Book contents
- Frontmatter
- Dedication
- Epigraph
- Contents
- Preface
- 1
- 2 Nicolas’ Number of Divisors Function Equivalence
- 3 An Aspect of the Zeta Function Zero Gap Estimates
- 4 The Rogers–Tao Equivalence
- 5 The Dirichlet Series of Dobner
- 6 An Upper Bound for the de Bruijn–Newman Constant
- 7 The Pólya–Jensen Equivalence
- 8 Ono et al. and Jensen Polynomials
- 9 Gonek–Bagchi Universality and Bagchi’s Equivalence
- 10 A Selection of Undecidable Propositions
- 11 Equivalences and Decidability for Riemann’s Zeta
- Appendix A Imports for Gonek’s Theorems
- Appendix B Imports for Nicolas’ Theorems
- Appendix C Hyperbolic Polynomials
- Appendix D Absolute Continuity
- Appendix E Montel’s and Hurwitz’s Theorems
- Appendix F Markov’s and Gronwall’s Inequalities
- Appendix G Characterizing Riemann’s Zeta Function
- Appendix H Bohr’s Theorem
- Appendix I Zeta and L–Functions
- Appendix J de Reyna’s Expansion for the Hardy Contour
- Appendix K Stirling’s Approximation for the Gamma Function
- Appendix L Propositional Calculus P0
- Appendix M First Order Predicate Calculus P1
- Appendix N Recursive Functions
- Appendix O Ordinal Numbers and Analysis
- References
- Index
Appendix H - Bohr’s Theorem
Published online by Cambridge University Press: 11 October 2023
- Frontmatter
- Dedication
- Epigraph
- Contents
- Preface
- 1 Nicolas’ π(x)
- 2 Nicolas’ Number of Divisors Function Equivalence
- 3 An Aspect of the Zeta Function Zero Gap Estimates
- 4 The Rogers–Tao Equivalence
- 5 The Dirichlet Series of Dobner
- 6 An Upper Bound for the de Bruijn–Newman Constant
- 7 The Pólya–Jensen Equivalence
- 8 Ono et al. and Jensen Polynomials
- 9 Gonek–Bagchi Universality and Bagchi’s Equivalence
- 10 A Selection of Undecidable Propositions
- 11 Equivalences and Decidability for Riemann’s Zeta
- Appendix A Imports for Gonek’s Theorems
- Appendix B Imports for Nicolas’ Theorems
- Appendix C Hyperbolic Polynomials
- Appendix D Absolute Continuity
- Appendix E Montel’s and Hurwitz’s Theorems
- Appendix F Markov’s and Gronwall’s Inequalities
- Appendix G Characterizing Riemann’s Zeta Function
- Appendix H Bohr’s Theorem
- Appendix I Zeta and L–Functions
- Appendix J de Reyna’s Expansion for the Hardy Contour
- Appendix K Stirling’s Approximation for the Gamma Function
- Appendix L Propositional Calculus P0
- Appendix M First Order Predicate Calculus P1
- Appendix N Recursive Functions
- Appendix O Ordinal Numbers and Analysis
- References
- Index
Summary

- Type
- Chapter
- Information
- Equivalents of the Riemann Hypothesis , pp. 541 - 543Publisher: Cambridge University PressPrint publication year: 2023