Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-31T13:33:12.428Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  16 June 2022

Edgard A. Pimentel
Affiliation:
Universidade de Coimbra, Portugal
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2022

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Acerbi, E., and Mingione, G. 2001a. Regularity results for a class of functionals with non-standard growth. Arch. Ration. Mech. Anal., 156(2), 121140.CrossRefGoogle Scholar
Acerbi, E., and Mingione, G. 2001b. Regularity results for a class of quasiconvex functionals with nonstandard growth. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 30(2), 311339.Google Scholar
Acerbi, E., and Mingione, G. 2002a. Regularity results for electrorheological fluids: the stationary case. C. R. Math. Acad. Sci. Paris, 334(9), 817822.Google Scholar
Acerbi, E., and Mingione, G. 2002b. Regularity results for stationary electrorheological fluids. Arch. Ration. Mech. Anal., 164(3), 213259.Google Scholar
Acerbi, E., and Mingione, G. 2005. Gradient estimates for the p(x)-Laplacean system. J. Reine Angew. Math., 584, 117148.CrossRefGoogle Scholar
Acerbi, E., and Mingione, G. 2007. Gradient estimates for a class of parabolic systems. Duke Math. J., 136(2), 285320.CrossRefGoogle Scholar
Amaral, M. D., and Teixeira, E. V. 2015. Free transmission problems. Comm. Math. Phys., 337(3), 14651489.Google Scholar
Araújo, D., and Sirakov, B. 2021. Sharp boundary and global regularity for degenerate fully nonlinear elliptic equations. arXiv preprint arXiv:2108.01150.Google Scholar
Araújo, D., Ricarte, G., and Teixeira, E. 2015. Geometric gradient estimates for solutions to degenerate elliptic equations. Calc. Var. Partial Differential Equations, 53(3–4), 605625.Google Scholar
Araújo, D., Teixeira, E., and Urbano, J.-M. 2017. A proof of the -regularity conjecture in the plane. Adv. Math., 316, 541553.CrossRefGoogle Scholar
Araújo, D., Teixeira, E., and Urbano, J. M. 2018. Towards the -regularity conjecture in higher dimensions. Int. Math. Res. Not. IMRN, 64816495.Google Scholar
Araújo, D., Maia, A., and Urbano, J. M. 2020. Sharp regularity for the inhomogeneous porous medium equation. J. Anal. Math., 140(2), 395407.Google Scholar
Armstrong, S., and Tran, H. 2015. Viscosity solutions of general viscous Hamilton– Jacobi equations. Math. Ann., 361(3–4), 647687.CrossRefGoogle Scholar
Armstrong, S., Silvestre, L., and Smart, C. 2012. Partial regularity of solutions of fully nonlinear, uniformly elliptic equations. Comm. Pure Appl. Math., 65(8), 11691184.CrossRefGoogle Scholar
Bardi, M., and Capuzzo–Dolcetta, I. 1997. Optimal Control and Viscosity Solutions of Hamilton–Jacobi-Bellman Equations. Systems & Control: Foundations & Applications. With appendices by Maurizio Falcone and Pierpaolo Soravia. Birkhäuser Boston, Inc., Boston, MA.Google Scholar
Barles, G. 1994. Solutions de viscosité des équations de Hamilton–Jacobi. Mathématiques & Applications (Berlin) [Mathematics & Applications], vol. 17. Springer-Verlag, Paris.Google Scholar
Barron, E. N., Evans, L. C., and Jensen, R. 1984. Viscosity solutions of Isaacs’ equations and differential games with Lipschitz controls. J. Differential Equations, 53(2), 213233.Google Scholar
Birindelli, I., and Demengel, F. 2004. Comparison principle and Liouville type results for singular fully nonlinear operators. Ann. Fac. Sci. Toulouse Math. (6), 13(2), 261287.Google Scholar
Birindelli, I., and Demengel, F. 2006. First eigenvalue and maximum principle for fully nonlinear singular operators. Adv. Differential Equations, 11(1), 91119.Google Scholar
Birindelli, I., and Demengel, F. 2007a. The Dirichlet problem for singular fully nonlinear operators. Discrete Contin. Dyn. Syst. Proceedings of the 6th AIMS International Conference, suppl., pp. 110121.Google Scholar
Birindelli, I., and Demengel, F. 2007b. Eigenvalue, maximum principle and regularity for fully nonlinear homogeneous operators. Commun. Pure Appl. Anal., 6(2), 335366.CrossRefGoogle Scholar
Birindelli, I., and Demengel, F. 2009. Eigenvalue and Dirichlet problem for fully-nonlinear operators in non-smooth domains. J. Math. Anal. Appl., 352(2), 822835.CrossRefGoogle Scholar
Birindelli, I., and Demengel, F. 2014. C1,β regularity for Dirichlet problems associated to fully nonlinear degenerate elliptic equations. ESAIM Control Optim. Calc. Var., 20(4), 10091024.CrossRefGoogle Scholar
Birindelli, I., Galise, G., and Ishii, H. 2018. A family of degenerate elliptic operators: maximum principle and its consequences. Ann. Inst. H. Poincaré Anal. Non Linéaire, 35(2), 417441.Google Scholar
Bronzi, A., Pimentel, E., Rampasso, G., and Teixeira, E. 2020. Regularity of solutions to a class of variable-exponent fully nonlinear elliptic equations. J. Funct. Anal., 279(12), paper 108781, pages 31.Google Scholar
Cabré, X., and Caffarelli, L. 2003. Interior C2,α regularity theory for a class of nonconvex fully nonlinear elliptic equations. J. Math. Pures Appl. (9), 82(5), 573612.CrossRefGoogle Scholar
Caffarelli, L. 1988. Elliptic second order equations. Rend. Sem. Mat. Fis. Milano, 58, 253284.CrossRefGoogle Scholar
Caffarelli, L. A. 1989. Interior a priori estimates for solutions of fully nonlinear equations. Ann. of Math. (2), 130(1), 189213.Google Scholar
Caffarelli, L. 1990. Interior W2,p estimates for solutions of the Monge–Ampère equation. Ann. of Math. (2), 131(1), 135150.Google Scholar
Caffarelli, L. 1991. Some regularity properties of solutions of Monge Ampère equation. Comm. Pure Appl. Math., 44(8–9), 965969.Google Scholar
Caffarelli, L., and Cabré, X. 1995. Fully Nonlinear Elliptic Equations. American Mathematical Society Colloquium Publications, vol. 43. American Mathematical Society, Providence, RI.Google Scholar
Caffarelli, L., and Silvestre, L. 2010a. On the Evans–Krylov theorem. Proc. Amer. Math. Soc., 138(1), 263265.Google Scholar
Caffarelli, L, and Silvestre, L. 2010b. Smooth approximations of solutions to nonconvex fully nonlinear elliptic equations. Pages 6785 of: Nonlinear Partial Differential Equations and Related Topics. Amer. Math. Soc. Transl. Ser. 2, vol. 229. Amer. Math. Soc., Providence, RI.CrossRefGoogle Scholar
Caffarelli, L., and Silvestre, L. 2011. The Evans–Krylov theorem for nonlocal fully nonlinear equations. Ann. of Math. (2), 174(2), 11631187.CrossRefGoogle Scholar
Caffarelli, L. A., Crandall, M. G., Kocan, M., and Święch, A. 1996. On viscosity solutions of fully nonlinear equations with measurable ingredients. Comm. Pure Appl. Math., 49(4), 365397.Google Scholar
Capuzzo Dolcetta, I., Leoni, F., and Porretta, A. 2010. Hölder estimates for degenerate elliptic equations with coercive Hamiltonians. Trans. Amer. Math. Soc., 362(9), 45114536.Google Scholar
Colombo, M., Kim, S., and Shahgholian, H. 2021. A transmission problem for (p,q)-Laplacian. arXiv preprint arXiv:2106.07315.Google Scholar
Crandall, M., and Lions, P.-L. 1983. Viscosity solutions of Hamilton–Jacobi equations. Trans. Amer. Math. Soc., 277(1), 142.CrossRefGoogle Scholar
Crandall, M., Evans, L., and Lions, P.-L. 1984. Some properties of viscosity solutions of Hamilton–Jacobi equations. Trans. Amer. Math. Soc., 282(2), 487502.CrossRefGoogle Scholar
Crandall, M. G., Ishii, H., and Lions, P.-L. 1992. User’s guide to viscosity solutions of second order partial differential equations. Bull. Amer. Math. Soc. (N.S.), 27(1), 167.Google Scholar
Crandall, M., Kocan, M., Soravia, P., and Święch, A. 1996. On the equivalence of various weak notions of solutions of elliptic PDEs with measurable ingredients. Pages 136162 of: Progress in Elliptic and Parabolic Partial Differential Equations (Capri, 1994). Pitman Res. Notes Math. Ser., vol. 350. Longman, Harlow.Google Scholar
Crandall, M., Kocan, M., and Święch, A. 2000. Lp-theory for fully nonlinear uniformly parabolic equations. Comm. Partial Differential Equations, 25(11–12), 19972053.Google Scholar
De Filippis, C. 2021a. Fully nonlinear free transmission problems with nonhomogeneous degeneracies. arXiv preprint arXiv:2103.12453.Google Scholar
De Filippis, C. 2021b. Regularity for solutions of fully nonlinear elliptic equations with nonhomogeneous degeneracy. Proc. Roy. Soc. Edinburgh Sect. A, 151(1), 110132.Google Scholar
De Filippis, C., and Mingione, G. 2020. On the regularity of minima of non-autonomous functionals. J. Geom. Anal., 30(2), 15841626.CrossRefGoogle Scholar
De Filippis, C., and Mingione, G. 2021. Interpolative gap bounds for nonautonomous integrals. Anal. Math. Phys., 11(3), paper 117, 39.CrossRefGoogle Scholar
DiBenedetto, E. 1982. Continuity of weak solutions to certain singular parabolic equations. Ann. Mat. Pura Appl. (4), 130, 131176.Google Scholar
DiBenedetto, E. 1983. C1+α local regularity of weak solutions of degenerate elliptic equations. Nonlinear Anal., 7(8), 827850.Google Scholar
DiBenedetto, E. 1986. On the local behaviour of solutions of degenerate parabolic equations with measurable coefficients. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 13(3), 487535.Google Scholar
DiBenedetto, E. 1987. The flow of two immiscible fluids through a porous medium: regularity of the saturation. Pages 123141 of: Theory and Applications of Liquid Crystals (Minneapolis, Minn., 1985). IMA Vol. Math. Appl., vol. 5. Springer, New York.Google Scholar
DiBenedetto, E., and Friedman, A. 1985. Hölder estimates for nonlinear degenerate parabolic systems. J. Reine Angew. Math., 357, 122.Google Scholar
DiBenedetto, E., Urbano, J. M., and Vespri, V. 2004. Current issues on singular and degenerate evolution equations. Pages 169286 of: Evolutionary Equations. Vol. I. Handb. Differ. Equ. North-Holland, Amsterdam.Google Scholar
DiBenedetto, E., Gianazza, U., Safonov, M., Urbano, J. M., and Vespri, V. 2007. Harnack’s estimates: positivity and local behavior of degenerate and singular parabolic equations. Bound. Value Probl., Art. ID 42548, 5.Google Scholar
Diehl, N., and Urbano, J. M. 2020. Sharp Hölder regularity for the inhomogeneous Trudinger’s equation. Nonlinearity, 33(12), 70547066.Google Scholar
Duzaar, F., and Mingione, G. 2005. Second order parabolic systems, optimal regularity, and singular sets of solutions. Ann. Inst. H. Poincaré Anal. Non Linéaire, 22(6), 705751.Google Scholar
Duzaar, F., and Mingione, G. 2011. Gradient estimates via non-linear potentials. Amer. J. Math., 133(4), 10931149.Google Scholar
Escauriaza, L. 1993. W2,n a priori estimates for solutions to fully nonlinear equations. Indiana Univ. Math. J., 42(2), 413423.Google Scholar
Evans, L. C. 1982a. Classical solutions of fully nonlinear, convex, second-order elliptic equations. Comm. Pure Appl. Math., 35(3), 333363.Google Scholar
Evans, Lawrence C. 1982b. A new proof of local C1,α regularity for solutions of certain degenerate elliptic p.d.e. J. Differential Equations, 45(3), 356373.Google Scholar
Evans, L. 2007a. The 1-Laplacian, the ∞-Laplacian and differential games. Pages 245254 of: Perspectives in Nonlinear Partial Differential Equations. Contemp. Math., vol. 446. Amer. Math. Soc., Providence, RI.CrossRefGoogle Scholar
Evans, L. C. 2007b. The 1-Laplacian, the ∞-Laplacian and differential games. Pages 245254 of: Perspectives in Nonlinear Partial Differential Equations. Contemp. Math., vol. 446. Amer. Math. Soc., Providence, RI.CrossRefGoogle Scholar
Evans, Lawrence C., and Gariepy, Ronald F. 2015. Measure Theory and Fine Properties of Functions. Revised ed. Textbooks in Mathematics. CRC Press, Boca Raton, FL.Google Scholar
Evans, L., and Souganidis, P. 1984. Differential games and representation formulas for solutions of Hamilton–Jacobi–Isaacs equations. Indiana Univ. Math. J., 33(5), 773797.Google Scholar
Evans, L. C., and Spruck, J. 1991. Motion of level sets by mean curvature. I. J. Differential Geom., 33(3), 635681.Google Scholar
Evans, L. C., and Spruck, J. 1992a. Motion of level sets by mean curvature. II. Trans. Amer. Math. Soc., 330(1), 321332.Google Scholar
Evans, L. C., and Spruck, J. 1992b. Motion of level sets by mean curvature. III. J. Geom. Anal., 2(2), 121150.Google Scholar
Evans, Lawrence C., and Spruck, Joel. 1995. Motion of level sets by mean curvature. IV. J. Geom. Anal., 5(1), 77114.Google Scholar
Fabes, E., and Stroock, D. 1984. The Lp-integrability of Green’s functions and fundamental solutions for elliptic and parabolic equations. Duke Math. J., 51(4), 9971016.Google Scholar
Fleming, W., and Soner, H. 2006. Controlled Markov Processes and Viscosity Solutions. Second ed. Stochastic Modelling and Applied Probability, vol. 25. Springer, New York.Google Scholar
Fleming, W., and Souganidis, P. 1988. Two-player, zero-sum stochastic differential games. Pages 151164 of: Analyse mathématique et applications. Gauthier-Villars, Montrouge.Google Scholar
Fleming, W., and Souganidis, P. 1989. On the existence of value functions of two-player, zero-sum stochastic differential games. Indiana Univ. Math. J., 38(2), 293314.Google Scholar
Friedman, A. 1971. Differential Games. Pure and Applied Mathematics, vol. XXV. Wiley-Interscience [A division of John Wiley & Sons, Inc.], New York-London.Google Scholar
Gilbarg, D., and Trudinger, N. S. 2001. Elliptic Partial Differential Equations of Second Order. Classics in Mathematics. Springer-Verlag, Berlin. Reprint of the 1998 edition.CrossRefGoogle Scholar
Han, Q., and Lin, F. 2011. Elliptic Partial Differential Equations. Second ed. Courant Lecture Notes in Mathematics, vol. 1. Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence, RI.Google Scholar
Huaroto, G., Pimentel, E., Rampasso, G., and Święch, A. 2020. A fully nonlinear degenerate free transmission problem. arXiv preprint arXiv:2008.06917.Google Scholar
Imbert, C. 2011. Alexandroff–Bakelman–Pucci estimate and Harnack inequality for degenerate/singular fully non-linear elliptic equations. J. Differential Equations, 250(3), 15531574.Google Scholar
Imbert, C., and Silvestre, L. 2013. C1,α regularity of solutions of some degenerate fully non-linear elliptic equations. Adv. Math., 233, 196206.Google Scholar
Imbert, C., and Silvestre, L. 2016. Estimates on elliptic equations that hold only where the gradient is large. J. Eur. Math. Soc. (JEMS), 18(6), 13211338.Google Scholar
Isaacs, R. 1965. Differential Games. A Mathematical Theory with Applications to Warfare and Pursuit, Control and Optimization. John Wiley & Sons, Inc., New York-London-Sydney.Google Scholar
Iwaniec, T., and Manfredi, J. 1989. Regularity of p-harmonic functions on the plane. Rev. Mat. Iberoamericana, 5(1–2), 119.Google Scholar
Jensen, R. 1988. The maximum principle for viscosity solutions of fully nonlinear second order partial differential equations. Arch. Rational Mech. Anal., 101(1), 127.Google Scholar
Jensen, R., Lions, P.-L., and Souganidis, P. E. 1988. A uniqueness result for viscosity solutions of second order fully nonlinear partial differential equations. Proc. Amer. Math. Soc., 102(4), 975978.Google Scholar
Koike, S., and Święch, A. 2012. Local maximum principle for Lp-viscosity solutions of fully nonlinear elliptic PDEs with unbounded coefficients. Commun. Pure Appl. Anal., 11(5), 18971910.Google Scholar
Kovats, J. 2009a. Differentiability properties of solutions of nondegenerate Isaacs equations. Nonlinear Anal., 71(12), e2418e2426.Google Scholar
Kovats, J. 2009b. Value functions and the Dirichlet problem for Isaacs equation in a smooth domain. Trans. Amer. Math. Soc., 361(8), 40454076.Google Scholar
Kovats, J. 2012. The minmax principle and W2,p regularity for solutions of the simplest Isaacs equations. Proc. Amer. Math. Soc., 140(8), 28032815.Google Scholar
Kovats, J. 2016. On the second order derivatives of solutions of a special Isaacs equation. Proc. Amer. Math. Soc., 144(4), 15231533.Google Scholar
Krylov, N. V. 1982. Boundedly inhomogeneous elliptic and parabolic equations. Izv. Akad. Nauk SSSR Ser. Mat., 46(3), 487523, 670.Google Scholar
Krylov, N. V., and Safonov, M. V. 1980. A property of the solutions of parabolic equations with measurable coefficients. Izv. Akad. Nauk SSSR Ser. Mat., 44(1), 161175, 239.Google Scholar
Kuusi, T., and Mingione, G. 2012. Universal potential estimates. J. Funct. Anal., 262(10), 42054269.Google Scholar
Kuusi, T., and Mingione, G. 2013. Gradient regularity for nonlinear parabolic equations. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 12(4), 755822.Google Scholar
Kuusi, T., and Mingione, G. 2014a. Riesz potentials and nonlinear parabolic equations. Arch. Ration. Mech. Anal., 212(3), 727780.CrossRefGoogle Scholar
Kuusi, T., and Mingione, G. 2014b. The Wolff gradient bound for degenerate parabolic equations. J. Eur. Math. Soc. (JEMS), 16(4), 835892.Google Scholar
Ladyzhenskaya, O., and Ural’tseva, N. 1968. Linear and Quasilinear Elliptic Equations. Translated from the Russian by Scripta Technica, Inc. Translation editor: Leon Ehrenpreis. Academic Press, New York-London.Google Scholar
Li, D., and Zhang, K. 2015. W2,p interior estimates of fully nonlinear elliptic equations. Bull. Lond. Math. Soc., 47(2), 301314.Google Scholar
Lin, F. 1986. Second derivative Lp-estimates for elliptic equations of nondivergent type. Proc. Amer. Math. Soc., 96(3), 447451.Google Scholar
Lindgren, E., and Lindqvist, P. 2017. Regularity of the p-Poisson equation in the plane. J. Anal. Math., 132, 217228.CrossRefGoogle Scholar
Lindqvist, P. 2006. Notes on the p-Laplace Equation. Report. University of Jyväskylä Department of Mathematics and Statistics, vol. 102. University of Jyväskylä, Jyväskylä.Google Scholar
Lindqvist, P. 2016. Notes on the Infinity Laplace Equation. SpringerBriefs in Mathematics. BCAM Basque Center for Applied Mathematics, Bilbao; Springer, Cham.Google Scholar
Lions, P.-L. 1982. Generalized Solutions of Hamilton–Jacobi Equations. Research Notes in Mathematics, vol. 69. Pitman (Advanced Publishing Program), Boston, MA-London.Google Scholar
Lions, P.-L. 1983. A remark on Bony maximum principle. Proc. Amer. Math. Soc., 88(3), 503508.CrossRefGoogle Scholar
Lions, P.-L., and Souganidis, P. 1988. Viscosity solutions of second-order equations, stochastic control and stochastic differential games. Pages 293309 of: Stochastic Differential Systems, Stochastic Control Theory and Applications (Minneapolis, Minn., 1986). IMA Vol. Math. Appl., vol. 10. Springer, New York.Google Scholar
Maggi, F. 2012. Sets of Finite Perimeter and Geometric Variational Problems. Cambridge Studies in Advanced Mathematics, vol. 135. Cambridge University Press, Cambridge.Google Scholar
Mingione, G. 2011. Gradient potential estimates. J. Eur. Math. Soc. (JEMS), 13(2), 459486.Google Scholar
Mooney, C. 2015. Harnack inequality for degenerate and singular elliptic equations with unbounded drift. J. Differential Equations, 258(5), 15771591.Google Scholar
Mooney, C. 2019. A proof of the Krylov–Safonov theorem without localization. Comm. Partial Differential Equations, 44(8), 681690.Google Scholar
Nadirashvili, N., and Vlăduţ, S. 2007. Nonclassical Solutions of Fully Nonlinear Elliptic Equations. Geom. Funct. Anal., 17(4), 12831296.Google Scholar
Nadirashvili, N., and Vlăduţ, S. 2008. Singular viscosity solutions to fully nonlinear elliptic equations. J. Math. Pures Appl. (9), 89(2), 107113.Google Scholar
Nadirashvili, N., and Vlăduţ, S. 2011. Singular solutions of Hessian fully nonlinear elliptic equations. Adv. Math., 228(3), 17181741.Google Scholar
Nadirashvili, N., Tkachev, V., and Vlăduţ, S. 2014. Nonlinear Elliptic Equations and Nonassociative Algebras. Mathematical Surveys and Monographs, vol. 200. American Mathematical Society, Providence, RI.Google Scholar
Nicolau, A., and Soler i Gibert, O. 2019. Approximation in the Zygmund class. Journal of the London Mathematical Society, 101(1), 226246.Google Scholar
Niculescu, C., and Persson, L.-E. 2006. Convex Functions and Their Applications. CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC, vol. 23. Springer, New York.Google Scholar
Oberman, A., and Silvestre, L. 2011. The Dirichlet problem for the convex envelope. Trans. Amer. Math. Soc., 363(11), 58715886.Google Scholar
Pimentel, E., and Teixeira, E. 2016. Sharp Hessian integrability estimates for nonlinear elliptic equations: an asymptotic approach. J. Math. Pures Appl., 106(4), 744767.Google Scholar
Pimentel, E., and Urbano, J. M. 2021. Existence and improved regularity for a nonlinear system with collapsing ellipticity. (English summary.) Ann. Sc. Norm. Super. Pisa Cl. Sci (5), 22(3), 13851400.Google Scholar
Pimentel, E., Rampasso, G., and Santos, M. 2020. Improved regularity for the p-Poisson equation. Nonlinearity, 33(6), 30503061.Google Scholar
Rockafellar, R. T. 1997. Convex Analysis. Princeton Landmarks in Mathematics. Princeton University Press, Princeton, NJ. Reprint of the 1970 original, Princeton Paperbacks.Google Scholar
Savin, O. 2007. Small perturbation solutions for elliptic equations. Comm. Partial Differential Equations, 32(4–6), 557578.Google Scholar
Silvestre, L., and Sirakov, B. 2014. Boundary regularity for viscosity solutions of fully nonlinear elliptic equations. Comm. Partial Differential Equations, 39(9), 16941717.Google Scholar
Silvestre, L., and Teixeira, E. 2015. Regularity estimates for fully non linear elliptic equations which are asymptotically convex. Pages 425438 of: Contributions to Nonlinear Elliptic Equations and Systems. Springer, Cham.Google Scholar
Stein, E. M. 1970. Singular Integrals and Differentiability Properties of Functions. Princeton Mathematical Series, No. 30. Princeton University Press, Princeton, NJ.Google Scholar
Święch, A. 1996. Another approach to the existence of value functions of stochastic differential games. J. Math. Anal. Appl., 204(3), 884897.Google Scholar
Święch, A. 1997. W1,p-interior estimates for solutions of fully nonlinear, uniformly elliptic equations. Adv. Differential Equations, 2(6), 10051027.Google Scholar
Teixeira, E. 2014a. Regularity for quasilinear equations on degenerate singular sets. Math. Ann., 358(1-2), 241256.Google Scholar
Teixeira, E. 2014b. Universal moduli of continuity for solutions to fully nonlinear elliptic equations. Arch. Ration. Mech. Anal., 211(3), 911927.Google Scholar
Teixeira, E. 2016. Geometric regularity estimates for elliptic equations. Pages 185201 of: Mathematical Congress of the Americas. Contemp. Math., vol. 656. Amer. Math. Soc., Providence, RI.Google Scholar
Teixeira, E., and Urbano, J. M. 2014. A geometric tangential approach to sharp regularity for degenerate evolution equations. Anal. PDE, 7(3), 733744.Google Scholar
Teixeira, E., and Urbano, J. M. 2021. Geometric tangential analysis and sharp regularity for degenerate PDEs. In: Proceedings of the INdAM Meeting “Harnack Inequalities and Nonlinear Operators”in honour of Prof. E. DiBenedetto. Springer INdAM Ser. Springer, Cham.Google Scholar
Trudinger, N. S. 1988. Hölder gradient estimates for fully nonlinear elliptic equations. Proc. Roy. Soc. Edinburgh Sect. A, 108(1–2), 5765.Google Scholar
Trudinger, N. S. 1989. On regularity and existence of viscosity solutions of nonlinear second order, elliptic equations. Pages 939957 of: Partial Differential Equations and the Calculus of Variations, Vol. II. Progr. Nonlinear Differential Equations Appl., vol. 2. Birkhäuser Boston, Boston, MA.Google Scholar
Uhlenbeck, K. 1977. Regularity for a class of non-linear elliptic systems. Acta Math., 138(3-4), 219240.Google Scholar
Ural’ceva, N. N. 1968. Degenerate quasilinear elliptic systems. Zap. Naučn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI), 7, 184222.Google Scholar
Urbano, J. M. 2008. The Method of Intrinsic Scaling. Lecture Notes in Mathematics, vol. 1930. Springer-Verlag, Berlin.Google Scholar
Villani, C. 2009. Optimal Transport. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 338. Springer-Verlag, Berlin.Google Scholar
Winter, N. 2009. W2,p and W1,p-estimates at the boundary for solutions of fully nonlinear, uniformly elliptic equations. Z. Anal. Anwend., 28(2), 129164.Google Scholar
Zhikov, V. 2008. Solvability of the three-dimensional thermistor problem. Tr. Mat. Inst. Steklova, 261(Differ. Uravn. i Din. Sist.), 101114.Google Scholar
Zygmund, A. 2002. Trigonometric Series. Vol. I, II. Third ed. Cambridge Mathematical Library. With a foreword by Fefferman, Robert A.. Cambridge University Press, Cambridge.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Edgard A. Pimentel, Universidade de Coimbra, Portugal
  • Book: Elliptic Regularity Theory by Approximation Methods
  • Online publication: 16 June 2022
  • Chapter DOI: https://doi.org/10.1017/9781009099899.007
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Edgard A. Pimentel, Universidade de Coimbra, Portugal
  • Book: Elliptic Regularity Theory by Approximation Methods
  • Online publication: 16 June 2022
  • Chapter DOI: https://doi.org/10.1017/9781009099899.007
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Edgard A. Pimentel, Universidade de Coimbra, Portugal
  • Book: Elliptic Regularity Theory by Approximation Methods
  • Online publication: 16 June 2022
  • Chapter DOI: https://doi.org/10.1017/9781009099899.007
Available formats
×