Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-19T08:09:30.306Z Has data issue: false hasContentIssue false

35 - Molecular Opacities: Application to the Giant Planets

from Posters

Published online by Cambridge University Press:  07 September 2010

T. Guillot
Affiliation:
Observatoire de la Côte d'Azur, BP229, 06304 Nice Cedex 4. France
D. Gautier
Affiliation:
Observatoire de Paris, 5 pl J. Janssen, 92195 Meudon Cedex. France
G. Chabrier
Affiliation:
Laboratoire de Physique, E. N. S. Lyon, 69364 Lyon Cedex 07. France
Gilles Chabrier
Affiliation:
Ecole Normale Supérieure, Lyon
Evry Schatzman
Affiliation:
Observatoire de Paris, Meudon
Get access

Summary

Abstract

Present available interior models of giant planets assume that the internal transport of energy is entirely convective and, accordingly, rule out any possibility of radiative transport. New opacity calculations at temperatures and densities occurring within the giant planets, taking into account H2-H2 and H2-He collision-induced absorption as well as infrared and visible absorption due to hydrogen, water, methane and ammonia are presented. These opacities are not high enough to exclude the presence of a radiative zone in the molecular H2 envelope of Jupiter, Saturn and Uranus.

Abstract

Les modèles de structure interne des planètes géantes développés actuellement supposent que le transport de l'énergie s'effectue entièrement par convection, ce qui élimine toute possibilité de transport radiatif. Des nou-veaux calculs d'opacité aux températures et densités caractéristiques des planètes étudiées, tenant compte de l'absorption induite par collisions H2-H2 et H2-He ainsi que de l'absorption dans l'infrarouge et dans le visible de l'hydrogène, l'eau, le méthane et l'ammoniaque, sont présentées. Ces opacités ne sont pas suffisamment élevées pour exclure la présence d'une zone radiative dans l'enveloppe d'hydrogène moléculaire de Jupiter, Saturne et Uranus.

Introduction

Since the estimations of the conductive and radiative opacities in Jupiter by Hubbard (1968) and Stevenson (1976) all the interior models of the four giant planets have been calculated under the assumption that the energy is transferred by convection through the entire hydrogen-helium envelope. Consequently, the thermal profile is assumed to be adiabatic at all depths.

Type
Chapter
Information
The Equation of State in Astrophysics
IAU Colloquium 147
, pp. 576 - 580
Publisher: Cambridge University Press
Print publication year: 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×