Skip to main content Accessibility help
×
Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-26T03:46:47.290Z Has data issue: false hasContentIssue false

25 - Development of Memory Circuits under Epigenetic Regulation

from Part II - Evolution of Memory Processes

Published online by Cambridge University Press:  26 May 2022

Mark A. Krause
Affiliation:
Southern Oregon University
Karen L. Hollis
Affiliation:
Mount Holyoke College, Massachusetts
Mauricio R. Papini
Affiliation:
Texas Christian University
Get access

Summary

Memory is encoded in the neuronal circuit, which undergoes continuous development driven by everyday experiences. While synaptic plasticity allows the experience-dependent modifications of the existing circuit, another essential issue is to keep the existing memory stable while simultaneously facilitating new memory formation for the novel experiences. Apparently, epigenetic regulatory mechanisms are involved in such regulation. Memory engram neurons in the brain are the hubs of the memory circuit and provide the cellular representation of specific memories. The cellular mechanisms, including epigenetic regulators, thus govern the development of neuronal circuits to store the information. Various epigenetic regulators control the landscape of information storage in the neural network in a temporal-spatial-specific manner, but regulating molecules do not code the specific content of the information. The main effects of epigenetic regulation include the gating mechanism and the stabilization mechanism to alter the ability of subneuronal networks to encode new information and preserve stored information in the memory circuit during the experience-dependent development of the brain network.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2022

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alarcon, J. M., Malleret, G., Touzani, K., Vronskaya, S., Ishii, S., Kandel, E. R., & Barco, A. (2004). Chromatin acetylation, memory, and LTP are impaired in CBP+/− mice: A model for the cognitive deficit in Rubinstein-Taybi syndrome and its amelioration. Neuron, 42, 947959. https://doi.org/10.1016/j.neuron.2004.05.021Google Scholar
Banerjee, T., & Chakravarti, D. (2011). A peek into the complex realm of histone phosphorylation. Molecular & Cell Biology, 31, 48584873. https://doi.org/10.1128/MCB.05631-11Google Scholar
Barondes, S. H., & Jarvik, M. E. (1964). The influence of actinomycin-D on brain RNA synthesis and on memory. Journal of Neurochemistry, 11, 187195. https://doi.org/10.1111/j.1471-4159.1964.tb06128.xGoogle Scholar
Barrett, R. M., Malvaez, M., Kramar, E., Matheos, D. P., Arrizon, A., Cabrera, S. M., Lynch, G., Greene, R. W., & Wood, M. A. (2011). Hippocampal focal knockout of CBP affects specific histone modifications, long-term potentiation, and long-term memory. Neuropsychopharmacology, 36, 15451556. https://doi.org/10.1038/npp.2011.61Google Scholar
Bousiges, O., Neidl, R., Majchrzak, M., Muller, M. A., Barbelivien, A., Pereira de Vasconcelos, A., Schneider, A., Loeffler, J. P., Cassel, J. C., & Boutillier, A. L. (2013). Detection of histone acetylation levels in the dorsal hippocampus reveals early tagging on specific residues of H2B and H4 histones in response to learning. PLOS ONE, 8, e57816. https://doi.org/10.1371/journal.pone.0057816Google Scholar
Brush, M. H., Guardiola, A., Connor, J. H., Yao, T. P., & Shenolikar, S. (2004). Deactylase inhibitors disrupt cellular complexes containing protein phosphatases and deacetylases. Journal of Biological Chemistry, 279, 76857691. https://doi.org/10.1074/jbc.M310997200Google Scholar
Choi, D. C., Maguschak, K. A., Ye, K., Jang, S. W., Myers, K. M., & Ressler, K. J. (2010). Prelimbic cortical BDNF is required for memory of learned fear but not extinction or innate fear. Proceedings of the National Academy of Sciences USA, 107, 26752680. https://doi.org/10.1073/pnas.0909359107CrossRefGoogle ScholarPubMed
Chwang, W. B., O’Riordan, K. J., Levenson, J. M., & Sweatt, J. D. (2006). ERK/MAPK regulates hippocampal histone phosphorylation following contextual fear conditioning. Learning & Memory, 13, 322328. https://doi.org/10.1101/lm.152906CrossRefGoogle ScholarPubMed
Dash, P. K., Moore, A. N., Kobori, N., & Runyan, J. D. (2007). Molecular activity underlying working memory. Learning & Memory, 14, 554563. https://doi.org/10.1101/lm.558707Google Scholar
Davis, H. P., & Squire, L. R. (1984). Protein synthesis and memory: A review. Psychological Bulletin, 96, 518559. https://doi.org/10.1037/0033-2909.96.3.518CrossRefGoogle ScholarPubMed
Ding, X., Liu, S., Tian, M., Zhang, W., Zhu, T., Li, D., Wu, J., Deng, H., Jia, Y., Xie, W., & Guan, J. S. (2017). Activity-induced histone modifications govern neurexin-1 mRNA splicing and memory preservation. Nature Neuroscience, 20, 690699. https://doi.org/10.1038/nn.4536Google Scholar
Figurov, A., Pozzo-Miller, L. D., Olafsson, P., Wang, T., & Lu, B. (1996). Regulation of synaptic responses to high-frequency stimulation and LTP by neurotrophins in the hippocampus. Nature, 381, 706709. https://doi.org/10.1038/381706a0Google Scholar
Graff, J., Joseph, N. F., Horn, M. E., Samiei, A., Meng, J., Seo, J., Rei, D., Bero, A. W., Phan, T. X., Wagner, F., & Tsai, L. H. (2014). Epigenetic priming of memory updating during reconsolidation to attenuate remote fear memories. Cell, 156, 261276. https://doi.org/10.1016/j.cell.2013.12.020)Google Scholar
Graff, J., Rei, D., Guan, J. S., Wang, W. Y., Seo, J., Hennig, K. M., Nieland, T. J., Fass, D. M., Kao, P. F., Kahn, M., & Tsai, L. H. (2012). An epigenetic blockade of cognitive functions in the neurodegenerating brain. Nature, 483, 222226. https://doi.org/10.1038/nature10849Google Scholar
Guan, J. S., Haggarty, S. J., Giacometti, E., Dannenberg, J. H., Joseph, N., Gao, J., Nieland, T. J., Zhou, Y., Wang, X., Mazitschek, R., & Tsai, L. H. (2009). HDAC2 negatively regulates memory formation and synaptic plasticity. Nature, 459, 5560. https://doi.org/10.1038/nature07925Google Scholar
Guo, J. U., Su, Y., Zhong, C., Ming, G. L., & Song, H. (2011). Hydroxylation of 5-methylcytosine by TET1 promotes active DNA demethylation in the adult brain. Cell, 145, 423434. https://doi.org/10.1016/j.cell.2011.03.022CrossRefGoogle ScholarPubMed
Gupta, S., Kim, S. Y., Artis, S., Molfese, D. L., Schumacher, A., Sweatt, J. D., Paylor, R. E., and Lubin, F. D. (2010). Histone methylation regulates memory formation. Journal of Neuroscience, 30, 35893599. https://doi.org/10.1523/JNEUROSCI.3732-09.2010CrossRefGoogle ScholarPubMed
Gupta-Agarwal, S., Franklin, A. V., Deramus, T., Wheelock, M., Davis, R. L., McMahon, L. L., & Lubin, F. D. (2012). G9a/GLP histone lysine dimethyltransferase complex activity in the hippocampus and the entorhinal cortex is required for gene activation and silencing during memory consolidation. Journal of Neuroscience, 32, 54405453. https://doi.org/10.1523/JNEUROSCI.0147-12.2012Google Scholar
Han, J. H., Kushner, S. A., Yiu, A. P., Cole, C. J., Matynia, A., Brown, R. A., Neve, R. L., Guzowski, J. F., Silva, A. J., and Josselyn, S. A. (2007). Neuronal competition and selection during memory formation. Science, 316, 457460. https://doi.org/10.1126/science.1139438CrossRefGoogle ScholarPubMed
Jiang, J., Wang, G. Y., Luo, W., Xie, H., & Guan, J. S. (2018). Mammillary body regulates state-dependent fear by alternating cortical oscillations. Science Reports, 8, 13471. https://doi.org/10.1038/s41598-018-31622-zGoogle Scholar
Jiang, Y., Langley, B., Lubin, F. D., Renthal, W., Wood, M. A., Yasui, D. H., Kumar, A., Nestler, E. J., Akbarian, S., & Beckel-Mitchener, A. C. (2008). Epigenetics in the nervous system. Journal of Neuroscience, 28, 1175311759. https://doi.org/10.1523/JNEUROSCI.3797-08.2008Google Scholar
Kaas, G. A., Zhong, C., Eason, D. E., Ross, D. L., Vachhani, R. V., Ming, G. L., King, J. R., Song, H., & Sweatt, J. D. (2013). TET1 controls CNS 5-methylcytosine hydroxylation, active DNA demethylation, gene transcription, and memory formation. Neuron, 79, 10861093. https://doi.org/10.1016/j.neuron.2013.08.032Google Scholar
Kerimoglu, C., Agis-Balboa, R. C., Kranz, A., Stilling, R., Bahari-Javan, S., Benito-Garagorri, E., Halder, R., Burkhardt, S., Stewart, A. F., & Fischer, A. (2013). Histone-methyltransferase MLL2 (KMT2B) is required for memory formation in mice. Journal of Neuroscience, 33, 34523464. https://doi.org/10.1523/JNEUROSCI.3356-12.2013Google Scholar
Kim, M. S., Akhtar, M. W., Adachi, M., Mahgoub, M., Bassel-Duby, R., Kavalali, E. T., Olson, E. N., and Monteggia, L. M. (2012). An essential role for histone deacetylase 4 in synaptic plasticity and memory formation. Journal of Neuroscience, 32, 1087910886. https://doi.org/10.1523/JNEUROSCI.2089-12.2012Google Scholar
Korzus, E., Rosenfeld, M. G., & Mayford, M. (2004). CBP histone acetyltransferase activity is a critical component of memory consolidation. Neuron, 42, 961972. https://doi.org/10.1016/j.neuron.2004.06.002Google Scholar
Koshibu, K., Graff, J., Beullens, M., Heitz, F. D., Berchtold, D., Russig, H., Farinelli, M., Bollen, M., & Mansuy, I. M. (2009). Protein phosphatase 1 regulates the histone code for long-term memory. Journal of Neuroscience, 29, 1307913089. https://doi.org/10.1523/JNEUROSCI.3610-09.2009Google Scholar
Koshibu, K., Graff, J., & Mansuy, I. M. (2010). Nuclear protein phosphatase-1: An epigenetic regulator of fear memory and amygdala long-term potentiation. Neuroscience, 173, 3036. https://doi.org/10.1016/j.neuroscience.2010.11.023CrossRefGoogle ScholarPubMed
Lattal, K. M., Barrett, R. M., & Wood, M. A. (2007). Systemic or intrahippocampal delivery of histone deacetylase inhibitors facilitates fear extinction. Behavioral Neuroscience, 121, 11251131. https://doi.org/10.1037/0735-7044.121.5.1125Google Scholar
Lesburgueres, E., Gobbo, O. L., Alaux-Cantin, S., Hambucken, A., Trifilieff, P., & Bontempi, B. (2011). Early tagging of cortical networks is required for the formation of enduring associative memory. Science, 331, 924928. https://doi.org/10.1126/science.1196164Google Scholar
Levenson, J. M., O’Riordan, K. J., Brown, K. D., Trinh, M. A., Molfese, D. L., & Sweatt, J. D. (2004). Regulation of histone acetylation during memory formation in the hippocampus. Journal of Biological Chemistry, 279, 4054540559. https://doi.org/10.1074/jbc.M402229200Google Scholar
Levenson, J. M., & Sweatt, J. D. (2005). Epigenetic mechanisms in memory formation. Nature Reviews Neuroscience, 6, 108118. https://doi.org/10.1038/nrn1604Google Scholar
Li, D., Wang, G., Xie, H., Hu, Y., Guan, J. S., & Hilgetag, C. C. (2019). Multimodal memory components and their long-term dynamics identified in cortical layers II/III but not layer V. Frontiers in Integrative Neuroscience, 13, 54. https://doi.org/10.3389/fnint.2019.00054Google Scholar
Li, J., Guo, Y., Schroeder, F. A., Youngs, R. M., Schmidt, T. W., Ferris, C., Konradi, C., & Akbarian, S. (2004). Dopamine D2-like antagonists induce chromatin remodeling in striatal neurons through cyclic AMP-protein kinase A and NMDA receptor signaling. Journal of Neurochemistry, 90, 11171131. https://doi.org/10.1111/j.1471-4159.2004.02569.xGoogle Scholar
Lipsky, R. H. (2013). Epigenetic mechanisms regulating learning and long-term memory. International Journal of Developmental Neuroscience, 31, 353358. https://doi.org/10.1016/j.ijdevneu.2012.10.110Google Scholar
Liu, L., van Groen, T., Kadish, I., & Tollefsbol, T. O. (2009). DNA methylation impacts on learning and memory in aging. Neurobiology of Aging, 30, 549560. https://doi.org/10.1016/j.neurobiolaging.2007.07.020Google Scholar
Liu, S., Tian, M., He, F., Li, J., Xie, H., Liu, W., Zhang, Y., Zhang, R., Yi, M., Che, F., & Guan, J. S. (2019). Mutations in ASH1L confer susceptibility to Tourette syndrome. Molecular Psychiatry, 25, 476490. https://doi.org/10.1038/s41380-019-0560-8CrossRefGoogle ScholarPubMed
Liu, X., Ramirez, S., Pang, P. T., Puryear, C. B., Govindarajan, A., Deisseroth, K., & Tonegawa, S. (2012). Optogenetic stimulation of a hippocampal engram activates fear memory recall. Nature, 484, 381385. https://doi.org/10.1038/nature11028CrossRefGoogle ScholarPubMed
Loebrich, S., & Nedivi, E. (2009). The function of activity-regulated genes in the nervous system. Physiological Review, 89, 10791103. https://doi.org/10.1152/physrev.00013.2009Google Scholar
Lubin, F. D., Roth, T. L., & Sweatt, J. D. (2008). Epigenetic regulation of BDNF gene transcription in the consolidation of fear memory. Journal of Neuroscience, 28, 1057610586. https://doi.org/10.1523/JNEUROSCI.1786-08.2008Google Scholar
Maddox, S. A., & Schafe, G. E. (2011). Epigenetic alterations in the lateral amygdala are required for reconsolidation of a Pavlovian fear memory. Learning & Memory, 18, 579593. https://doi.org/10.1101/lm.2243411Google Scholar
Malvaez, M., McQuown, S. C., Rogge, G. A., Astarabadi, M., Jacques, V., Carreiro, S., Rusche, J. R., & Wood, M. A. (2013). HDAC3-selective inhibitor enhances extinction of cocaine-seeking behavior in a persistent manner. Proceedings of the National Academy of Sciences USA, 110, 26472652. https://doi.org/10.1073/pnas.1213364110Google Scholar
McQuown, S. C., Barrett, R. M., Matheos, D. P., Post, R. J., Rogge, G. A., Alenghat, T., Mullican, S. E., Jones, S., Rusche, J. R., Lazar, M. A., & Wood, M. A. (2011). HDAC3 is a critical negative regulator of long-term memory formation. Journal of Neuroscience, 31, 764774. https://doi.org/10.1523/JNEUROSCI.5052-10.2011Google Scholar
Miller, C. A., Campbell, S. L., & Sweatt, J. D. (2008). DNA methylation and histone acetylation work in concert to regulate memory formation and synaptic plasticity. Neurobiology of Learning & Memory, 89, 599603. https://doi.org/10.1016/j.nlm.2007.07.016Google Scholar
Miller, C. A., Gavin, C. F., White, J. A., Parrish, R. R., Honasoge, A., Yancey, C. R., Rivera, I. M., Rubio, M. D., Rumbaugh, G., & Sweatt, J. D. (2010). Cortical DNA methylation maintains remote memory. Nature Neuroscience, 13, 664666. https://doi.org/10.1038/nn.2560Google Scholar
Miller, C. A., & Sweatt, J. D. (2007). Covalent modification of DNA regulates memory formation. Neuron, 53, 857869. https://doi.org/10.1016/j.neuron.2007.02.022Google Scholar
Monsey, M. S., Ota, K. T., Akingbade, I. F., Hong, E. S., & Schafe, G. E. (2011). Epigenetic alterations are critical for fear memory consolidation and synaptic plasticity in the lateral amygdala. PLOS ONE, 6, e19958. https://doi.org/10.1371/journal.pone.0019958CrossRefGoogle ScholarPubMed
Nott, A., Watson, P. M., Robinson, J. D., Crepaldi, L., & Riccio, A. (2008). S-Nitrosylation of histone deacetylase 2 induces chromatin remodelling in neurons. Nature, 455, 411415. https://doi.org/10.1038/nature07238CrossRefGoogle ScholarPubMed
Park, H., & Poo, M. M. (2012). Neurotrophin regulation of neural circuit development and function. Nature Reviews Neuroscience, 14, 723. https://doi.org/10.1038/nrn3379Google Scholar
Psotta, L., Lessmann, V., & Endres, T. (2013). Impaired fear extinction learning in adult heterozygous BDNF knock-out mice. Neurobiology of Learning & Memory, 103, 3438. https://doi.org/10.1016/j.nlm.2013.03.003Google Scholar
Ringrose, L., & Paro, R. (2004). Epigenetic regulation of cellular memory by the Polycomb and Trithorax group proteins. Annual Reviews of Genetics, 38, 413443. https://doi.org/10.1146/annurev.genet.38.072902.091907Google Scholar
Rogge, G. A., Singh, H., Dang, R., & Wood, M. A. (2013). HDAC3 is a negative regulator of cocaine-context-associated memory formation. Journal of Neuroscience, 33, 66236632. https://doi.org/10.1523/JNEUROSCI.4472-12.2013Google Scholar
Rudenko, A., Dawlaty, M. M., Seo, J., Cheng, A. W., Meng, J., Le, T., Faull, K. F., Jaenisch, R., & Tsai, L. H. (2013). Tet1 is critical for neuronal activity-regulated gene expression and memory extinction. Neuron, 79, 11091122. https://doi.org/10.1016/j.neuron.2013.08.003Google Scholar
Ryan, T. J., Roy, D. S., Pignatelli, M., Arons, A., & Tonegawa, S. (2015). Memory. Engram cells retain memory under retrograde amnesia. Science, 348, 10071013. https://doi.org/10.1126/science.aaa5542Google Scholar
Sarkar, S., Abujamra, A. L., Loew, J. E., Forman, L. W., Perrine, S. P., & Faller, D. V. (2011). Histone deacetylase inhibitors reverse CpG methylation by regulating DNMT1 through ERK signaling. Anticancer Research, 31, 27232732. https://doi.org/10.3390/ma8105358Google Scholar
Shahbazian, M. D., & Grunstein, M. (2007). Functions of site-specific histone acetylation and deacetylation. Annual Reviews of Biochemistry, 76, 75100. https://doi.org/10.1146/annurev.biochem.76.052705.162114CrossRefGoogle ScholarPubMed
Stefanko, D. P., Barrett, R. M., Ly, A. R., Reolon, G. K., & Wood, M. A. (2009). Modulation of long-term memory for object recognition via HDAC inhibition. Proceedings of the National Academy of Sciences USA, 106, 94479452. https://doi.org/10.1073/pnas.0903964106Google Scholar
Sui, L., Wang, Y., Ju, L. H., & Chen, M. (2012). Epigenetic regulation of reelin and brain-derived neurotrophic factor genes in long-term potentiation in rat medial prefrontal cortex. Neurobiology of Learning & Memory, 97, 425440. https://doi.org/10.1016/j.nlm.2012.03.007Google Scholar
Tonegawa, S., Liu, X., Ramirez, S., & Redondo, R. (2015). Memory engram cells have come of age. Neuron, 87, 918931. https://doi.org/10.1016/j.neuron.2015.08.002CrossRefGoogle ScholarPubMed
Vecsey, C. G., Hawk, J. D., Lattal, K. M., Stein, J. M., Fabian, S. A., Attner, M. A., Cabrera, S. M., McDonough, C. B., Brindle, P. K., Abel, T., & Wood, M. A. (2007). Histone deacetylase inhibitors enhance memory and synaptic plasticity via CREB:CBP-dependent transcriptional activation. Journal of Neuroscience, 27, 61286140. https://doi.org/10.1523/JNEUROSCI.0296-07.2007Google Scholar
Wang, G., Xie, H., Wang, L., Luo, W., Wang, Y., Jiang, J., Xiao, C., Xing, F., & Guan, J. S. (2019). Switching from fear to no fear by different neural ensembles in mouse retrosplenial cortex. Cerebral Cortex, 29, 50855097. https://doi.org/10.1093/cercor/bhz050Google Scholar
Wang, L., Lv, Z., Hu, Z., Sheng, J., Hui, B., Sun, J., & Ma, L. (2010). Chronic cocaine-induced H3 acetylation and transcriptional activation of CaMKIIalpha in the nucleus accumbens is critical for motivation for drug reinforcement. Neuropsychopharmacology, 35, 913928. https://doi.org/10.1038/npp.2009.193Google Scholar
Xie, H., Liu, Y., Zhu, Y., Ding, X., Yang, Y., & Guan, J. S. (2014). In vivo imaging of immediate early gene expression reveals layer-specific memory traces in the mammalian brain. Proceedings of the National Academy of Sciences USA, 111, 27882793. https://doi.org/10.1073/pnas.1316808111Google Scholar
Xu, T., Yu, X., Perlik, A. J., Tobin, W. F., Zweig, J. A., Tennant, K., Tennant, K., Jones, T., & Zuo, Y. (2009). Rapid formation and selective stabilization of synapses for enduring motor memories. Nature, 462, 915919. https://doi.org/10.1038/nature08389Google Scholar
Yeh, S. H., Lin, C. H., & Gean, P. W. (2004). Acetylation of nuclear factor-kappaB in rat amygdala improves long-term but not short-term retention of fear memory. Molecular Pharmacology, 65, 12861292. https://doi.org/10.1124/mol.65.5.1286Google Scholar
Yu, N. K., Baek, S. H., & Kaang, B. K. (2011). DNA methylation-mediated control of learning and memory. Molecular Brain, 4, 5. https://doi.org/10.1186/1756-6606-4-5Google Scholar
Zhu, T., Liang, C., Li, D., Tian, M., Liu, S., Gao, G., & Guan, J. S. (2016). Histone methyltransferase Ash1L mediates activity-dependent repression of neurexin-1α. Scientific Report, 6, 26597. https://doi.org/10.1038/srep26597Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×