Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-22T12:31:34.291Z Has data issue: false hasContentIssue false

11 - Evolutionary Development of the Postcranial and Appendicular Skeleton in Fishes

Published online by Cambridge University Press:  31 December 2018

Zerina Johanson
Affiliation:
Natural History Museum, London
Charlie Underwood
Affiliation:
Birkbeck, University of London
Martha Richter
Affiliation:
Natural History Museum, London
Get access

Summary

The postcranial skeleton of vertebrates fulfils various tasks constrained by extrinsic and intrinsic requirements, which significantly differ between fishes and tetrapods. For instance, body support, storage of minerals, and haematopoiesis are less important for fishes, which include more than half of all living vertebrates, than for tetrapods. Evolutionary and developmental aspects of the various parts of the postcranial skeleton of fishes that perform many different functions, however, have received only limited attention. Our knowledge is limited in anatomical, morphological or taxonomic scope, in part because the composition of the postcranial skeleton differs significantly between fish lineages such as ‘agnathans’, chondrichthyans, actinopterygians, dipnoans and coelacanths. Here, we provide a broad overview of the evolutionary development of the postcranial skeleton of all extinct and extant fish lineages in a phylogenetic and genetic framework. It is obvious that our knowledge about the evolution and development of cartilage and bone formation, as well as the evolutionary sequence of postcranial parts, increased in recent years but, nevertheless, remains incomplete. Different roadmaps for future research topics emerge from this review.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agassiz, L. 1833–1843. Recherches sur les poissons fossiles, 5 volumes, with supplements. Neuchâtel et Soleure: Petitpierre.Google Scholar
Alexander, RMN.1967. Functional Design in Fishes. London: Hutchinson.Google Scholar
Apschner, A, Schulte-Merker, S, Witten, PE. 2011. Not all bones are created equal – Using zebrafish and other teleost species in osteogenesis research. Method Cell Biol 105:239255.Google Scholar
Arratia, G, Cloutier, R. 1996. Reassessment of the morphology of Cheirolepis canadensis (Actinopterygii). In: Schultze, H-P, Cloutier, R, editors. Devonian Fishes and Plants of Miguasha, Quebec, Canada. Munich: Verlag Dr. Pfeil. pp. 165197.Google Scholar
Arratia, G, Schultze, H-P, Casciotta, J. 2001. Vertebral column and associated elements in dipnoans and comparison with other fishes: Development and homology. J Morph 250:101172.Google Scholar
Aschliman, NC, Claeson, KM, McEachran, JD. 2012. Phylogeny of Batoidea. In: Carrier, JC, Musick, JA, editors. Biology of Sharks and Their Relatives, 2nd edition. Boca Raton: CRC Press. pp. 5796.Google Scholar
Bartsch, P, Gemballa, S. 1992. On the anatomy and development of the vertebral columns and pterygiophores in Polypterus senegalus Cuvier, 1829 (‘Pisces’, Polypteriformes). Zool Jb Anat 122:497529.Google Scholar
Bartsch, P, Gemballa, S, Piotrowski, T. 1997. The embryonic and larval development of Polypterus senegalus Cuvier, 1829: Its staging with reference to external and skeletal features, behaviour and locomotory habits. Acta Zool 78:309328.CrossRefGoogle Scholar
Bemis, WE, Grande, L. 1999. Development of the median fins of the North American paddlefish (Polyodon spathula), and a re-evaluation of the lateral fin-fold hypothesis. In: Arratia, G, Schultze, H-P, editors. Mesozoic Fishes, Vol. 2: Systematics and Fossil record. München: Verlag Dr. Pfeil. pp. 4168.Google Scholar
Bird, NC, Mabee, PM. 2003. Developmental morphology of the axial skeleton of the zebrafish, Danio rerio (Ostariophysi: Cyprinidae). Dev Dyn 228:337357.Google Scholar
Blackburn, DG. 2005. Evolutionary origins of viviparity in fishes. In: Grier, HJ, Uribe, MC, editors. Viviparous Fishes. Homestead: New Life Publications. pp. 287301.Google Scholar
Bordat, C. 1987. Étude ultrastructurale de l’os des vertèbres du sélacien Scyliorhinus canicula L. Can J Zool 65:14351444.Google Scholar
Brainerd, EL, Patek, SN. 1998. Vertebral column morphology, C-start curvature, and the evolution of mechanical defences in tetraodontiform fishes. Copeia 4:971984.Google Scholar
Brazeau, MD, Friedman, M. 2014. The characters of Palaeozoic jawed vertebrates. Zool J Linn Soc 170:779821.Google Scholar
Britz, R, Bartsch, P. 2003. The myth of dorsal ribs in gnathostome vertebrates. Proc R Soc Lond B (Suppl): 270: S1S4.Google Scholar
Buckland-Nicks, JA, Gillis, M, Reimchen, TE. 2011. Neural network detected in a presumed vestigial trait: Ultrastructure of the salmonid adipose fin. Proc R Soc B 279:553563.Google Scholar
Bürgin, T. 1990. Reproduction in Middle Triassic actinopterygians: Complex fin structures and evidence of viviparity in fossil fishes. Zool J Linn Soc 100:379391.Google Scholar
Burrow, CJ, Turner, S. 2010. Reassessment of ‘Protodusscoticus from the Early Devonian of Scotland. In: Elliott, DK, Maisey, JG, Yu, X, Miao, D, editors. Morphology, Phylogeny and Paleobiogeography of Fossil Fishes. München: Verlag Dr. Friedrich Pfeil. pp. 123144.Google Scholar
Claeson, KM. 2011. The synarcual cartilage of batoids with emphasis on the synarcual of Rajidae. J Morph 12:14441463.Google Scholar
Coates, M. 2003. The evolution of paired fins. Theory Biosci 122:266287.Google Scholar
Coates, MI, Cohn, MJ. 1998. Fins, limbs, and tails: Outgrowths and axial patterning in vertebrate evolution. Bioessays 20:371381.Google Scholar
Coates, MI, Sequeira, SEK, Sansom, IJ, Smith, MM. 1998. Spines and tissues of ancient sharks. Nature 396:729730.CrossRefGoogle Scholar
Compagno, LJV. 1977. Phyletic relationships of living sharks and rays. Amer Zool 17:303322.CrossRefGoogle Scholar
Compagno, LJV. 1999. Endoskeleton Appendix. In: Hamlett, WC, editor. Sharks, Skates and Rays. The Biology of Elasmobranch Fishes. Maryland: Johns Hopkins Press. pp. 6992.Google Scholar
Crane, M Jr. 1966. Late Tertiary radiation of viperfishes, Chauliodonlidac, based on a comparison of Recent and Miocene species. Los Angeles Co Mus Contr Sci 115:129.Google Scholar
Danos, F, Fisch, N, Gemballa, S. 2008. The musculotendinous system of an anguilliform swimmer: Muscles, myosepta, dermis, and their interconnection in Anguilla rostrata. J Morph 269:2944.Google Scholar
Danos, N, Ward, AE. 2012. The homology and origins of intermuscular bones in fishes: Phylogenetic or biomechanical determinants? Biol J Linn Soc 106:607622.Google Scholar
Davis, MC. 2013. The deep homology of the autopod: Insights from hox gene regulation. Integr Comp Biol 53:224232.Google Scholar
Davis, MC, Shubin, NH, Force, A. 2004. Pectoral fin and girdle development in the basal actinopterygians Polyodon spathula and Acipenser transmontanus. J Morph 262:608628.Google Scholar
Dean, MN. 2011. Cartilaginous fish skeletal tissues. In: Farrell, AP, editor. Encyclopedia of Fish Physiology: From Genome to Environment, Vol. 1. San Diego: Academic Press. pp. 428433.CrossRefGoogle Scholar
Denison, R. 1978. Placodermi. In: Schultze, H-P, editor. Handbook of Paleoichthyology, Vol. 2. Stuttgart: Gustav Fischer Verlag. pp. 128.Google Scholar
Denison, R. 1979. Acanthodii. In: Schultze, H-P, editor. Handbook of Paleoichthyology, Vol. 5. Stuttgart: Gustav Fisher Verlag. 62 p.Google Scholar
Didier, DA. 1995. Phylogenetic systematics of extant chimaeroid fishes (Holocephali, Chimaeroidei). Am Mus Novit 3119:186.Google Scholar
Domenici, P. 2003. Habitat, body design and the swimming performance of fish. In: Bels, VL, Gasc, JP, Casinos, A, editors. Vertebrate Biomechanics and Evolution, Vol.1. Oxford: BIOS Scientific Publishers Ltd. pp 137160.Google Scholar
Don, EK, Currie, PD, Cole, NJ. 2013. The evolutionary history of the development of the pelvic fin/hindlimb. J Anat 222:114133.Google Scholar
Donoghue, PCJ, Sansom, IJ 2002. Origin and early evolution of vertebrate skeletonization. Microsc Res Tech 59:352372.Google Scholar
Donoghue, PCJ, Sansom, IJ, Downs, JP. 2006. Early evolution of vertebrate skeletal tissues and cellular interactions, and the canalization of skeletal development. J Exp Zool (Mol Dev Evol) 306B:117.Google Scholar
Dúran, I, Marí-Beffa, M, Santamaría, JA, Becerra, J, Santos-Ruiz, L. 2011. Actinotrichia collagens and their role in fin formation. Dev Biol 354:160172.Google Scholar
Eames, BF, Allen, N, Young, J, Kaplan, A, Helms, JA, Schneider, RA. 2007. Skeletogenesis in the swell shark Cephaloscyllium ventriosum. J Anat 210:542554.Google Scholar
Ekanayake, S, Hall, BK. 1988. Ultrastructure of the osteogenesis of acellular vertebral bone in the Japanese medaka, Oryzias latipes (Teleostei, Cyprinidontidae). Am J Anat 182:241249.Google Scholar
Ferreira, LCG, Beamish, RJ, Youson, JH. 1999. Macroscopic structure of the fin-rays and their annuli in pectoral and pelvic fins of chinook salmon, Oncorhynchus tshawytscha. J Morph 239:297320.Google Scholar
Fleming, A, Keynes, R, Tannahill, D. 2004. A central role for the notochord in vertebral patterning. Development 131:873880.Google Scholar
Fleming, A, Kishida, MG, Kimmel, CB, Keynes, RJ. 2015. Building the backbone: The development and evolution of vertebral patterning. Development 142:17331744.Google Scholar
Francillon, H, Meunier, F, Phong, NT, de Ricqlès, A. 1975. Tissus osseux et cartilage. In: Lehman, J-P, editor. Problèmes actuels de Paléontologie (Evolution des Vertébres). Paris: Colloq Int CNRS. pp. 169174.Google Scholar
Franz-Odendaal, TA, Hall, BK, Witten, PE. 2006. Buried alive: How osteoblasts become osteocytes. Dev Dyn 235:176190.Google Scholar
Freitas, R, Gómez-Skarmeta, Rodrigues PN. 2014. New frontiers in the evolution of fin development. J Exp Zool (Mol Dev Evol) 322:540552.Google Scholar
Freitas, R, Zhang, G, Cohn, MJ. 2006. Evidence that mechanisms of fin development evolved in the midline of early vertebrates. Nature 442:10331037.Google Scholar
Friedman, M, Brazeau, MD. 2014. A reappraisal of the origin and basal radiation of the osteichthyes. J Vert Paleo 30:3656.Google Scholar
Gadow, H. 1933. The Evolution of the Vertebral Column. Cambridge: Cambridge University Press.Google Scholar
Gadow, H, Abbott, EC. 1895. On the evolution of the vertebral column of fishes. Phil Trans R Soc Lond B 166:163221.Google Scholar
Gardiner, BG. 1984. The relationships of the palaeoniscid fishes, a review based on new specimens of Mimia and Moythomasia from the Upper Devonian of Western Australia. Bull Brit Mus (Nat Hist) Geol 37:173428.Google Scholar
Garman, S. 1895. The cyprinodonts. Mem Mus Comp Zool 14:1179.Google Scholar
Gemballa, S. 2001. Myoseptal tendons in vertebrates: Spatial arrangement, functional and evolutionary implications. Am Zool 41:14521452.Google Scholar
Gemballa, S, Britz, R. 1998. Homology of intermuscular bones in acanthomorph fishes. Am Mus Nat Hist 3241:125.Google Scholar
Gemballa, S, Ebmeyer, L. 2003. Myoseptal architecture of sarcopterygian fishes and salamanders with special reference to Ambysostoma mexicanum. Zoology 106:2941.Google Scholar
Gemballa, S, Ebmeyer, E, Hagen, K, Hannich, T, Hoja, K, Rolf, M, Treiber, K, Vogel, F, Weitbrecht, G. 2003a. Evolutionary transformation of myoseptal tendons in gnathostomes. Proc R Soc Lond B 270:12291235.Google Scholar
Gemballa, S, Hagen, K, Röder, K, Rolf, M, Treiber, K. 2003b. Structure and evolution of the horizontal septum in vertebrates. J Evol Biol 16:966975.Google Scholar
Gemballa, S, Konstantinidis, P, Donley, JM, Sepulveda, C, Shadwick, RE. 2006. Evolution of high-performance swimming in sharks: Transformations of the musculotendinous system from subcarangiform to thunniform swimmers. J Morph 267:477493.Google Scholar
Gemballa, S, Röder, K. 2004. From head to tail: The myoseptal system in basal actinopterygians. J Morph 259:155171.Google Scholar
Gemballa, S, Treiber, K. 2003. Cruising specialists and accelertors – Are different types of fish locomotion driven by differently structured myosepta? Zoology 106:203222.Google Scholar
Gemballa, S, Vogel, F. 2002. Spatial arrangement of white muscle fibers and myoseptal tendons in fishes. Comp Biochem Physiol Part A 133:10131037.Google Scholar
Gess, RW, Coates, MI, Rubidge, BS. 2006. A lamprey from the Devonian period of South Africa. Nature 443:981984.Google Scholar
Ghedotti, MJ. 1998. Phylogeny and classification of the Anablepidae (Teleostei: Cypriniformes). In: Reis, LR, Vari, RE, Lucena, RP, Lucena, CAS, editors. Phylogeny and Classification of Neotropical Fishes Malabarba. Porto Alegre: Museu Ciências e Tecnologia PUCRS. pp. 561582.Google Scholar
González-Isáis, M, Dominguez, HMM. 2004. Comparative anatomy of the Superfamily Myliobatoidea (Chondrichthyes) with some comments on phylogeny. J Morph 262:517535.Google Scholar
Goodrich, ES. 1906. Notes on the development, structure and origin of the median and paired fins of fish. Q J Microsc Sci 50:333376.Google Scholar
Goodrich, ES. 1930. Studies on the Structure and Development of Vertebrates, Vol. 2. New York: Dover. 837 p.Google Scholar
Gordon, M, Rosen, DE. 1951 Genetics of species differences in the morphology of the male genitalia of xiphophorin fishes. Bull Amer Mus Nat Hist 95:413464.Google Scholar
Grande, L, Bemis, WE. 1998. A comprehensive phylogenetic study of amiid fishes (Amiidae) based on comparative skeletal anatomy. An empirical search for interconnected patterns of natural history. J Vert Paleo 18 (Suppl Mem 4):1690.CrossRefGoogle Scholar
Greenway, P. 1965. Body form and behavioural types in fish. Experientia 21:489497.Google Scholar
Hall, BK. 2014. Endoskeleton/exo (dermal) skeleton – mesoderm/neural crest: Two pair of problems and a shifting paradigm. J App Ichthyol 30:608615.Google Scholar
Hirasawa, T, Kuratani, S. 2015. Evolution of the vertebrate skeleton: Morphology, embryology, and development. Zool Lett 1:2.Google Scholar
Janvier, P. 1996. Early Vertebrates. Oxford: Clarendon Press.Google Scholar
Janvier, P. 2003. Vertebrate characters and the Cambrian vertebrates. C R Palevol 2:523531Google Scholar
Janvier, P. 2015. Facts and fancies about early fossil chordates and vertebrates. Nature 520:483489.Google Scholar
Janvier, P, Arsenault, M. 2007. The anatomy of Euphanerops longaevus Woodward, 1900, an anaspid-like jawless vertebrate from the upper Devonian of Miguasha, Quebec, Canada. Geodiversitas 29:143216.Google Scholar
Janvier, P, Arsenault, M, Desbiens, S. 2004. Calcified cartilage in the paired fins of the osteostracan Escuminaspis laticeps (Traquair 1880), from the late Devonian of Miguasha (Que´bec, Canada), with a consideration of the early evolution of the pectoral fin endoskeleton in vertebrates. J Vert Paleo 24:773779.Google Scholar
Janvier, P, Pradel, A. 2015. Elasmobranchs and their extinct relatives: Diversity, relationships, and adaptations through time. In: Shadwick, RE, Farrell, AP, Brauner, CJ, editors. Physiology of Elasmobranch Fishes: Structure and Interaction with Environment: Fish Physiology 34 A. San Diego: Academic Press. pp. 117.Google Scholar
Johanson, Z. 2010. Evolution of paired fins and the lateral somatic frontier. J Exp Zool Mol Dev Evol 314B:347352.Google Scholar
Johanson, Z, Boisvert, C, Maksimenko, A, Currie, P, Trinajstic, K. 2015. Development of the synarcual in the elephant sharks (Holocephali; Chondrichthyes): Implications for vertebral formation and fusion. PLoS ONE 10: e0135138.Google Scholar
Johanson, Z, Burrow, C, Warren, A, Garvey, J. 2005b. Homology of fin lepidotrichia in osteichthyan fishes. Lethaia 38:2736.Google Scholar
Johanson, Z, Ericsson, R, Long, J, Evans, F, Joss, J. 2009. Development of the axial skeleton and median fin in the Australian lungfish, Neoceratodus forsteri. Open Zool J 2:91101.Google Scholar
Johanson, Z, Sutja, M, Joss, J. 2005a. Regionalization of axial skeleton in the lungfish Neoceratodus forsteri (Dipnoi). J Exp Zool Mol Dev Evol 304B:229237.Google Scholar
Johanson, Z, Trinajstic, K, Carr, R, Ritchie, A. 2013. Evolution and development of the synarcual in early vertebrates. Zoomorphology 132:95110.Google Scholar
Johnson, GD, Patterson, C. 2001. The intermuscular system of acanthomorph fishes: A commentary. Am Mus Nov 3312:124.Google Scholar
Karlstrom, RO, Talbot, WS, Schier, AF. 1999. Comparative synteny of zebrafish you-too: Mutations in the hedgehog target gli2 affect ventral forebrain patterning. Gen Dev 13:388393.Google Scholar
Kawasaki, K. 2011. The SCPP gene family and the complexity of hard tissues in vertebrates. Cells Tiss Org 194:108112Google Scholar
Kawasaki, K, Amemiya, CT. 2014. SCPP genes in the coelacanth: Tissue mineralization genes shared by sarcopterygians. J Exp Zool (Mol. Dev. Evol.) 322B:390402.Google Scholar
Kemp, NE, Westrin, SK. 1979. Ultrastructure of calcified cartilage in the endoskeletal tesserae of sharks. J Morph 160:75102.Google Scholar
King, B, Qiao, T, Lee, MS, Zhu, M, Long, JA. 2017. Bayesian morphological clockmethods resurrect placoderm monophyly and reveal rapid early evolution in jawed vertebrates. Syst Biol 66:499516.Google Scholar
Kölliker, A. 1860. Über das Ende der Wirbelsäule der Ganoiden und einiger Teleostier. Leipzig: Wilhelm Engelmann.Google Scholar
Kolmann, MA, Huber, DR, Dean, MN, Grubbs, RD. 2014. Myological variability in a decoupled skeletal system: Batoid cranial anatomy. J Morph 275:862881.Google Scholar
Kranenberg, S, van Cleynenbreugel, T, Schipper, H, van Leeuwen, J. 2005. Adaptive bone formation in acellular vertebrae of sea bass (Dicentrarchus labrax L.). The J Exp Biol 208:34933502.Google Scholar
Lambers, P. 1992. On the ichthyofauna of the Solnhofen Lithographic Limestone (Upper Jurassic, Germany). PhD Thesis. Univ Gröningen, Holland.Google Scholar
Lee, RTH, Knapik, EW, Thiery, JP, Carney, TJ. 2013a. An exclusively mesodermal origin of fin mesenchyme demonstrates that zebrafish trunk neural crest does not generate ectomesenchyme. Development 140:29232932.Google Scholar
Lee, RTH, Thiery, JP, Carney, TJ. 2013b. Dermal fin rays and scales derive from mesoderm, not neural crest. Curr Biol 23:R336R337.Google Scholar
Lindsey, CC. 1978. Form, function and locomotory habits in fish. In: Hoar, WS, Randall, DJ. editors. Fish Physiology, Vol. 7, Locomotion. London: Academic Press. pp. 1100.Google Scholar
Long, J. 2014. The world’s oldest fish. Austral Sci 35: 3537.Google Scholar
Long, JA, Burrow, CJ, Ginter, M, Maisey, JG, Trinajstic, KM, Coates, MI, Young, GC, Senden, TJ. 2015. First Shark from the Late Devonian (Frasnian) Gogo Formation, Western Australia sheds new light on the development of tessellated calcified cartilage. PLoS ONE 10: e0126066.Google Scholar
Long, JA, Young, GC. 1988. Acanthothoracid remains from the Early Devonian of New South Wales, including a complete sclerotic capsule and pelvic girdle. Mem Assoc Austral Pal 7:6580.Google Scholar
Long, JH Jr, Adcock, B, Root, RG. 2002. Force transmission via axial tendons in undulating fish: A dynamic analysis. Comp Biochem Physiol A 133:911929.Google Scholar
Lucifora, LO, Vassallo, AI. 2002. Walking in skates (Chondrichthyes, Rajidae): Anatomy, behaviour and analogies to tetrapod locomotion. Biol J Linn Soc 77:3541.Google Scholar
Mabee, PM. 2000. Developmental data and phylogenetic systematics: Evolution of the vertebrate limb. Am Zool 40:789800.Google Scholar
Mabee, PM, Crotwell, PL, Bird, NC, Burke, AC. 2002. Evolution of median fin modules in the axial skeleton of fishes. J Exp Zool B Mol Dev Evol 294:7790.Google Scholar
Maisey, JG. 1982. The anatomy and interrelationships of Mesozoic hybodont sharks. Am Mus Novit 2724:148.Google Scholar
Maisey, JG. 1988. Phylogeny and early vertebrate skeletal induction and ossification patterns. In: Hecht, MK, Wallace, B, Prance, GT, editors. Evolutionary Biology 22. Boston: Springer. pp. 136.Google Scholar
Maisey, JG. 2013. The diversity of tessellated calcification in modern and extinct chondrichthyans. Rev Paléobiol 32:355371.Google Scholar
Maxwell, EE, Wilson, LAB. 2013. Regionalization of the axial skeleton in the ‘ambush predator’ guild – Are there developmental rules underlying body shape evolution in ray-finned fishes? BMC Evol Biol 13:265.Google Scholar
Meunier, F-J, 1989. The acellularisation process in osteichthyan bone. Fortsch Zool 35:443446.Google Scholar
Meyer, A, Lydeard, C. 1993. The evolution of copulatory organs, internal fertiization, placentas, and vivipary in killifishes (Cyprinodontiformes), as inferred from a DNA phylogeny of the tyrosinase gene X-src. Proc Roy Soc B 254:153162.Google Scholar
Miller, RF, Cloutier, R, Turner, S. 2003. The oldest articulated chondrichthyan from the Early Devonian period. Nature 425:501504.Google Scholar
Mongera, A, Nüsslein-Volhard, C. 2013. Scales of fish arise from mesoderm. Curr Biol 23:R338R339.CrossRefGoogle ScholarPubMed
Morin-Kensicki, EM, Melancon, E, Eisen, JS. 2002. Segmental relationship between somites and vertebral column in zebrafish. Development 129:38513860.Google Scholar
Moriyama, Y, Takeda, H. 2013. Evolution and development of the homocercal caudal fin in teleosts. Dev Growth Diff 55:687698.Google Scholar
Moss, ML. 1961. Studies on the acellular bone of teleost fish. I. Morphological and systematic variation. Acta Anat 46:343362.Google Scholar
Moss, ML. 1965. Studies on the acellular bone of teleost fish. V. Histology and mineral homeostatis of freshwater species. Acta Anat 60:262276.Google Scholar
Nelson, JS. 2006. Fishes of the World, 4th ed. Hoboken, NJ: John Wiley and Sons.Google Scholar
Ørvig, T. 1951. Histologic studies of Placoderms and fossil Elasmobranchs. I. The endoskeleton, with remarks on the hard tissues of lower vertebrates in general. Ark Zool 2:321456.Google Scholar
O’Shaughnessy, KL, Dahn, RD, Cohn, MJ. 2015. Molecular development of chondrichthyan claspers and the evolution of copulatory organs. Nat Comm 6:6698.Google Scholar
Ota, KG, Kuratani, S. 2009. Evolutionary origin of bone and cartilage in vertebrates. In: Pourquié, O, editor. The Skeletal System. Cold Spring, New York: Harbor Laboratory Press. pp 118.Google Scholar
Ota, KG, Fujimoto, S, Oisi, Y, Kuratani, S. 2013. Late development of hagfish vertebral elements. J Exp Zool B Mol Dev Evol 320:129139.Google Scholar
Oulion, S, Debiais-Thibaud, M, d’Aubenton-Carafa, Y, et al. 2010. Evolution of Hox gene clusters in gnathostomes: Insights from a survey of a shark (Scyliorhinus canicula) transcriptome. Mol Biol Evol 27:28292838.Google Scholar
Parenti, LR. 1981. A phylogenetic and biogeographic analysis of cyprinodontiform fishes (Teleostei, Atherinomorpha). Bull Amer Mus Nat Hist 168:335557.Google Scholar
Parenti, LR. 1996. Phylogenetic Systematics and biogeography of phallostethid fishes (Atherinomorpha, Phallostethidae) of northwestern Borneo, with description of a new species. Copeia 3:703712.Google Scholar
Patterson, C, Johnson, GD. 1995. The intermuscular bones and ligaments of teleostean fishes. Smiths Contr Zool 559:184.Google Scholar
Peignoux-Deville, J, Bordat, C, Vidal, B. 1989. Demonstration of bone resorbing cells in elasmobranchs: Comparison with osteoclast tissue. Cell 21: 925933.Google Scholar
Peignoux-Deville, J, Lallier, F, Vidal, B. 1982. Evidence for the presence of osseous tissue in dogfish vertebrae. Cell Tiss Res 222:605614.Google Scholar
Pfaff, C, Zorzin, R, Kriwet, J. 2016. Evolution of the locomotory system in eels (Teleostei: Elopomorpha). BMC Evol Biol 16:159.Google Scholar
Piavis, GW. 1961. Embryological stages in the sea lamprey and effects of temperature on development. Fish B-NOAA 61:111143.Google Scholar
Pietsch, TW. 1978. Evolutionary relationships of the sea moths (Teleostei: Pegasidae) with a classification of gasterosteiform families. Copeia 1978:517529.Google Scholar
Pradel, A, Sansom, IJ, Gagnier, P-Y, Cespedes, R, Janvier, P. 2007. The tail of the Ordovician fish Sacabambaspis. Biol Lett 3:7275.Google Scholar
Prince, VE, Holley, SA, Bally-Cuif, L, Prabhakaran, B, Oates, AC, Ho, RK, Vogt, TF. 2001. Zebrafish lunatic fringe demarcates segmental boundaries. Mech Dev 105:175180.Google Scholar
Qiao, T, King, B, Long, JA, Ahlberg, PE, Zhu, M. 2016. Early gnathostome phylogeny revisited: Multiple method consensus. PLoS ONE 11(9):e0163157.Google Scholar
Ridewood, WG. 1899. Some observations on the caudal diplospondyly of sharks. Zool J Linn Soc 27:4659.Google Scholar
Rosen, DE, Bailey, RM. 1963. The poeciliid fishes (Cyprinodontiformes), their structure, zoogeography, and systematics. Bull Am Mus Nat Hist 126:1176.Google Scholar
Ryder, JA. 1886. On the origin of heterocercy and the evolution of the fins and fin-rays of fishes. Ann Rep Commi Fish Fisheries, Washington 981–1107.Google Scholar
Ryll, B, Sanchez, S, Haitina, T, Tafforeau, Ahlberg PE. 2014. The genome of Callorhinchus and the fossil record: A new perspective on SCPP gene evolution in gnathostomes. Evol Dev 16:123124.Google Scholar
Sallan, LC. 2012. Tetrapod-like axial regionalization in an early ray-finned fish. Proc R Soc B 279:32643271.Google Scholar
Sallan, L. 2016. Fish ‘tails’ result from outgrowth and reduction of two separate ancestral tails. Curr Biol 26:R1205R1225.Google Scholar
Sansom, RS, Gabbott, SE, Purnell, MW. 2013. Unusual anal fin in a Devonian jawless vertebrate reveals complex origins of paired appendages. Biol Lett 9: 201300002.Google Scholar
Schaeffer, B. 1952. The Triassic coelacanth fish Diplurus, with observations on the evolution of the Coelacanthini. Bull Am Mus Nat Hist 99:2978.Google Scholar
Schauerte, H, van Eeden, FJM, Fricke, C, Odenthal, J, Strähle, U, Haffter, P. 1998. Sonic hedgehog is not required for the introduction of medial floor plate cells in the zebrafish. Development 125:29832993.CrossRefGoogle ScholarPubMed
Schilling, N, Long, JH Jr. 2013. Axial systems and their actuation: New twists on the ancient body ofcraniates. Zoology 117:16.Google Scholar
Schultze, H-P. 2016. Scales, enamel, cosmine, ganoine, and early osteichthyans. C R Palevol 15:83102.Google Scholar
Schultze, H-P, Chorn, J. 1997. The Permo-Carboniferous genus Sagenodus and the beginning of modern lungfish. Contrib Zool 67:970.Google Scholar
Schwarz, C, Parmentier, E, Wiehr, S, Gemballa, S. 2012. The locomotory system of Pearlfish Carapus acus: What morphological features are characteristic for highly flexible fishes? J Morph 273:519529.Google Scholar
Shadwick, RE, Gemballa, S. 2005. Structure, kinematics, and muscle dynamics in undulatory swimming. In: Shadwick, RE, Lauder, GV, editors. Fish Biomechanics. Fish Physiology, Vol. 23. San Diego: Academic Press. pp. 241280.Google Scholar
Shadwick, RE, Raport, HS; Fenger, JM. 2002. Structure and function of tuna tail tendons. Comp Biochem Physiol A Mol Integr Physiol 133: 11091125.Google Scholar
Shimada, A, Kawanishi, T, Kaneko, T, Yoshihara, H, et al. 2013. Trunk exoskeleton in teleost is mesodermal in origin. Nat Comm 4:1639.Google Scholar
Shubin, N, Tabin, C, Carroll, S. 1997. Fossils, genes and the evolution of animal limbs. Nature 388:639648.Google Scholar
Sire, JY, Davit-Beal, T, Delgado, S, Van Der Heyden, C, Huysseune, A. 2002. The first generation teeth in non-mammalian lineages: Evidence for a conserved ancestral character? Microsc Res Tech 59:408–34.Google Scholar
Smith, MM, Hall, BK. 1990. Development and evolutionary origins of vertebrate skeletogenic and odontogenic tissues. Biol Rev 65:277373.Google Scholar
Stewart, TA. 2015. The origin of a new fin skeleton through tinkering. Biol Lett 11:20150415.Google Scholar
Stewart, TA, Smith, WL, Coates, MI. 2014 The origins of adipose fins: An analysis of homoplasy and the serial homology of vertebrate appendages. Proc R Soc B 281:20133120.Google Scholar
Swartz, BA. 2009. Devonian actinopterygian phylogeny and evolution based on a redescription of Stegotrachelus finlayi. Zool J Linn Soc 156:750784.Google Scholar
Taniguchi, Y, Kurth, T, Medeiros, DM, Tazaki, A, Ramm, R, Epperlein, H-H. 2015. Mesodermal origin of median fin mesenchyme and tail muscle in amphibian larvae. Sci Rep 5:11428.Google Scholar
Tomita, T. 2015. Pectoral fin of the Paleozoic shark, Cladoselache: New reconstruction based on a near-complete specimen, J Vert Paleo 35:e973029.Google Scholar
Trinajstic, K, Boisvert, C, Long, J, Maksimenko, A, Johanson, Z. 2014. Pelvic and reproductive structures in placoderms (stem gnathostomes). Biol Rev 90: 467501.Google Scholar
Turner, CL. 1950. The skeletal structure of the gonopodium and gonopodial suspensorium of Anableps anableps. J Morph 86:329366.Google Scholar
Van Eeden, FJM, Granato, M, Schach, U, et al. 1996. Mutations affecting somite formation and patterning in the zebrafish Danio rerio. Dev 123:153164.Google Scholar
Venkatesh, B, Lee, AP, Ravi, V, Maurya, AK, Lian, MM, Swann, JB, Ohta, Y, Flajnik, MF, Sutoh, Y, Kasahara, M et al., 2014. Elephant shark genome provides unique insights into gnathostome evolution. Nature 505:174179.Google Scholar
Videler, JJ. 1993. Fish Swimming. London: Chapman and Hall.Google Scholar
Vladykov, VD, Kott, E. 1980. Description and key to metamorphosed specimens and ammocoetes of Petromyzonidae found in the Great Lakes region. Can J Fish Aquat Sci 37:16161625.Google Scholar
Ward, AB, Mehta, RS. 2014. Differential occupation of axial morphospace. Zoology 117:7076.Google Scholar
Ware, DM. 1982. Power and evolutionary fitness of teleosts. Can J Fish Aquat Sci 39:313.Google Scholar
Webb, PW. 1984a. Body form, locomotion and foraging in aquatic vertebrates. Am Zool 24:107120.Google Scholar
Webb, PW. 1984b. Form and function in fish swimming. Sci Am 251:5868.Google Scholar
Webb, PW. 1988. Steady swimming kinematics of tiger musky, an esciform accelerator, and rainbow trout, a generalist cruiser. J Exp Biol 138:5169.Google Scholar
Weigele, J, Franz-Odendaal, TA. 2016. Functional bone histology of zebrafish reveals two types of endochondral ossification, different types of osteoblast clusters and a new bone type. J Anat 229:92103.Google Scholar
Weisel, GF. 1968. The salmonoid adipose fin. Copeia 1968: 626627.Google Scholar
Wellik, DM. 2007. Hox patterning of the vertebrate axial skeleton. Dev Dyn 236:24542463.Google Scholar
Wellik, DM. 2009. Hox genes and vertebrate axial pattern. Curr Top Dev Biol 88:257278.Google Scholar
Westneat, MW, Hoese, W, Pell, CA, Wainwright, SA. 1993. The horizontal septum: Mechanisms of force transfer in locomotion in scombrid fishes (Scombridae, Perciformes). J Morph 217:183204.Google Scholar
Westneat, MW, Wainwright, SA. 2001. Mechanical design for swimming: Muscle, tendon, and bone. In: Block, BA, Stevens, ED, editors. Fish Physiology 19: Tuna-Physiology, Ecology, and Evolution. San Diego: Academic Press. pp. 272313.Google Scholar
Williams, EE. 1959. Gadow’s arcualia and the development of tetrapod vertebrae. Quart Rev Biol 34:132.Google Scholar
Wilson, MVH, Hanke, GF, Marss, T. 2008. Paired fins of jawless vertebrates and their homologies across the ‘‘agnathan’’-gnathostome transition. In: Anderson, JS, Sues, H-D, editors. Major Transitions in Vertebrate Evolution. Bloomington: Indiana University Press. pp. 122149.Google Scholar
Witten, PE, Hansen, A, Hall, BK. 2001. Features of mono- and multinucleated bone resorbing cells of the zebrafish Danio rerio and their contribution to skeletal development, remodeling, and growth. J Morp 250:197207.Google Scholar
Witten, PE, Huysseune, A. 2009. A comparative view on mechanisms and functions of skeletal remodelling in teleost fish, with special emphasis on osteoclasts and their function. Biol Rev 84:315346.Google Scholar
Witten, PE, Huysseune, A, Hall, BK. 2010. A practical approach for the identification of the many cartilaginous tissues in teleost fish. J Appl Ichthyol 26:257262.Google Scholar
Wourms, J. 1977. Reproduction and development in chondrichthyan fishes. Am Zool. 17:379410.Google Scholar
Yamanoue, Y, Setiamarga, DHE, Matsuura, K. 2010. Pelvic fins in teleosts: Structure, function and evolution. J Fish Biol 77: 11731208.Google Scholar
Yong, LW, Yu, JK. 2016. Tracing the evolutionary origin of vertebrate skeletal tissues: Insights from cephalochordate amphioxus. Curr Opin Genet Dev 39:5562.Google Scholar
Young, GC. 2010. Placoderms (armored fish): Dominant vertebrates of the Devonian period. Ann Rev Earth Planet Sci 38:523–50.Google Scholar
Zangerl, R. 1981. Chondrichthyes I: Paleozoic Elasmobranchii. In: Schultze, H-P, editor. Handbook of Paleoichthyology, Vol. 3A. Stuttgart: Gustav Fisher. 115 p.Google Scholar
Zhang, GJ. 2009. An evo-devo view on the origin of the backbone: Evolutionary development of the vertebrae. Integr Comp Biol 49:178186.Google Scholar
Zhang, GJ, Cohn, MJ. 2006. Hagfish and lancelet fibrillar collagens reveal that type II collagen-based cartilage evolved in stem vertebrates. Proc Natl Acad Sci USA 103:1682916833.Google Scholar
Zhang, XG, Hou, XG. 2004. Evidence for a single median fin-fold and tail in the Lower Cambrian vertebrate, Haikouichthys ercaicunensis. J Evol Biol 17:11621166.Google Scholar
Zhang, X, Shimoda, K, Ura, K, Adachi, S, Takagi, Y. 2012. Developmental structure of the vertebral column, fins, scutes and scales in bester sturgeon, a hybrid of beluga Huso huso and sterlet Acipenser ruthenus. J Fish Biol 81:19852004.Google Scholar
Zhu, M, Yu, XB. 2009. Stem sarcopterygians have primitive polybasal fin articulation. Biol Lett 5:372375.Google Scholar
Zhu, M, Yu, X, Choo, B, Qu, Q, Jia, L, Zhao, W, Qiao, T, Lu, J. 2012a. Fossil fishes from China provide first evidence of dermal pelvic girdles in osteichthyans. PLoS ONE 7:e35103.Google Scholar
Zhu, M, Yu, X, Choo, B, Wang, J, Jia, L. 2012b. An antiarch placoderm shows that pelvic girdles arose at the root of jawed vertebrates. Biol Lett 8: 453456.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×