Skip to main content Accessibility help
×
Hostname: page-component-5c6d5d7d68-vt8vv Total loading time: 0.001 Render date: 2024-08-10T03:21:20.973Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  27 October 2017

Kevin Broughan
Affiliation:
University of Waikato, New Zealand
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] A., Akbary and K., Hambrook, A variant of the Bombieri–Vinogradov theorem with explicit constants and applications, Math. Comp. 84 (2015), 1901–1932.Google Scholar
[2] N. I., Akhiezer, The Classical Moment Problem and Some Related Questions in Analysis, Hafner, 1965.
[3] N. I., Akhiezer, Elements of the Theory of Elliptic Functions, American Mathematical Society, 1990.
[4] S., Alaca and K. S., Williams, Introductory Algebraic Number Theory, Cambridge University Press, 2004.
[5] L., Alfors, Complex Analysis, 2nd edn, McGraw-Hill, 1966.
[6] H., Alzer, On some inequalities for the gamma and psi functions, Math. Comp. 66 (1997), 273–389.Google Scholar
[7] H., Alzer, Sharp inequalities for the digamma and polygamma functions, Forum Math. 16 (2004), 181–221.Google Scholar
[8] F., Amoroso, On the heights of the product of cyclotomic polynomials, Rend. Sem. Mat. Univ. Politec. Torino 53 (1995), 183–191.Google Scholar
[9] F., Amoroso, Algebraic numbers close to 1 and variants ofMahler's measure, J. Number Theory 60 (1996), 80–96.Google Scholar
[10] J., Anderson, Hyperbolic Geometry, 2nd edn, Springer, 2005.
[11] J., Andrade, A., Chang and S. J., Miller, Newman's conjecture in various settings, J. Number Theory 144 (2014), 70–91.Google Scholar
[12] G. E., Andrews, R., Askey and R., Roy, Special Functions, Encyclopedia of Mathematics and its Applications, vol. 71, Cambridge University Press, 1999.,
[13] T. M., Apostol, Mathematical Analysis, 2nd edn, Addison-Wesley, 1974.
[14] T. M., Apostol, Modular Functions and Dirichlet Series in Number Theory, Springer, 1976.
[15] T. M., Apostol, Introduction to Analytic Number Theory, 2nd edn, Springer, 1990.
[16] J., Arias de Reyna, Asymptotics of Keiper–Li coefficients, Funct. Approx. Comment. Math. 45 (2011), 7–21.CrossRefGoogle Scholar
[17] L., Báez-Duarte, M., Balazard, B., Landreau and E., Saias, Notes on the Riemann zeta function III, Adv. Math. 149 (2000), 130–144.CrossRefGoogle Scholar
[18] L., Báez-Duarte, A strengthening of the Nyman–Beurling criterion for the Riemann hypothesis, Atti Accad. Naz. Lincei Cl. Sci Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. 14 (2003), 5–11.Google Scholar
[19] L., Báez-Duarte, A sequential Riesz-like criterion for the Riemann hypothesis, Int. J. Math. Math. Sci. 21 (2005), 3527–3537.Google Scholar
[20] L., Báez-Duarte, Möbius convolutions and the Riemann hypothesis, Int. J. Math.Math. Sci. 22 (2005), 3599–3608.Google Scholar
[21] B., Bagchi, On Nyman, Beurling and Báez-Duarte's Hilbert space reformulation of the Riemann hypothesis, Proc. Indian Acad. Sci. Math. Sci. 116 (2006), 137–146.CrossRefGoogle Scholar
[22] R., Balasubramanian, A note on Dirichlet's L-functions, Acta. Arith. 38 (1980), 273–283.CrossRefGoogle Scholar
[23] R., Balasubramanian and V., Kumar Murty, Zeros of Dirichlet L-functions, Ann. Sci. Ecole Norm. Sup. 25 (1992), 567–615.CrossRefGoogle Scholar
[24] B., Beckman, Arne Beurling and the Swedish Crypto Program During World War II, American Mathematical Society, 2003.
[25] J., Bertrand, P., Bertrand and J.-P., Ovarlez, The Mellin transform, in The Transforms and Applications Handbook, Ed. A. D. Poularikas, chapter 11, CRC Press, 1996.
[26] A., Beurling, A closure problem related to the Riemann zeta-function, Proc. Natl. Acad. Sci. USA 41 (1955), 312–314.Google Scholar
[27] M., Balazard and E., Saias, Notes on the Riemann zeta function I, Adv.Math. 139 (1998), 310–321.CrossRefGoogle Scholar
[28] M., Balazard, E., Saias and M., Yor, Notes sur la fonction ζ de Riemann, 2, Adv. Math. 143 (1999) 284–287.
[29] E., Bombieri, On the large sieve, Mathematika 12 (1965), 201–225.Google Scholar
[30] E., Bombieri, Le Grand Crible dans la Théorie Analytique des Nombres, Astérisque, no. 18, Société Mathématiques de France, 1974.
[31] E., Bombieri, J.B., Friedlander and H., Iwaniec, Primes in arithmetic progressions to large moduli, Acta Math. 156 (1986), 203–251.CrossRefGoogle Scholar
[32] E., Bombieri and J. C., Lagarias, Complements to Li's criterion for the Riemann hypothesis, J. Number Theory 77 (1999), 274–287.Google Scholar
[33] E., Bombieri, Remarks on Weil's quadratic functional in the theory of prime numbers I, Rend. Mat. Accad. Lincei 11 (2000), 183–233.Google Scholar
[34] E., Bombieri, The Riemann Hypothesis: Official Problem Description, Clay Mathematics Institute, 2000.
[35] E., Bombieri, A variational approach to the explicit formula, Comm. Pure Appl. Math. 56 (2003), 1151–1164.CrossRefGoogle Scholar
[36] E., Bombieri, The classical theory of zeta and L-functions, Milan J. Math. 78 (2010), 11–59.CrossRefGoogle Scholar
[37] P., Borwein, S., Choi, B., Rooney and A., Weirathmueller, The Riemann Hypothesis: A Resource for the Afficionado and Virtuoso Alike, CMS Books in Mathematics, Springer, 2008.
[38] K. A., Broughan, Holomorphic flow of the Riemann xi function, Nonlinearity 18 (2005), 1269–1294.Google Scholar
[39] K. A., Broughan, Equivalents of the Riemann Hypothesis I: Arithmetic Equivalents, Cambridge University Press, 2017.
[40] F. C. S., Brown, Li's criterion and the zero-free regions of L-functions, J. Number Theory 111 (2005), 1–32.Google Scholar
[41] A. M., Bruckner, J.B., Bruckner and B. S., Thomson, Real Analysis, 2nd edn, ClassicalRealAnalysis.com, 2008.
[42] N. G., de Bruijn, The roots of trigonometric integrals, Duke Math. J. 17 (1950), 197–226.CrossRefGoogle Scholar
[43] J.-F., Burnol, A lower bound in an approximation problem involving the zeros of the Riemann zeta function, Adv. Math. 170 (2002), 56–70.CrossRefGoogle Scholar
[44] D. A., Cardon and S. A., Roberts, An equivalence for the Riemann hypothesis in terms of orthogonal polynomials, J. Approx. Theory 138 (2006), 54–64.Google Scholar
[45] T., Carleman, Uber die Approximation analytischer Funktionen durch lineare Aggregate von vorgegebenen Potenzen, Arkiv Mat. Astron. Fys. 17 (1922), no. 9.Google Scholar
[46] T., Carleman, Fonctions Quasi Analytiques, Gauthier-Villars, 1926.
[47] J. W. S., Cassels, Lectures on Elliptic Curves, London Mathematical Society Student Texts, vol. 24, Cambridge University Press, 1991.
[48] A., Chang, D., Mehrle, S.J., Miller, T., Reiter, J., Stahl and D., Yott, Newman's conjecture in function fields, J. Number Theory 157 (2015), 154–169.Google Scholar
[49] J. R., Chen, On the representation of a larger even integer as the sum of a prime and the product of at most two primes, Sci. Sinica 16 (1973), 157–176.Google Scholar
[50] E. W., Cheney, Analysis for Applied Mathematics, Springer, 2001.
[51] T. S., Chihara, An Introduction to Orthogonal Polynomials, Gordon and Breach, 1978.
[52] J., Cislo and M., Wolf, Equivalence of Riesz and Báez-Duarte criterion for the Riemann hypothesis, Preprint, 2006.
[53] M. W., Coffey, Relations and positivity results for the derivatives of the Riemann ξ-function, J. Comput. Appl. Math. 166 (2004), 525–534.CrossRefGoogle Scholar
[54] H., Cohen and H. W., Lenstra, Jr., Heuristics on class groups, in Number Theory (New York, 1982), Lecture Notes in Mathematics, vol. 1052, pp. 26–36. Springer, 1984.
[55] A., Connes, An essay on the Riemann hypothesis, Preprint, arXiv:1509.05576v1, 2015.
[56] J. B., Conrey and K., Soundararajan, Real zeros of quadratic Dirichlet L-functions, Invent. Math. 150 (2002), 1–44.CrossRefGoogle Scholar
[57] J. B., Conrey, The Riemann hypothesis, Notices Amer. Math. Soc. 50 (2003), 341–353.Google Scholar
[58] J. B., Conrey and N. C., Snaith, Applications of the L-functions ratios conjecture, Proc. London Math. Soc. (3) 94 (2007), 497–522.Google Scholar
[59] J. B., Conrey, D.W., Farmer and M. R., Zirnbauer, Autocorrelation of ratios of L-functions, Commun. Number Theory Phys. 2 (2008), 593–636.CrossRefGoogle Scholar
[60] G., Csordas, T.S., Norfolk and R. S., Varga, The Riemann hypothesis and the Turán inequalities, Trans. Amer. Math. Soc. 296 (1986), 521–541.Google Scholar
[61] G., Csordas, T.S., Norfolk and R. S., Varga, A lower bound for the de Bruijn–Newman constant Λ, Numer. Math. 52 (1988), 483–497.Google Scholar
[62] G., Csordas, A., Ruttan and R. S., Varga, The Laguerre inequalities with applications to a problem associated with the Riemann hypothesis, Numer. Algorithms 1 (1991), 305–329.Google Scholar
[63] G., Csordas, A., Odlyzko, W., Smith and R. S., Varga, A new Lehmer pair of zeros and a new lower bound for the de Bruijn–Newman constant Λ, Electron. Trans. Numer. Anal. 1 (1993), 104–111.Google Scholar
[64] G., Csordas, W., Smith and R. S., Varga, Lehmer pairs of zeros, the de Bruijn–Newman constant, and the Riemann hypothesis, Constr. Approx. 10 (1994), 107–129.CrossRefGoogle Scholar
[65] G., Csordas, W., Smith and R. S., Varga, Lehmer pairs of zeros and the Riemann ξ-function, Proc. Symp. Appl. Math. 48 (1994), 553–556.CrossRefGoogle Scholar
[66] B., Dacorogna, Direct Methods in the Calculus of Variations, Springer, 1989.
[67] H., Davenport, Multiplicative Number Theory, 3rd edn, Springer, 2000.
[68] B., Davies, Integral Transforms and Their Applications, 3rd edn, Springer, 2002.
[69] P., Deligne, La Conjecture de Weil I, Publ. Math. IHES 43 (1974), 273–308.Google Scholar
[70] P., Deligne, La Conjecture de Weil II, Publ. Math. IHES 52 (1980), 137–252.Google Scholar
[71] J.-M., Deshouillers, G., Effinger, H., te Riele and D., Zinoviev, A complete Vinogradov 3-primes theorem under the Riemann hypothesis, Electron. Res. Announc. Amer. Math. Soc. 3 (1997), 99–104.CrossRefGoogle Scholar
[72] M., Deuring, Zetafunktionen quadratischer formen, J. reine angew. Math. 1972 (1935), 226–252.Google Scholar
[73] K., Dickman, On the frequency of numbers containing prime factors of a certain relative magnitude, Ark. Mat. Astron. Fys. 22 (1930), 1–14.Google Scholar
[74] J. A., Dieudonné, On the history of the Weil conjectures, Math. Intelligencer 10 (1975), 7–21.Google Scholar
[75] W. F., Donoghue, Jr., Distributions and Fourier Transforms, Academic Press, 1969.
[76] A. D., Droll, Variations of Li's criterion for an extension of the Selberg class, Thesis, Queen's University, Kingston, ON, 2012.
[77] H. M., Edwards, Riemann's Zeta Function, Academic Press, 1974; reprinted by Dover, 2001.
[78] P. D. T. A., Elliott and H., Halberstam, A conjecture in prime number theory, Symposia Mathematica, Vol. IV, INDAM, Rome, 1968/69, pp. 59–72, Academic Press, 1970.
[79] W., Ellison and F., Ellison, Prime Numbers, John Wiley, 1985.
[80] B., Epstein, Linear Functional Analysis, W. B. Saunders, 1970.
[81] A., Erdélyi, W., Magnus, F., Oberhettinger and F. G., Tricomi, Tables of Integral Transforms, vol. I, Bateman Manuscript Project, McGraw-Hill, 1954.
[82] S., Estala-Arias, Distribution of cusp sections in the Hilbert modular orbifold, J. Number Theory 155 (2015), 202–225.Google Scholar
[83] K. J., Falconer, The Geometry of Fractal Sets, Cambridge University Press, 1985.
[84] D., Fiorilli, On the non-vanishing of Dirichlet L-functions at the central point, Quart. J. Math. 66 (2015), 517–528.CrossRefGoogle Scholar
[85] J., Franel, Les suites de Farey et le probléme des nombres premiers, Göttinger Nachrichten (1924), 198–201.
[86] P., Freitas, A Li-type criterion for zero-free half planes of Riemann's zeta function, J. London Math. Soc. (2) 73 (2006), 399–414.Google Scholar
[87] J., Friedlander and A., Granville, Limitations to the equi-distribution of primes I, Ann. Math. 129 (1989), 363–382.CrossRefGoogle Scholar
[88] J. B., Friedlander and H., Iwaniec, What is the parity phenomenon?, Notices Amer.Math. Soc. 56 (2009), 817–818.Google Scholar
[89] J. B., Friedlander and H., Iwaniec, Opera de Cribro, American Mathematical Society, 2010.
[90] W., Fulton, Algebraic Curves: An Introduction to Algebraic Geometry,W. A. Benjamin, 1969.
[91] S. D., Galbraith, The Mathematics of Public Key Cryptography, Cambridge University Press, 2012.
[92] P. X., Gallagher, The large sieve, Mathematika 14 (1967), 14–20.Google Scholar
[93] P. X., Gallagher, Bombieri's mean value theorem, Mathematika 15 (1968), 1–6.Google Scholar
[94] R., Garunkstis, On a positivity property of the Riemann ξ-function, Lithuanian Math. J. 43 (2002), 140–145.Google Scholar
[95] C. F., Gauss, Disquisitiones Arithmeticae, 1801; English transl., Yale University Press, 1966.
[96] I. M., Gelfand and S. V., Fomin, Calculus of Variations, Prentice-Hall, 1965.
[97] D., Goldfeld, An asymptotic formula relating the Siegel zero and the class number of quadratic fields, Ann. Scu. Norm. Sup. Pisa (4) 2 (1975), 611–615.Google Scholar
[98] D., Goldfeld, The class number of quadratic fields and the conjectures of Birch and Swinnerton-Dyer, Ann. Scu. Norm. Sup. Pisa (4) 3 (1976), 623–663.Google Scholar
[99] D., Goldfeld, Gauss’ class number problem for imaginary quadratic fields, Bull. Amer. Math. Soc. 13 (1985), 23–37. References 477CrossRefGoogle Scholar
[100] D., Goldfeld, Automorphic Forms and L-Functions for the Group GL(n,R), Cambridge University Press, 2006.
[101] D. A., Goldston, J., Pintz and C. Y., Yildirim, Primes in tuples I, Ann. Math. (2) 170 (2009), 819–862.Google Scholar
[102] T., Gowers (Ed.), The Princeton Companion to Mathematics, Princeton University Press, 2008.
[103] I. S., Gradshteyn and I. M., Ryzhik, Tables of Integrals, Series and Products, 6th edn, Academic Press, 2000.
[104] A., Granville, Least Primes in Arithmetic Progressions, Théorie des Nombres, Quebec, 1987, pp. 306–321, Walter de Gruyter, 1989.
[105] A., Granville and H. M., Stark, ABC implies no “Siegel zeros” for L-functions of characters with negative discriminant, Invent. Math. 139 (2000), 509–523.CrossRefGoogle Scholar
[106] A., Granville, Smooth numbers: computational number theory and beyond, Algorithmic Number Theory 42 (2008), 267–323.Google Scholar
[107] A., Granville, Primes in intervals of bounded length, Bull. Amer. Math. Soc. 52 (2015), 171–222.CrossRefGoogle Scholar
[108] R., Gupta and M., Ram Murty, A remark on Artin's conjecture, Invent. Math. 78 (1984), 127–130.CrossRefGoogle Scholar
[109] L., Habsieger, On the Nyman–Beurling criterion for the Riemann hypothesis, Funct. Approx. Comment. Math. 37 (2007), 187–201.CrossRefGoogle Scholar
[110] G. H., Hardy and J. E., Littlewood, Contributions to the theory of the Riemann zetafunction and the theory of the distribution of primes, Acta Math. 41 (1918), 119–196.Google Scholar
[111] G. H., Hardy, Remarks in addition to Dr. Widder's note on inequalities, J. London Math. Soc. 4 (1929), 199–202.Google Scholar
[112] G. H., Hardy, A Mathematician's Apology, Cambridge University Press, 1940.
[113] G. H., Hardy, J.E., Littlewood and G., Pólya, Inequalities, Cambridge University Press, 1964.
[114] M., Harris, Mathematics Without Apologies, Princeton University Press, 2015.
[115] D. R., Heath-Brown, Simple zeros of the Riemann zeta function on the critical line, Bull. London Math. Soc 11 (1979), 17–18.Google Scholar
[116] D. R., Heath-Brown, Zero-free regions for Dirichlet L-functions, and the least prime in an arithmetic progression, Proc. London Math. Soc 64 (1992), 265–338.Google Scholar
[117] H., Heilbronn, On the class number of imaginary quadratic fields, Quart. J. Math. 5 (1934), 150–160.Google Scholar
[118] H. A., Helfgott, Minor arcs for Goldbach's problem, Preprint, arXiv:1205.5252, 2012.
[119] H. A., Helfgott, Major arcs for Goldbach's problem, Preprint, arXiv:1305.2897, 2013.
[120] H. A., Helfgott, The ternary Goldbach conjecture (transl. by M. Bilu, rev. by author), Gaz. Math. 140 (2014), 5–18.Google Scholar
[121] A., Hildebrand, Integers free of large prime factors and the Riemann hypothesis, Mathematika 31 (1984), 258–271.Google Scholar
[122] A., Hildebrand and G., Tenenbaum, Integers without large prime factors, J. Théor. Nombres Bordeaux 5 (1993), 411–484.Google Scholar
[123] J., Hoffstein, J., Pipher and J. H., Silverman, An Introduction to Mathematical Cryptography, Springer, 2008.
[124] C., Hooley, On Artin's conjecture, J. reine angew. Math. 225 (1967), 209–220.Google Scholar
[125] L., Hörmander, Linear Partial Differential Operators, Academic Press, 1964.
[126] L., Hörmander, The Analysis of Linear Partial Differential Operators, Springer, 1983.
[127] J., Horváth, Topological Vector Spaces and Distributions, Addison-Wesley, 1966.
[128] K., Ireland and M., Rosen, A Classical Introduction toModern Number Theory, Springer, 1993.
[129] A., Ivić, Riemann Zeta Function: Theory and Applications, Dover, 2003.
[130] H., Iwaniec, Spectral Methods of Automorphic Forms, 2nd edn, American Mathematical Society, 2002.
[131] H., Iwaniec and E., Kowalski, Analytic Number Theory, AmericanMathematical Society, 2004.
[132] H., Iwaniec, Conversations on the exceptional character, in Analytic Number Theory, Lecture Notes in Mathematics, vol. 1891, pp. 97–132, Springer, 2006.
[133] H., Iwaniec, Prime numbers and L-functions, in Proceedings of the International Congress of Mathematicians, Madrid, 2006, vol. 1, pp. 280–306, European Mathematical Society, 2007.
[134] N., Jacobson, Basic Algebra I, 2nd edn, Dover, 2009.
[135] G. J. O., Jameson, Topology and Normed Spaces, Chapman and Hall, 1974.
[136] J., Jost and X., Li-Jost, Calculus of Variations, Cambridge University Press, 1998.
[137] M., Jutila, On character sums and class numbers, J. Number Theory 5 (1973), 203–214.Google Scholar
[138] A. A., Karatsuba and S. M., Voronin, Riemann Zeta Function (transl. from Russian by N. Koblitz), Walter de Gruyter, 1994.
[139] N., Katz, L-functions and monodromy: four lectures on Weil II, Adv. Math. 160 (2001), 81–132.CrossRefGoogle Scholar
[140] H., Ki and Y.-O., Kim, On the de Bruijn–Newman constant, Adv. Math. 222 (2009), 281–306.CrossRefGoogle Scholar
[141] N., Koblitz, Introduction to Elliptic Curves and Modular Forms, 2nd edn, Springer, 1993.
[142] J.-M., De Koninck and F., Luca, Analytic Number Theory: Exploring the Anatomy of Integers, American Mathematical Society, 2012.
[143] E., Kowalski, A survey of algebraic exponential sums and some applications, in Motivic Integration and its Interactions with Model Theory and Non-Archimedean Geometry, vol. II, London Mathematical Society Lecture Note Series 384, pp. 178–201, Cambridge University Press, 2011.
[144] T., Kubota, Elementary Theory of Eisenstein Series, Halsted, 1973.
[145] J. C., Lagarias, On a positivity property of the Riemann ξ-function, Acta Arith. 99 (1999) 217–213.Google Scholar
[146] J. C., Lagarias, The Riemann hypothesis: arithmetic and geometry, in Surveys in Noncommutative Geometry, Clay Mathematics Proceedings, vol. 6, pp. 127–141, American Mathematical Society and Clay Mathematics Institute, 2006.
[147] J. C., Lagarias and K., Soundararajan, Smooth solutions to the abc equation: the xyz conjecture, J. Théor. Nombres Bordeaux 23 (2011) 209–234.CrossRefGoogle Scholar
[148] J. C., Lagarias and K., Soundararajan, Counting smooth solutions to the equation A+B = C, Proc. London Math. Soc. (3) 104 (2012), 770–798.Google Scholar
[149] E., Landau, Handbuch der lehre von der Verteilung der Primzahlen, 2nd edn, vols 1 and 2, Chelsea, 1953.
[150] E., Landau, Bemerkungen zu der vorstehenden Abhandlung von Herrn Franel, Göttinger Nachrichten (1924), 202–206.
[151] B., Landreau and F., Richard, The Beurling–Nyman criterion for the Riemann hypothesis: numerical aspects, Exp. Math. 11 (2002), 349–360.CrossRefGoogle Scholar
[152] S., Lang, Analysis I, Addison-Wesley, 1968.
[153] N., Levinson, On closure problems and zeros of the Riemann zeta function, Proc. Amer. Math. Soc. 7 (1956), 838–845.CrossRefGoogle Scholar
[154] X.-J., Li, The positivity of a sequence of numbers and the Riemann hypothesis, J. Number Theory 65 (1997), 325–333.Google Scholar
[155] U. V., Linnik, The large sieve, C. R. (Dokl.) Acad. Sci. URSS, N.S. 30 (1941), 292–294.Google Scholar
[156] U. V., Linnik, A remark on the least quadratic non-residue, C. R. (Dokl.) Acad. Sci. URSS, N.S. 36 (1942), 119–120.Google Scholar
[157] U. V., Linnik, On the least prime in an arithmetic progression. I. The basic theorem; II. The Deuring–Heilbronn phenomenon, Mat. Sbornik 15 (1947), 139–178. 347–368.Google Scholar
[158] E. R., Lorch, Spectral Theory, Oxford University Press, 1962.
[159] M., Low, Real zeros of the Dedekind zeta function of an imaginary quadratic field, Acta Arith. 14 (1868), 117–140.Google Scholar
[160] D. A., Marcus, Number Fields, Springer, 1977.
[161] D. W., Masser, On abc and discriminants, Proc. Amer. Math. Soc. 130 (2002) 3141–3150.CrossRefGoogle Scholar
[162] Mathematics Genealogy Project, http://genealogy.math.ndsu.nodak.edu/index.php.
[163] Y., Matiyasevich, F., Saidak and P., Zvengrowski, Horizontal monotonicity of the modulus of the zeta function, L-functions, and related functions, Acta Arith. 166 (2014), 189–200.CrossRefGoogle Scholar
[164] J., Maynard, Small gaps between primes, Ann. Math. (2) 181 (2015), 383–413.Google Scholar
[165] K., Mazhouda and S., Omar, The Cardon and Roberts’ criterion for the Riemann hypothesis, Analysis (Berlin) 33 (2013), 309–318.Google Scholar
[166] K., Mazhouda, Reformulation of the Li criterion for the Selberg class, Preprint, arXiv:1405.7354v3, 2015.
[167] B., Mazur and W. A., Stein, The Riemann Hypothesis, Cambridge University Press, 2016.
[168] H., Mellin, U berden Zusammenhang zwischen den linearen Differential- und Differenzengleichungen, Acta Math. 25 (1902), 139–164.CrossRefGoogle Scholar
[169] F., Mertens, Uber einize asymptotische Gesetse der Zahlentheorie, J. reine angew. Math. 77 (1874), 46–62.Google Scholar
[170] S. J., Miller, A symplectic test of the L-functions ratios conjecture, Int. Math. Res. Notices 2008 (2008), art. 146 (36pp.).Google Scholar
[171] J., Milne, Elliptic Curves, BookSurge, 2006.
[172] H. L., Montgomery and R. C., Vaughan, Multiplicative Number Theory I: Classical Theory, Cambridge University Press, 2007.
[173] P., Moree, Artin's primitive root conjecture, a survey, Integers 10 (2012), 1305–1416.Google Scholar
[174] P., Moree, Nicolaas Govert de Bruijn, the enchanter of friable integers, Indag. Math. (N.S.) 24 (2013), 224–801.Google Scholar
[175] G. L., Mullen and C., Mummert, Finite Fields and Applications I, Student Mathematical Library, American Mathematical Society, 2007.
[176] M. R., Murty and V. K., Murty, A variant of the Bombieri–Vinogradov theorem, in Number Theory, Montreal, 1985, Canadian Mathematical Society Conference Proceedings, vol. 7, pp. 243–272, American Mathematical Society, 1987.
[177] M. R., Murty and V. K., Murty, Non-Vanishing of L-Functions and Applications, Birkhauser, 1997.
[178] M. R., Murty and K. L., Petersen, A Bombieri–Vinogradov theorem for all number fields, Trans. Amer. Math. Soc. 365 (2013), 4987–5032.Google Scholar
[179] D., Naccache and I. E., Shparlinski, Divisibility, smoothness and cryptographic applications, in Algebraic Aspects of Digital Communications, NATO Science for Peace and Security Series – D: Information and Communication Security, vol. 24, pp. 115–173, IOS Press, 2009.
[180] W., Narkiewicz, Elementary and Analytic Theory of Algebraic Numbers, Springer, 1989.
[181] M. B., Nathanson, Elementary Methods in Number Theory, Springer, 2000.
[182] C. M., Newman, Fourier transforms with only real zeros, Proc. Amer. Math. Soc. 61 (1976), 245–251.CrossRefGoogle Scholar
[183] T. S., Norfolk, A., Ruttan and R. S., Varga, A lower bound for the de Bruijn–Newman constant Λ II, in Progress in Approximation Theory, eds A. A. Gonchar and E. B. Saff, pp. 403–418, Springer, 1992.
[184] K. K., Norton, Numbers with Small Prime Factors, and the Least kth Power Non-Residue, Memoirs of the American Mathematical Society, No. 106, American Mathematical Society, 1971.
[185] B., Nyman, On the one dimensional translation group and semi-group in certain function spaces, Thesis, University of Uppsala, 1950.
[186] F., Oberhettinger, Tables of Mellin Transforms, Springer, 1974.
[187] A., Odlyzko, An improved lower bound for the de Bruijn–Newman constant, Numer. Algorithms 25 (2000), 293–303.Google Scholar
[188] F. W. J., Olver, D.W., Lozier, R.F., Boisvert and C. W., Clark (eds), NIST Handbook of Mathematical Functions, U.S. Department of Commerce, National Institute of Standards and Technology, Cambridge University Press, 2010.
[189] J., Oesterlé, Nouvelles Approches du “Théor`eme” de Fermat, Sém. Bourbake, Exp. No. 694, Astérisque, no. 161–162, pp. 165–186, Société Mathématiques de France, 1988.
[190] S., Omar and K., Mazhouda, Le crit`ere de Li et l'hypoth`ese de Riemann pour la classe de Selberg, J. Number Theory 125 (2007), 50–58.Google Scholar
[191] S., Omar and K., Mazhouda, The Li criterion and the Riemann hypothesis for the Selberg class II, J. Number Theory 130 (2010), 1098–1108.Google Scholar
[192] K., Ono and K., Soundararajan, Ramanujan's ternary quadratic form, Invent. Math. 130 (1997), 415–454.CrossRefGoogle Scholar
[193] M. L., Patrick, Extensions of inequalities of the Laguerre and Turán type, Pacific J. Math. 44 (1973), 675–682.CrossRefGoogle Scholar
[194] S. J., Patterson, An Introduction to the Theory of the Riemann Zeta-Function, Cambridge Studies in Advanced Mathematics, vol. 14, Cambridge University Press, 1988.
[195] A., Perelli, J., Pintz and S., Salerno, Bombieri's theorem in short intervals, Ann. Scu. Norm. Sup. Pisa Cl. Sci. (4) 11 (1984), 529–539.Google Scholar
[196] A., Perelli, J., Pintz and S., Salerno, Bombieri's theorem in short intervals. II, Invent. Math. 79 (1985), 1–9.CrossRefGoogle Scholar
[197] G., Pólya, George Pólya: Collected Papers, Vol. II, ed. R. P. Boas, MIT Press, 1974.
[198] G., Purdy, The real zeros of the Epstein zeta function, Ph.D. Thesis, University of Illinois, 1972.
[199] L. D., Pustyl'nikov, On a property of the classical zeta-function associated with the Riemann hypothesis, Russian Math. Surveys 55 (1999), 262–263.Google Scholar
[200] O., Ramaré, On Snirel'man's constant, Ann. Scu. Norm. Sup. Pisa Cl. Sci. 22 (1995), 645–706.Google Scholar
[201] A., Rényi, On the representation of an even number as the sum of a prime and of an almost prime, Amer. Math. Soc. Transl. (2) 19 (1962), 299–321.Google Scholar
[202] P., Ribenboim, My Numbers, My Friends, Springer, 2000.
[203] B., Riemann, Gesammelte Werke, Teubner, 1893; reprinted by Dover, 1953.
[204] M., Riesz, Sur l'hypoth`ese de Riemann, Acta Math. 40 (1916), 185–190.CrossRefGoogle Scholar
[205] G., Robin, Grandes valeurs de la fonction sommes des diviseurs et hypoth`ese de Riemann, J. Math. Pures Appl. 63 (1984), 187–213.Google Scholar
[206] G., Robin, Sur la différence Li(θ(x)) − π(x), Ann. Fac. Sci. Toulouse Math. 6 (1984), 257–268.CrossRefGoogle Scholar
[207] H. L., Royden, Real Analysis, 2nd edn, Macmillan, 1968.
[208] W., Rudin, Real and Complex Analysis, 2nd edn, McGraw-Hill, 1974.
[209] W., Rudin, Functional Analysis, 2nd edn, McGraw-Hill, 1991.
[210] K., Sabbagh, The Riemann Hypothesis, Farrar, Straus and Giroux, 2003.
[211] R., Salem, Sur une proposition équivalente `a l'hypoth`ese de Riemann. C. R. Acad. Sci. Paris 236 (1953), 127–128.Google Scholar
[212] Y., Saouter, X., Gourdon and P., Demichel, An improved lower bound for the de Bruijn– Newman constant, Math. Comp. 80 (2011), 2259–2279.CrossRefGoogle Scholar
[213] P., Sarnak, Asymptotic behavior of periodic orbits of the horocycle flow and Eisenstein series, Comm. Pure Appl. Math. 34 (1981), 719–739.CrossRefGoogle Scholar
[214] P., Sarnak, Problems of the Millennium: the Riemann Hypothesis (2004), Annual Report of the Clay Mathematics Institute, 2004.
[215] M., du Sautoy, The Music of the Primes, HarperCollins, 2003.
[216] M., Schechter, An Introduction to Nonlinear Analysis, Cambridge University Press, 2004.
[217] L., Schwartz, Théorie des Distributions, vols 1 and 2, Hermann, 1951.
[218] S. K., Sekatskii, S., Beltraminelli and D., Merlini, On equalities involving integrals of the logarithm of the Riemann-function and equivalent to the Riemann hypothesis, Ukrain. Math. J. 64 (2012), 247–261.CrossRefGoogle Scholar
[219] S. K., Sekatskii, Generalized Bombieri–Lagarias’ theorem and generalized Li's criterion with its arithmetic interpretation, Ukrain. Mat. Zh. 66 (2014), 371–383.CrossRefGoogle Scholar
[220] J. A., Shohat and J. D., Tamarkin, The Problem of Moments, Mathematical Surveys, no. 1, American Mathematical Society, 1943.
[221] C. L., Siegel, On the zeros of the Dirichlet L-functions, Ann. Math. 46 (1945), 409–422.CrossRefGoogle Scholar
[222] J. H., Silverman and J., Tate, Rational points on elliptic curves, Undergraduate Texts, Springer, 1968.
[223] J. H., Silverman, The Arithmetic of Elliptic Curves, 1st edn, Graduate Texts in Mathematics, vol. 106, Springer, 1986; 2nd edn, 2009.
[224] H., Skovgaard, On inequalities of the Turán type, Math. Scand. 2 (1954), 65–73.CrossRefGoogle Scholar
[225] L., Smajlović, On Li's criterion for the Riemann hypothesis for the Selberg class, J. Number Theory 130 (2010), 828–851.Google Scholar
[226] J., Sondow and C., Dumitrescu, A monotonicity property of Riemann's xi function and a reformulation of the Riemann hypothesis, Period. Math. Hungar. 60 (2010), 37–40.CrossRefGoogle Scholar
[227] K., Soundararajan, Nonvanishing of quadratic Dirichlet L-functions at s= 12, Ann. Math. (2) 152 (2000), 447–488.Google Scholar
[228] S., Stahl, The Poincaré Half-Plane: A Gateway to Modern Geometry, Jones and Bartlett, 1993.
[229] A., Steiger, Course Notes, 2006.
[230] T., Tao, Every odd number greater than 1 is the sum of at most five primes,Math. Comp. 83 (2012), 997–1038.Google Scholar
[231] T., Tao, Web based lecture notes on the Bombieri–Vinogradov theorem, 2016.
[232] G., Tenenbaum, Introduction to Analytic and Probabilistic Number Theory, Cambridge University Press, 1995.
[233] J., Thorner, A variant of the Bombieri–Vinogradov theorem in short intervals and some questions of Serre, Math. Proc. Cambridge Philos. Soc. 161 (2016), 53–63.CrossRefGoogle Scholar
[234] E. C., Titchmarsh, A divisor problem, Rend. Circ. Mat. Palermo 54 (1930), 414–429.Google Scholar
[235] E. C., Titchmarsh, The Theory of Functions, 2nd edn, Oxford University Press, 1939.
[236] E. C., Titchmarsh and D. R., Heath-Brown, The Theory of the Riemann Zeta-Function, 2nd edn, Oxford University Press, 1986.
[237] F., Tréves, Topological Vector Spaces, Distributions and Kernels, Academic Press, 1967.
[238] O. N., Vasilenko, Number-Theoretic Algorithms in Cryptography, American Mathematical Society, 2007.
[239] R. C., Vaughan, Mean value theorems in prime number theory, J. London Math. Soc. (2) 10 (1975), 153–162.Google Scholar
[240] R. C., Vaughan, An elementary method in prime number theory, Acta Arith. 37 (1980), 111–115.CrossRefGoogle Scholar
[241] J.-L., Verger-Gaugry, Uniform distribution of Galois conjugates and beta-conjugates of a Parry number near the unit circle and the dichotomy of Perron numbers, Unif. Distrib. Theory 3 (2008), 157–190.Google Scholar
[242] A., Verjovsky, Arithmetic geometry and dynamics in the unit tangent bundle of the modular orbifold, in Dynamical Systems (Santiago, 1990), Pitman Research Notes in Mathematics Series, 285, pp. 263–298, Longman, 1993.
[243] A., Verjovsky, Discrete measures and the Riemann hypothesis, Kodai Math. J. 17 (1994), 596–608.CrossRefGoogle Scholar
[244] A. I., Vinogradov, On the density hypothesis for Dirichlet L-series, Izv. Akad. Nauk SSSR, Ser. Mat. 29 (1965), 903–934.Google Scholar
[245] A. I., Vinogradov, Corrections to the work of A. I. Vinogradov “On the density hypothesis for Dirichlet L-series”, Izv. Akad. Nauk SSSR, Ser. Mat. 30 (1965), 719–729.Google Scholar
[246] V. V., Volchkov, On an equality equivalent to the Riemann hypothesis, Ukrain. Math. J. 47 (1995), 422–423.Google Scholar
[247] A., Voros, Sharpenings of Li's criterion for the Riemann hypothesis, Math. Phys. Anal. Geom. 9 (2006), 53–63.CrossRefGoogle Scholar
[248] F. T., Wang, A note on the Riemann zeta-function, Bull. Amer. Math. Soc. 52 (1946), 319–321.CrossRefGoogle Scholar
[249] M., Watkins, Real zeros of real odd Dirichlet L-functions, Math. Comp. 73 (2003), 415–423.CrossRefGoogle Scholar
[250] M., Watkins, Class numbers of imaginary quadratic fields, Math. Comp. 73 (2004), 907–938.Google Scholar
[251] A., Weil, Sur les “formules explicites” de la théorie des nombres premiers, Meddel. Fran Lunds Univ. Mat. Sem. (1952), 252–265; see also Oeuvres Scientifiques – Collected Papers, Vol. II, corrected 2nd printing, pp. 48–61, Springer, 1980.
[252] A., Weil, Sur les formules explicites de la théorie des nombres premiers, Izv. Akad. Nauk SSSR Ser. Mat. 36 (1972), 3–18.Google Scholar
[253] A., Weil, Number Theory: An Approach Through History. From Hammurapi to Legendre, Birkhauser, 1984.
[254] E. T., Whittaker and G. N., Watson, A Course of Modern Analysis, Cambridge University Press, 1962.
[255] D. V., Widder, The Laplace Transform, Princeton University Press, 1946.
[256] N., Wiener, Tauberian theorems, Ann Math. 33 (1932), 1–100.CrossRefGoogle Scholar
[257] H. S., Wilf, On the zeros of Riesz’ function in the analytic theory of numbers, Illinois J. Math. 8 (1964), 639–641.Google Scholar
[258] M., Wolf, Evidence in favour of the Báez-Duarte criterion for the Riemann hypothesis, Comp. Meth. Sci. Technol. 14 (2008), 47–54.CrossRefGoogle Scholar
[259] M., Wolf, Some remarks on the Báez-Duarte criterion for the Riemann hypothesis, Comp. Meth. Sci. Technol. 20 (2014), 39–47.CrossRefGoogle Scholar
[260] S., Yakubovich, Integral and series transformations via Ramanujan's identities and Slaem's type equivalences to the Riemann hypothesis, Integral Transforms Spec. Funct. 25 (2014), 255–271.CrossRefGoogle Scholar
[261] H., Yoshida, On Hermitian forms attached to zeta functions, in Zeta Functions in Geometry (Tokyo, 1990), Advanced Studies in Pure Mathematics, vol. 21, pp. 281–325, Kinokuniya, 1992.
[262] K., Yosida, Functional Analysis, 4th edn, Springer, 1974.
[263] D., Zagier, Eisenstein series and the Riemann zeta-function, in Automorphic Forms, Representation Theory and Arithmetic (Bombay, 1979), Tata Institute Studies in Mathematics, vol. 10, pp. 275–301, Springer, 1981.
[264] Y., Zhang, Bounded gaps between primes, Ann. Math. (2) 1979 (2014), 1121–1174.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Kevin Broughan, University of Waikato, New Zealand
  • Book: Equivalents of the Riemann Hypothesis
  • Online publication: 27 October 2017
  • Chapter DOI: https://doi.org/10.1017/9781108178266.029
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Kevin Broughan, University of Waikato, New Zealand
  • Book: Equivalents of the Riemann Hypothesis
  • Online publication: 27 October 2017
  • Chapter DOI: https://doi.org/10.1017/9781108178266.029
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Kevin Broughan, University of Waikato, New Zealand
  • Book: Equivalents of the Riemann Hypothesis
  • Online publication: 27 October 2017
  • Chapter DOI: https://doi.org/10.1017/9781108178266.029
Available formats
×