic force microscope cantilevers. Rev. Sci. Instr., 70, 3967.
[300] Saitoh, K., Hayashi, K., Shibayama, Y. and Shirahama, K. 2010. Gigantic maximum of nanoscale noncontact friction. Phys. Rev. Lett., 105, 236103.
[301] Samuels, L. E. and Mulhearn, T. O. 1956. The deformed zone associated with indentation hardness impressions. J. Mech. Phys. Sol., 5, 125.
[302] Sang, Y., Dubé, M. and Grant, M. 2001. Thermal effects in atomic friction. Phys. Rev. Lett., 87, 174301.
[303] Sasaki, N. and Tsukada, M. 2001. Theoretical evaluation of the frequency shift and dissipated power in noncontact atomic force microscopy. Appl. Phys. A, 72, S39.
[304] Schmidt, R. H., Haugstad, G. and L.Gladfelter, W. 1999. Correlation of nanowear patterns to viscoelastic response in a thin polystyrene melt. Langmuir, 15, 317.
[305] Schwarz, U. D., Zwörner, O., Köster, P. and Wiesendanger, R. 1997. Quantitative analysis of the frictional properties of solid materials at low loads. Phys. Rev. B, 56, 6987.
[306] Sharvin, Y. V. 1965. A possible method for studying Fermi surfaces. Sov. Phys. JETP, 21, 655.
[307] Sheehan, P. E. and Lieber, C. M. 1996. Nanotribology and nanofabrication of MoO3 structures by atomic force microscopy. Science, 272, 1158.
[308] Sih, J. C. 1973. Handbook of Stress-Intensity Factors. Inst. of Fracture and Solid Mech., Lehigh University.
[309] Sneddon, I. N. 1946. Boussinesq's problem for a flat-ended cylinder. Proc. Cambridge Phil. Soc., 42, 29.
[310] Sneddon, I. N. 1965. The relation between load and penetration in the axisymmetric Boussinesq problem for a punch of arbitrary profile. Int. J. Eng. Sci., 3, 47.
[311] Socoliuc, A., Gnecco, E., Bennewitz, R. and Meyer, E. 2003. Ripple formation induced in localized abrasion. Phys. Rev. B, 68, 115416.
[312] Socoliuc, A., Bennewitz, R., Gnecco, E. and Meyer, E. 2004. Transition from stickslip to continuous sliding in atomic friction: entering a new regime of ultralow friction. Phys. Rev. Lett., 92, 134301.
[313] Socoliuc, A., Gnecco, E., Maier, S., Pfeiffer, O., Baratoff, A. and Meyer, E. 2006. Atomic-scale control of friction by actuation of nanometer-sized contacts. Science, 313, 207.
[314] Sørensen, M. R., Jacobsen, K. W. and Stoltze, P. 1996. Simulations of atomic-scale sliding friction. Phys. Rev. B, 53, 2101.
[315] Spence, D. A. 1973. An eigenvalue problem for elastic contact with finite friction. Proc. Cambridge Phil. Soc., 73, 249.
[316] Steele, W. A. 1973. The physical interaction of gases with crystalline solids. Surf. Sci., 36, 317.
[317] Steiner, P., Roth, R., Gnecco, E., Glatzel, T., Baratoff, A. and Meyer, E. 2009. Modulation of contact resonance frequency accompanying atomic-scale stick-slip in friction force microscopy. Nanotechnology, 20, 495701.
[318] Steiner, P., Roth, R., Gnecco, E., Baratoff, A. and Meyer, E. 2010. Angular dependence of static and kinetic friction on alkali halide surfaces. Phys. Rev. B, 82, 205417.
[319] Steiner, P., Gnecco, E., Krok, F., et al. 2011. Atomic-scale friction on stepped surfaces of ionic crystals. Phys. Rev. Lett., 106, 186104.
[320] Stillinger, F. H. and Weber, T. A. 1985. Computer simulation of local order in condensed phases of silicon. Phys. Rev. B, 31, 5262.
[321] Stilweel, N. A. and Tabor, D. 1961. Elastic recovery of conical indentations. Proc. Phys. Soc, 78, 169.
[322] Stipe, B. C., Mamin, H. J., Stowe, T. D., Kenny, T. W. and Rugar, D. 2001. Magnetic dissipation and fluctuations in individual nanomagnets measured by ultrasensitive cantilever magnetometry. Phys. Rev. Lett., 86, 2874.
[323] Stokes, G. G. 1845. On the theories of internal friction of fluids in motion. Trans. Cambridge Phil. Soc., 8, 287.
[324] Stokes, G. G. 1851. On the effect of the internal friction of fluids on the motion of pendulums. Trans. Cambridge Phil. Soc., 9, 8.
[325] Stolarski, T. A. 1990. Tribology in Machine Design. Butterworth-Heinemann Ltd.
[326] Such, B., Krok, F. and Szymonski, M. 2008. AFM tip-induced tipple pattern on AIII-BV semiconductor surfaces. Appl. Surf. Sci., 254, 5431.
[327] Tabor, D. 1948. A simple theory of static and dynamic hardness. Proc. Roy. Soc. A, 192, 247.
[328] Tabor, D. 1977. Surface forces and surface interactions. J. Colloid Interface Sci., 58, 2.
[329] Tanner, L. 1979. The spreading of silicon oil drops on horizontal surfaces. J. Phys. D, 12, 1473.
[330] Taylor, G. I. 1923. Stability of a viscous liquid contained between two rotating cylinders. Phil. Trans. Roy. Soc. London A, 233, 289.
[331] Ternes, M., Lutz, C. P., Hirjibehedin, C. F., Giessibl, F. J. and Heinrich, A. J. 2008. The force needed to move an atom on a surface. Science, 319, 1066.
[332] Tomlinson, G. A. 1929. A molecular theory of friction. Phil. Mag., 7, 905.
[333] Tripathi, M., Paolicelli, G., D'Addato, S. and Valeri, S. 2012. Controlled AFM detachments and movement of nanoparticles: gold clusters on HOPG at different temperatures. Nanotechnology, 23, 245706.
[334] Vanossi, A., Manini, N., Urbakh, M., Zapperi, S. and Tosatti, E. 2013. Modeling friction: from nanoscale to mesoscale. Rev. Mod. Phys., 85, 529.
[335] Verhoeven, G. S., Dienwiebel, M. and Frenken, J. W. M. 2004. Model calculations of superlubricity of graphite. Phys. Rev. B, 70, 165418.
[336] Volokitin, A. I., Persson, B. N. J. and Ueba, H. 2006. Enhancement of noncontact friction between closely spaced bodies by two-dimensional systems. Phys.Rev.B, 73, 165423.
[337] von Kármán, T. 1921. On the laminar and turbulent friction (in German). ZAMM, 1, 233.
[338] von Kármán, T. 1930. Mechanical similitude and turbulence (in German). Nach. Ges. Wiss. Göttingen, Math.- Phys. Kl., 5, 58.
[339] von Mises, R. 1913. Mechanics of solid bodies in plastic deformable state (in German). Nach. Ges. Wiss. Göttingen, Math.- Phys. Kl., 1, 582.
[340] von Schlippe, B. and Dietrich, R. 1941. Shimmying of a pneumatic wheel (in German). Ber. Lilienthal Ges., 140, 35.
[341] Westergaard, H. M. 1939. Bearing pressures and cracks. J. App. Mech., 6, 49.
[342] Williams, M. L., Landel, R. F. and Ferry, J. D. 1955. The temperature dependence of relaxation mechanisms in amorphous polymers and other glass-forming liquids. J. Amer. Chem. Soc., 77, 3701.
[343] Wyder, U., Baratoff, A., Meyer, E. et al. 2007. Interpretation of atomic friction experiments based on atomistic simulations. J. Vac. Sci. Technol. B, 25, 1547.
[344] Yang, C. and Persson, B. N. J. 2008. Contact mechanics: contact area and interfacial separation from small contact to full contact. J. Phys.: Condens. Matter, 20, 215214.
[345] Yang, J. 2000. Surface effects and high quality factors in ultra-thin single-crystal silicon cantilevers. Appl. Phys. Lett., 77, 3860.
[346] Yang, W. H. 1966. The contact problem for viscoelastic bodies. Trans. ASME, Series E, J. App. Mech., 33, 395.
[347] Yanson, A. I., Rubio Bollinger, G., Van den Brom, H. E., Agrait, N. and van Ruiten-beek, J. M. 1998. Formation and manipulation of a metallic wire of single gold atoms. Nature, 395, 783.
[348] Yoshizawa, H., Chen, Y. L. and Israelachvili, J. 1993. Recent advances in molecular level understanding of adhesion, friction and lubrication. Wear, 168, 161.
[349] Young, T. 1805. An essay on the cohesion of fluids. Phil. Trans. Roy. Soc. London, 95, 65.
[350] Zener, C. 1938. Interfacial friction in solids III. Experimental demonstration of thermoelastic internal friction. Phys. Rev., 53, 100.
[351] Zhao, X., Hamilton, M., Sawyer, W. G. and Perry, S. S. 2007. Thermally activated friction. Tribol. Lett., 27, 113.
[352] Zilberman, S., Becker, T., Mugele, F., Persson, B. N. J. and Nitzan, A. 2003. Dynamics of squeeze-out: theory and experiments. J. Chem. Phys., 118, 11160.
[353] Zwörner, O., Hölscher, H., Schwarz, U. D. and Wiesendanger, R. 1998. The velocity dependence of friction forces in point-contact friction. Appl. Phys. A, 66, 263.

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Book summary page views

Total views: 0 *
Loading metrics...

* Views captured on Cambridge Core between #date#. This data will be updated every 24 hours.

Usage data cannot currently be displayed.