Skip to main content Accessibility help
×
Hostname: page-component-84b7d79bbc-g7rbq Total loading time: 0 Render date: 2024-08-02T23:16:41.422Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  27 October 2017

Kevin Broughan
Affiliation:
University of Waikato, New Zealand
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] A., Akbary, Z., Friggstad and R., Jurecevic, Explicit upper bounds for, Cont. Discrete Math. 2 (2007), 153–160.
[2] A., Akbary and Z., Friggstad, Superabundant numbers and the Riemann hypothesis, Amer. Math. Monthly 116 (2009), 273–275.Google Scholar
[3] L., Alaoglu and P., Erdőos, On highly composite and similar numbers, Trans. Amer. Math. Soc. 56 (1944), 448–469.Google Scholar
[4] L., Alfors, Complex Analysis, 2nd edn, McGraw-Hill, 1966.
[5] T. M., Apostol, Modular Functions and Dirichlet Series in Number Theory, Springer, 1976.
[6] T. M., Apostol, Introduction to Analytic Number Theory, 2nd edn, Springer, 1990.
[7] R. J., Backlund, Über die nullstellen der Riemannschen Zetafunktion, Acta Math. 41 (1918), 345–375.Google Scholar
[8] R., Balasubramanian, S., Kanemitsu and M., Yoshimoto, Euler products, Farey series and the Riemann hypothesis II, Publ. Math. Debrecen 69 (2006), 1–16.Google Scholar
[9] W. W., Barrett, R. W., Forcade and A. D., Pollington, On the spectral radius of a (0,1) matrix related to Mertens' function, Linear Algebra Appl. 107 (1988), 151–159.Google Scholar
[10] B. C., Berndt, Ramanujan's Notebooks, Parts I–V, Springer, 1985–1998.
[11] M. V., Berry and J. P., Keating, The Riemann zeros and eigenvalue asymptotics, SIAM Rev. 41 (1999), 236–266.Google Scholar
[12] A. R., Booker, Turing and the Riemann hypothesis, Notices Amer. Math. Soc. 53 (2006), 1208–1211.Google Scholar
[13] P., Borwein, S., Choi, B., Rooney and A., Weirathmueller, The Riemann Hypothesis: A Resource for the Afficionado and Virtuoso Alike, CMS Books in Mathematics, Springer, 2008.
[14] R. P., Brent, On the zeros of the Riemann zeta function in the critical strip, Math. Comp. 33 (1979), 1361–1372.CrossRefGoogle Scholar
[15] R. P., Brent, J. van, de Lune, H. J. J., te Riele and D. T., Winter, On the zeros of the Riemann zeta function in the critical strip II, Math. Comp. 39 (1982), 681–688.Google Scholar
[16] K., Briggs, Abundant numbers and the Riemann hypothesis, J. Exp. Math. 15 (2006), 251–256.Google Scholar
[17] K. A., Broughan, Structure of sectors of zeros of entire flows, Topology Proc. 27 (2002), 1–16.Google Scholar
[18] K. A., Broughan, Vanishing of the integral of the Hurwitz zeta function, Bull. Austral. Math. Soc. 65 (2002), 121–127.Google Scholar
[19] K. A., Broughan, Holomorphic flows on simply connected subsets have no limit cycles, Meccanica 38 (2003), 699–709.Google Scholar
[20] K. A., Broughan and A. R., Barnett, The holomorphic flow of the Riemann zeta function, Math. Comp. 73 (2004), 987–1004.Google Scholar
[21] K. A., Broughan, Holomorphic flow of the Riemann xi function, Nonlinearity 18 (2005), 1269–1294.Google Scholar
[22] K. A., Broughan and A. R., Barnett, Linear law for the logarithms of the Riemann periods at simple critical zeros, Math. Comp. 75 (2006), 891–902.Google Scholar
[23] K. A., Broughan and A. R., Barnett, Corrigendum to “The holomorphic flow of the Riemann zeta function”, Math. Comp. 76 (2007), 2249–2250.Google Scholar
[24] K. A., Broughan, Extension of the Riemann ζ-function's logarithmic derivative positivity region to near the critical strip, Can. Math. Bull. 52 (2009), 186–194.Google Scholar
[25] K. A., Broughan and A. R., Barnett, Gram lines and the average of the real part of the Riemann zeta function, Math. Comp. 81 (2012) 1669–1679.CrossRefGoogle Scholar
[26] K. A., Broughan, Website for phase portraits of the zeros of ζ(s) and ζ(s). www.math.waikato.ac.nz/∽kab.
[27] K. A., Broughan, J.-M., De Koninck, I., Katai and F., Luca, On integers for which the sum of divisors is the square of the squarefree core, J. Integer Seq. 15 (2012), art. 12.7.5.Google Scholar
[28] K. A., Broughan and D., Delbourgo, On the ratio of the sum of divisors and Euler's totient function I, J. Integer Seq. 16 (2013), art. 13.8.8 (17pp.).Google Scholar
[29] K. A., Broughan, K., Ford and F., Luca, On square values of the product of the Euler totient function and the sum of divisors function, Colloq. Math. 130 (2013), 127–137.Google Scholar
[30] K. A., Broughan and Q., Zhou, On the ratio of the sum of divisors and Euler's totient function II, J. Integer Seq. 17 (2014), art. 14.9.2 (22pp.).Google Scholar
[31] K. A., Broughan and T. S., Trudgian, Robin's inequality for 11-free integers, Integers 15 (2015), #A12 (5pp.).Google Scholar
[32] K. A., Broughan, Equivalents of the Riemann Hypothesis II: Analytic Equivalences, Cambridge University Press, 2017.
[33] J., Büthe, J., Franke, A., Jost and T., Kleinjung, A practical analytic method for calculating π(x), Preprint.
[34] G., Caveney, J.-L., Nicolas and J., Sondow, Robin's theorem, primes, and a new elementary reformulation of the Riemann hypothesis, Integers 11 (2011), #A33 (10pp.).Google Scholar
[35] G., Caveney, J.-L., Nicolas and J., Sondow, On SA, CA and GA numbers, Ramanujan J. 29 (2012), 359–384.Google Scholar
[36] Y., Cheng, An explicit upper bound for the Riemann zeta-function near the line σ = 1, Rocky Mountain J. Math. 29 (1999), 115–140.CrossRefGoogle Scholar
[37] Y., Cheng and S. W., Graham, Explicit estimates for the Riemann zeta function, Rocky Mountain J. Math. 34 (2004), 1261–1280.Google Scholar
[38] Y., Choie, N., Lichiardopol, P., Moree and P., Solé, On Robin's criterion for the Riemann hypothesis, J. Théor. Nombres Bordeaux 19 (2007), 357–372.Google Scholar
[39] S., Chowla, On abundant numbers, J. IndianMath. Soc. (2) 1 (1934), 41–44.Google Scholar
[40] J. B., Conrey, More than two fifths of the zeros of the Riemann zeta function are on the critical line, J. reine angew. Math. 399 (1989), 1–16.Google Scholar
[41] J. B., Conrey, L-functions and random matrices, in Mathematics Unlimited – 2001 and Beyond, pp. 331–352, Springer, 2001.
[42] H., Davenport, Über numeri abundantes, Sitzungsber. Preuss. Akad. Wiss. Berlin 27 (1933), 830–837.Google Scholar
[43] H., Davenport, Multiplicative Number Theory, 3rd edn, Springer, 2000.
[44] M., Davis, Y., Matijasevič and J., Robinson, Hilbert's tenth problem: diophantine equations: positive aspects of a negative solution, in Mathematical Developments Arising from Hilbert Problems, Proc. Symp. Pure Math., XXVIII, De Kalb, IL, 1974, pp. 323–378. American Mathematical Society, 1976.Google Scholar
[45] A., Derbal, Grandes valeurs de la fonction σ(n)/σ*(n), C. R., Math. Acad. Sci. Paris 364 (2008), 125–128.Google Scholar
[46] L. E., Dickson, History of the Theory of Numbers, vol. I, Dover, 2005.
[47] R. D., Dixon and L., Schoenfeld, The size of the Riemann zeta-function at places symmetric with respect to the point 1/2, Duke Math. J. 33 (1966), 291–292.CrossRef
[48] P., Dusart, Inégalités explicites pour ψ(X), θ(X), π(X) et les nombres premiers, C. R. Math. Acad. Sci. Soc. R. Can. 21 (1999), 53–59.Google Scholar
[49] P., Dusart, The kth prime is greater than k(log k + loglog k − 1) for k ≥ 2, Math. Comp. 68 (1999), 411–415.CrossRef
[50] P., Dusart, Estimates of some functions over primes without RH, Preprint, arXiv:1002.0442v1, 2010.
[51] H. M., Edwards, Riemann's Zeta Function, Academic Press, 1974; reprinted by Dover, 2001.
[52] P., Erdös, On the density of abundant numbers, J. London Math. Soc. 9 (1934), 278– 282.Google Scholar
[53] P., Erdös, On the normal number of prime factors of p − 1 and some related problems concerning Euler's ϕ-function, Quart. J. Math. 6 (1935), 205–213.Google Scholar
[54] P., Erdös, Some remarks on Euler's φ function, Acta Arith. 4 (1958), 10–19.Google Scholar
[55] P., Erdös and P., Turan, On some problems of a statistical group theory I, Z. Wahrscheinlichkeitstheorie verw. Geb. 4 (1965), 175–186.Google Scholar
[56] P., Erdös and J.-L., Nicolas, Repartition des nombres superabondants, Bull. Soc. Math. France 103 (1975), 65–90.Google Scholar
[57] L., Faber and H., Kadiri, New bounds for ψ(x), Math. Comp. 84 (2015), 1339–1357.Google Scholar
[58] K., Ford, The distribution of totients, Ramanujan J. 2 (1998), 67–151 (Paul Erdös memorial issue).Google Scholar
[59] K., Ford, Zero-free regions for the Riemann zeta function, in Number Theory for the Millennium II, Urbana, IL, 2000, pp. 25–56, A. K. Peters, 2002.
[60] K., Ford, Vinogradov's integral and bounds for the Riemann zeta function, Proc. London Math. Soc. (3) 85 (2002), 565–633.CrossRefGoogle Scholar
[61] K., Ford, F., Luca and C., Pomerance, Common values of the arithmetic functions ϕ and σ, Bull. London Math. Soc. 42 (2010), 478–488.CrossRefGoogle Scholar
[62] K., Ford and P., Pollack, On common values of ϕ(n) and σ(n) I, Acta Math. Hungar. 133 (2011), 251–271.Google Scholar
[63] K., Ford and P., Pollack, On common values of ϕ(n) and σ(n) II, Algebra Number Theory 6 (2012), 1669–1696.Google Scholar
[64] J., Franel and E., Landau, Les suites de Farey et le probléme des nombres premiers, Göttinger Nachr. (1924), 198–206.Google Scholar
[65] J. A., Gallian, Contemporary Abstract Algebra, 5th edn, Houghton Mifflin, 2002.
[66] R., Garunkstis, On a positivity property of the Riemann ζ-function, Lithuanian Math. J. 43 (2002), 140–145.Google Scholar
[67] B. R., Gillespie, Extending Redheffer's matrix to arbitary arithmetic functions, Bachelor with Honors Thesis, Pennsylvania State University, 2011.
[68] X., Gourdon, The 1013 first zeros of the Riemann zeta function, and zeros computation at very large height, Preprint, 2004.
[69] T. H., Grönwall, Some asymptotic expressions in the theory of numbers, Trans. Amer. Math. Soc. 14 (1913), 113–122.Google Scholar
[70] E., Grosswald, Oscillation theorems of arithmetical functions, Trans. Amer. Math. Soc. 126 (1967), 1–28.Google Scholar
[71] J. L., Hafner, New omega theorems for two classical lattice point problems, Invent. Math. 63 (1981), 181–186.Google Scholar
[72] R. R., Hall and W. K., Hayman, Hyperbolic distance and distinct zeros of the Riemann zeta-function in small regions, J. reine angew. Math. 526 (2000), 35–59.Google Scholar
[73] G. H., Hardy, The average order of the arithmetical functions P(x) and Δ(x), Proc. London Math. Soc. 15 (1916), 192–213.Google Scholar
[74] G. H., Hardy and J. E., Littlewood The zeros of Riemann's zeta function on the real line, Math. Z. 10 (1921), 283–317.Google Scholar
[75] G. H., Hardy and J. M., Wright, An Introduction to the Theory of Numbers, 6th edn, Oxford University Press, 2008.
[76] D. R., Heath-Brown, Simple zeros of the Riemann zeta function on the critical line, Bull. London Math. Soc. 11 (1979), 17–18.Google Scholar
[77] D. R., Heath-Brown, Zero-free regions for Dirichlet L-functions, and the least prime in an arithmetic progression, Proc. London Math. Soc. 64 (1992), 265–338.Google Scholar
[78] D. A., Hejhal and A. M., Odlyzko, Alan Turing and the Riemann zeta function, in Alan Turing – His Work and Impact, eds S. B., Cooper and J., van Leeuwen, Elsevier, 2012.
[79] G. A., Hiary and A. M., Odlyzko, The zeta function on the critical line: numerical evidence for moments and random matrix theory models, Math. Comp. 81 (2012), 1723–1752.Google Scholar
[80] A. E., Ingham, The Distribution of Prime Numbers, Cambridge University Press, 1932.
[81] A., Ivić, Two inequalities for the sum of divisors functions, Univ. Novom Sadu, Zb. Rad. Prirod.-Mat. Fak. 7 (1977), 17–22.Google Scholar
[82] A., Ivić, Riemann Zeta Function: Theory and Applications, Dover, 2003.
[83] W.-J., Jang and S-H., Kwon, A note on Kadiri's explicit zero free region for the Riemann zeta function, J. Korean Math. Soc. 51 (2014), 1291–1304.Google Scholar
[84] H., Kadiri, Une région explicite sans zéros pour la fonction ζ de Riemann, Acta Arith. 117 (2005), 303–339.Google Scholar
[85] S., Kanemitsu and M., Yoshimoto, Farey series and the Riemann hypothesis, Acta Arith. 75 (1996), 351–374.Google Scholar
[86] S., Kanemitsu and M., Yoshimoto, Farey series and the Riemann hypothesis III, Ramanujan J. 1 (1997), 363–378.Google Scholar
[87] S., Kanemitsu and M., Yoshimoto, Euler products, Farey series and the Riemann hypothesis, Pub. Math. Debrecen 56 (2000), 431–449.Google Scholar
[88] A. A., Karatsuba and S. M., Voronin, Riemann zeta function (transl. from Russian by N. Koblitz), De Gruyter, 1994.
[89] N. M., Katz and P., Sarnak, Zeroes of zeta functions and symmetry, Bull. Amer. Math. Soc. 36 (1999), 1–26.Google Scholar
[90] N. M., Katz and P., Sarnak, Random matrices, Frobenius eigenvalues, and monodromy, AMS Colloquium Publications, 45. American Mathematical Society, 1999.
[91] J. P., Keating and N. C., Snaith, Random matrix theory and ζ(1/2 + it), Comm. Math. Phys. 214 (2000), 57–89.CrossRef
[92] D. E., Knuth, The Art of Computer Programming I: Fundamental Algorithms, 3rd edn, Addison-Wesley, 1997.
[93] H., von Koch, Sur la distribution des nombres premiers, Acta Math. 24 (1901), 159–182.Google Scholar
[94] H., von Koch, Über die Riemannsche Primzahlfunction, Math. Ann. 55 (1902), 440–464.Google Scholar
[95] J.-M., De Koninck and F., Luca, Analytic Number Theory: Exploring the Anatomy of Integers, American Mathematical Society, 2012.
[96] N. M., Korobov, Estimates of trigonometric sums and their applications, Uspehi Mat. Nauk 13 (1958), 185–192.Google Scholar
[97] T., Kotnik, The prime counting function and its analytic approximations, Adv. Comp. Math. 29 (2008), 55–70.Google Scholar
[98] J. C., Lagarias, On a positivity property of the Riemann ζ-function, Acta Arith. 99 (1999) 217–213.Google Scholar
[99] J. C., Lagarias, Errata: On a positivity property of the Riemann ζ-function, Acta Arith. 99 (1999) 765.Google Scholar
[100] J. C., Lagarias, An elementary problem equivalent to the Riemann hypothesis, Amer. Math. Monthly 109 (2002), 534–543.Google Scholar
[101] J. C., Lagarias, Problem 10949, Amer. Math. Monthly 109 (2002), 569.Google Scholar
[102] J. C., Lagarias and W., Janous, A generous bound for divisor sums: problem 10949, Amer. Math. Monthly 111 (2004), 264–265.Google Scholar
[103] E., Landau, Über die Maximalordnung der Permutationen gegebenen Grades, Arch. Math. Phys. Ser. 3 5 (1903).Google Scholar
[104] E., Landau, Über einen satz von Tschebyschef, Math. Ann. 61 (1905), 527–550.Google Scholar
[105] E., Landau, Handbuch der lehre von der Verteilung der Primzahlen, 2nd edn, vols 1 and 2, Chelsea, 1953.
[106] S., Lang, Introduction to Transcendental Numbers, Addison-Wesley, 1966.
[107] N., Levinson and H. L., Montgomery, Zeros of the derivatives of the Riemann zetafunction, Acta Math. 133 (1974), 49–65.Google Scholar
[108] J. E., Littlewood, Quelques conséquences de l'hypothése que la fonction ζ(s) n'a pas de zéros dans le demi-plan ℜs > 1/2, C. R. Acad. Sci. Paris Sér. I Math. 158 (1912), 263–266. 1/2' href=https://scholar.google.com/scholar_lookup?title=Quelques+cons%C3%A9quences+de+l'hypoth%C3%A9se+que+la+fonction+%CE%B6(s)+n'a+pas+de+z%C3%A9ros+dans+le+demi-plan+%E2%84%9Cs+%3E+1%2F2&author=J.+E.+Littlewood&publication+year=1912>Google Scholar
[109] J. E., Littlewood, Sur la distribution des nombres premiers, C. R. Acad. Sci. Paris Sér. I Math. 158 (1914), 1869–1872.Google Scholar
[110] E. R., Lorch, Spectral Theory, Oxford University Press, 1962.
[111] J. van, de Lune, H. J. J., te Riele and D. T., Winter, On the zeros of the Riemann zeta function in the critical strip IV, Math. Comp. 46 (1986), 667–681.Google Scholar
[112] J.-P., Massias, J.-L., Nicolas and G., Robin, Evaluation asymptotique de l'ordre maximum d'un element du groupe symétrique, Acta Arith. 50 (1988), 221–242.Google Scholar
[113] J.-P., Massias, J.-L., Nicolas and G., Robin, Effective bounds for the maximal order of an element in the symmetric group, Math. Comp. 53 (1989), 665–678.Google Scholar
[114] J.-P., Massias and G., Robin, Bornes effectives pour certaines fonctions concernant les nombres premiers, J. Théor. Nombres Bordeaux 8 (1996), 215–242.Google Scholar
[115] F., Mertens, Über einize asymptotische Gesetse der Zahlentheorie, J. reine angew. Math. 77 (1874), 46–62.Google Scholar
[116] M., Mikolás, Farey series and their connection with the prime number problem I, Acta Univ. Szeged. Sect. Sci. Math. 13 (1949), 93–117.Google Scholar
[117] M., Mikolás, Farey series and their connection with the prime number problem II, Acta Sci. Math. Szeged 14 (1951), 5–21.Google Scholar
[118] W., Miller, The maximum order of an element of a finite symmetric group, Amer. Math. Monthly 94 (1987), 497–506.Google Scholar
[119] H. L., Montgomery, The pair correlation of zeros of the zeta function, in Analytic Number Theory, Proc. Symp. Pure Math. XXIV, pp. 181–193, American Mathematical Society, 1973.Google Scholar
[120] F., Morain, Tables sur la fonction g(n), Département de Mathématiques, Université de Limoges, 1988.
[121] M. J., Mossinghoff and T. S., Trudgian, Non-negative trigonometric polynomials and a zero-free region for the Riemann zeta-function, Preprint, arXiv:1410.3926v1, 2014.
[122] S., Nazardonyavi and S., Yakubovich, Superabundant numbers, their subsequences and the Riemann hypothesis, Preprint, arXiv:1211.2147v3, 2013.
[123] S., Nazardonyavi and S., Yakubovich, Extremely abundant numbers and the Riemann hypothesis, J. Integer Seq. 17 (2014), art. 14.2.8 (23pp.).Google Scholar
[124] M. B., Nathanson, Elementary Methods in Number Theory, Springer, 2000.
[125] J.-L., Nicolas, Ordre maximal d'un element du groupe des permutations et ‘highly composite numbers’, Bull. Soc. Math. France 97 (1969), 129–191.Google Scholar
[126] J.-L., Nicolas, Petites valeurs de la fonction d'Euler, J. Number Theory 17 (1983), 375–388.Google Scholar
[127] J.-L., Nicolas, Small values of the Euler function and the Riemann hypothesis, Acta Arith. 155 (2012), 311–321.Google Scholar
[128] J.-L., Nicolas, Ramanujan, Robin, highly composite numbers, and the Riemann hypothesis, Preprint, arXiv:1211.6944v4, 2013.
[129] A. M., Odlyzko and H. J. J. te, Riele, Disproof of the Mertens' conjecture, J. reine angew. Math. 357 (1985), 138–160.Google Scholar
[130] A. M., Odlyzko, On the distribution of spacings between zeros of the zeta function, Math. Comp. 48 (1987), 273–308.Google Scholar
[131] S. J., Patterson, An Introduction to the Theory of the Riemann Zeta-Function, Cambridge Studies in Advanced Mathematics 14, Cambridge University Press, 1988.
[132] D. J., Platt, Computing degree 1 L-functions rigorously, Ph.D. Thesis, University of Bristol, 2011.
[133] D. J., Platt, Computing π(x) analytically, Math. Comp. 84 (2015), 1521–1535.Google Scholar
[134] D. J., Platt and S. A., Trudgian, An improved explicit bound on |ζ(1/2 + it)|, J. Number Theory 147 (2015), 842–851.Google Scholar
[135] D. J., Platt and S. A., Trudgian, On the first sign change of θ(x) − x, Math. Comp. 85 (2016), 1539–1547.Google Scholar
[136] S., Ramanujan, Highly composite numbers (Part 1), Proc. London Math. Soc. 14 (1915), 347–409.Google Scholar
[137] S., Ramanujan, annotated by J.-L., Nicolas and G., Robin, Highly composite numbers (Part 2), Ramanujan J. 1 (1997), 119–153.Google Scholar
[138] R., Redheffer, Eine explizit lösbare Optimierungsaufgabe, in Numerische Methoden bei Optimierungsaufgaben, Band 3 (Tagung, Math. Forschungsinst., Oberwolfach, 1976), Int. Ser. Numer. Math., Vol. 36, pp. 213–216, Birkhäuser, 1977.
[139] H.-E., Richert, Zur Abschätzung der Riemannschen Zetafunktion in der Nähe der Vertikalen σ = 1, Math. Ann. 169 (1967), 97–101.CrossRef
[140] B., Riemann, Gesammelte Werke, Teubner, 1893; reprinted by Dover, 1953.
[141] G., Robin, Estimation de la fonction de Tchebychef θ sur le k-ième nombre premier et grandes valeurs de la fonction ω(n) nombre de diviseurs premiers de n, Acta Arith. 42 (1983), 367–389.Google Scholar
[142] G., Robin, Grandes valeurs de la fonction sommes des diviseurs et hypotheses de Riemann, J. Math. Pures Appl. 63 (1984), 187–213.Google Scholar
[143] J. B., Rosser, The n-th prime is greater than n log n, Proc. London Math. Soc. 45 (1938), 21–44.Google Scholar
[144] J. B., Rosser, Explicit bounds for some functions of prime numbers, Amer. J. Math. 63 (1941), 211–232.Google Scholar
[145] J. B., Rosser and L., Schoenfeld, Approximate formulas for some functions of prime numbers, Illinois J. Math. 6 (1962), 64–94.Google Scholar
[146] J. B., Rosser and L., Schoenfeld, Sharper bounds for the Chebyshev functions θ(x) and ψ(x), Math. Comp. 29 (1975), 243–269.CrossRef
[147] Z., Rudnick and P., Sarnak, Zeros of principal L-functions and random matrix theory. A celebration of John F. Nash, Jr., Duke Math. J. 81 (1996), 269–322.Google Scholar
[148] K., Sabbagh, The Riemann Hypothesis, Farrar, Straus and Giroux, 2003.
[149] B., Sagan, The Symmetric Group: Representations, Combinatorial Algorithms, and Symmetric Functions, Springer, 2001.
[150] J., Sándor, D. S., Mitrinović and B., Crstici, Handbook of Number Theory I, Springer, 2006.
[151] M., du Sautoy, The Music of the Primes, HarperCollins, 2003.
[152] E., Schmidt Über die Anzahl der Primzahlen unter gegebener Grenze, Math. Ann. 57 (1903), 195–204.Google Scholar
[153] L., Schoenfeld, Sharper bounds for the Chebyshev functions θ(x) and ψ(x) II, Math. Comput. 30 (1976), 337–360.Google Scholar
[154] L., Schoenfeld, Corrigendum: Sharper bounds for the Chebyshev functions θ(x) and ψ(x) II, Math. Comput. 30 (1976), 900.
[155] D., Schumayer and D. A. W., Hutchinson, Physics of the Riemann hypothesis, Rev. Mod. Phys. 83 (2011), 307–330.Google Scholar
[156] S. M., Shah, An inequality for the arithmetic function g(x), J. Indian Math. Soc. 3 (1939), 316–318.Google Scholar
[157] S., Skews, On the difference π(x)−li(x), J. London Math. Soc. 8 (1933), 277–283.Google Scholar
[158] N. J. A., Sloan, Online Encyclopedia of Integer Sequences (OEIS), https://oeis.org.
[159] P., Solé and M., Planat, The Robin inequality for 7-free integers, Integers 11 (2011), #A65 (8pp.).Google Scholar
[160] K., Soundararajan, Moments of the Riemann zeta function, Annals Math. 170 (2009), 981–993.Google Scholar
[161] A., Speiser, Geometrisches zur Riemannschen Zetafunktion, Math. Ann. 110 (1934), 514–521.Google Scholar
[162] R., Spira, An inequality for the Riemann zeta function, Duke Math. J. 32 (1965), 247– 250.Google Scholar
[163] R., Spira, Zeros of ζ (s) and the Riemann hypothesis, Illinois J. Math. 17 (1973), 147–152.Google Scholar
[164] A. I., Suriajaya, On the zeros of the k-th derivative of the Riemann zeta function under the Riemann hypothesis, Funct. Approx. Comment. Math. 53 (2015), 69–95.Google Scholar
[165] S. M., Szalay, On the maximal order in Sn and S *n, Acta Arith. 37 (1980), 321–331.Google Scholar
[166] G., Tenenbaum, Introduction to Analytic and Probabilistic Number Theory, Cambridge University Press, 1995.
[167] E. C., Titchmarsh and D. R., Heath-Brown, The Theory of the Riemann Zeta-Function, 2nd edn, Oxford University Press, 1986.
[168] T. S., Trudgian, Improvements to Turing's method, Math. Comp. 80 (2011), 2259–2279.CrossRefGoogle Scholar
[169] T. S., Trudgian, An improved upper bound for the argument of the Riemann zetafunction on the critical line II, J. Number Theory 134 (2014), 280–292.Google Scholar
[170] T. S., Trudgian, The sum of the unitary divisor function, Publ. Inst. Math. (Belgrad) (N.S.) 97 (2015), 175–180.Google Scholar
[171] T. S., Trudgian, A short extension of two of Spira's results, J. Math. Inequalities 9 (2015), 795–798.Google Scholar
[172] T. S., Trudgian, Improvements to Turing's method II, Rocky Mountain J. Math. 46 (2016), 325–332.Google Scholar
[173] T. S., Trudgian, Updating the error term in the prime number theorem, Ramanujan J. 39 (2016), 225–234.Google Scholar
[174] A. M., Turing, A method for the calculation of the zeta-function, Proc. London Math. Soc. 48 (1943), 180–197.Google Scholar
[175] A. M., Turing, Some calculations of the Riemann zeta-function, Proc. London Math. Soc. 3 (1953), 99–117.Google Scholar
[176] I. M., Vinogradov, A new estimate for ζ(1 + it), Izv. Akad. Nauk SSSR, Ser. Mat. 22 (1958), 161–164.Google Scholar
[177] A., Walfisz, Weylsche Exponentialsummen in der neueren Zahlentheorie, Mathematische Forschungsberichte, XV, VEB Deutscher Verlag der Wissenschaften, 1963.
[178] S., Wedeniwski, Section 1.1 History, ZetaGrad website, www.zetagrid.net/zeta/math/zeta.result.100billion.zeros.html.
[179] A., Weil, Sur les “formules explicites” de la théorie des nombres premiers, Comm. Sém. Math. Univ. Lund (1952), 252–265.Google Scholar
[180] H. S., Wilf, The Redheffer matrix of a partially ordered set, Electron. J. Combin. 11 (2004/2006), Research Paper 10 (5pp.).Google Scholar
[181] M., Yoshimoto, Farey series and the Riemann hypothesis II, Acta Math. Hungar. 78 (1998), 287–304.Google Scholar
[182] D., Zagier, The first 50 million prime numbers, Math. Intelligencer (1977), 7–19.
[183] S., Zegowitz, On the positive region of π(x) − li(x). Master's Thesis, University of Manchester, 2010.

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Kevin Broughan, University of Waikato, New Zealand
  • Book: Equivalents of the Riemann Hypothesis
  • Online publication: 27 October 2017
  • Chapter DOI: https://doi.org/10.1017/9781108178228.018
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Kevin Broughan, University of Waikato, New Zealand
  • Book: Equivalents of the Riemann Hypothesis
  • Online publication: 27 October 2017
  • Chapter DOI: https://doi.org/10.1017/9781108178228.018
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Kevin Broughan, University of Waikato, New Zealand
  • Book: Equivalents of the Riemann Hypothesis
  • Online publication: 27 October 2017
  • Chapter DOI: https://doi.org/10.1017/9781108178228.018
Available formats
×