Skip to main content Accessibility help
×
Hostname: page-component-6d856f89d9-xkcpr Total loading time: 0 Render date: 2024-07-16T03:43:44.222Z Has data issue: false hasContentIssue false

19 - Evolution of Memory Systems in Animals

from Part II - Evolution of Memory Processes

Published online by Cambridge University Press:  26 May 2022

Mark A. Krause
Affiliation:
Southern Oregon University
Karen L. Hollis
Affiliation:
Mount Holyoke College, Massachusetts
Mauricio R. Papini
Affiliation:
Texas Christian University
Get access

Summary

Memory provides information for decision making and determines partly what animals can and cannot do. Here we categorize memory systems in animals in terms of their generality and their temporal characteristics, and we explore how evolution has tailored memory systems, considering both the benefits of having access to information and the costs of acquiring and remembering information. General associative memories are flexible and can last for years. In contrast, general short-term memories decay rapidly. We find no evidence of general memory systems used to store sequences of stimuli faithfully. Importantly, seeming limitations of general memory systems may be adaptive as they minimize storage and learning costs. In addition to general memory systems, animals have evolved specialized memories when they need more faithful or longer-lasting memories than afforded by general memory systems. We discuss the consequences of these findings for animal cognition research.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2022

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Babb, S. J., & Crystal, J. D. (2006). Episodic-like memory in the rat. Current Biology, 16(13), 13171321. https://doi.org/10.1016/j.cub.2006.05.025CrossRefGoogle ScholarPubMed
Baddeley, A. (2001). The concept of episodic memory. Philosophical Transactions of the Royal Society of London, Series B: Biological Sciences, 356(1413), 13451350. https://doi.org/10.1098/rstb.2001.0957CrossRefGoogle ScholarPubMed
Barham, W., Visser, J., Schoonbee, H., & Evans, L. (1985). Some observations on the influence of stress on ECG patterns in Oreochromis mossambicus and Cyprinus carpio. Comparative Biochemistry and Physiology. A, Comparative Physiology, 82(3), 549552. https://doi.org/10.1016/0300-9629(85)90431-1Google Scholar
Bevins, R. A. (1992). Selective associations: A methodological critique. The Psychological Record, 42(1), 5773. https://doi.org/10.1007/BF03399587Google Scholar
Bischof, H. J. (1994). Sexual imprinting as a two-stage process. In Hogan, J. A. and Bolhuis, J. J. (Eds.), Causal mechanisms of behavioural development (pp. 8297). Cambridge University Press.CrossRefGoogle Scholar
Bolhuis, J. J., Beckers, G. J., Huybregts, M. A., Berwick, R. C., & Everaert, M. B. (2018). Meaningful syntactic structure in songbird vocalizations? PLoS Biology, 16(6), e2005157. https://doi.org/10.1371/journal.pbio.2005157Google Scholar
Bossema, I. (1979). Jays and oaks: an eco-ethological study of a symbiosis. Behaviour, 70, 1116. https://doi.org/10.1163/156853979X00016Google Scholar
Bouton, M. E. (2016). Learning and behavior: A contemporary synthesis, 2nd ed. Sinauer.Google Scholar
Burdyn, L. E., Noble, L. M., Shreves, L. E., & Thomas, R. K. (1984). Long-term memory for concepts by squirrel monkeys. Physiological Psychology, 12(2), 97102. https://doi.org/10.3758/BF03332174CrossRefGoogle Scholar
Byrne, R. W. (2002). Imitation of novel complex actions: What does the evidence from animals mean? Advances in the Study of Behavior, 31, 77105. https://doi.org/10.1016/S0065-3454(02)80006-7Google Scholar
Chen, J., Van Rossum, D., & Ten Cate, C. (2015). Artificial grammar learning in zebra finches and human adults: XYX versus XXY. Animal Cognition, 18(1), 151164. https://doi.org/10.1007/s10071-014-0786-4Google Scholar
Clayton, N. S., & Dickinson, A. (1998). Episodic-like memory during cache recovery by scrub jays. Nature, 395(6699), 272274. https://doi.org/10.1038/26216Google Scholar
Clayton, N. S., & Dickinson, A. (1999). Scrub jays (Aphelocoma coerulescens) remember the relative time of caching as well as the location and content of their caches. Journal of Comparative Psychology, 113(4), 403416. https://doi.org/10.1037/0735-7036.113.4.403CrossRefGoogle ScholarPubMed
Cole, S., Hainsworth, F. R., Kamil, A. C., Mercier, T., & Wolf, L. L. (1982). Spatial learning as an adaptation in hummingbirds. Science, 217(4560), 655657. https://doi.org/10.1126/science.217.4560.655CrossRefGoogle ScholarPubMed
Cook, R. G., Levison, D. G., Gillett, S. R., & Blaisdell, A. P. (2005). Capacity and limits of associative memory in pigeons. Psychonomic Bulletin & Review, 12(2), 350358. https://doi.org/10.3758/BF03196384Google Scholar
Crystal, J. D. (2010). Episodic-like memory in animals. Behavioural Brain Research, 215(2), 235243. https://doi.org/10.1016/j.bbr.2010.03.005Google Scholar
Domjan, M. (1993). Biological constraints on instrumental and classical conditioning: Implications for general process theory. In Bower, G. H. (Ed.), The psychology of learning and motivation (vol. 17, pp. 215277). Academic Press. https://doi.org/10.1016/S0079-7421(08)60100-0Google Scholar
Domjan, M., & Krause, M. (2017). Generality of the laws of learning: from biological constraints to ecological perspectives. In Menzel, R. (Ed.), Learning theory and behavior, Vol. 1, Learning and memory: A comprehensive reference (2nd ed., pp. 189201). Academic Press. https://doi.org/10.1016/B978-0-12-809324-5.21012-2Google Scholar
Emlen, S. T. (1970). Celestial rotation: Its importance in the development of migratory orientation. Science, 170(3963), 11981201. https://doi.org/10.1126/science.170.3963.1198Google Scholar
Enquist, M., Lind, J., & Ghirlanda, S. (2016). The power of associative learning and the ontogeny of optimal behaviour. Royal Society Open Science, 3(11), 160734. https://doi.org/10.1098/rsos.160734Google Scholar
Fagot, J., & Cook, R. G. (2006). Evidence for large long-term memory capacities in baboons and pigeons and its implications for learning and the evolution of cognition. Proceedings of the National Academy of Sciences, 103(46), 1756417567. https://doi.org/10.1073/pnas.0605184103Google Scholar
Gallistel, C. R. (1990). The organization of learning. MIT Press.Google Scholar
Gentner, T. Q., Fenn, K. M., Margoliash, D., & Nusbaum, H. C. (2006). Recursive syntactic pattern learning by songbirds. Nature, 440(7088), 12041207. https://doi.org/10.1038/nature04675CrossRefGoogle ScholarPubMed
Ghirlanda, S. (2017). Can squirrel monkeys learn an ABnA grammar? A re-evaluation of Ravignani et al. (2013). PeerJ, 5, e3806. https://doi.org/10.7717/peerj.3806Google Scholar
Ghirlanda, S., Lind, J., & Enquist, M. (2017). Memory for stimulus sequences: A divide between humans and other animals? Royal Society Open Science, 4(6), 161011. https://doi.org/10.1098/rsos.161011Google Scholar
Ghirlanda, S., Lind, J., & Enquist, M. (2020). A-learning: A new formulation of associative learning theory. Psychonomic Bulletin & Review, 27, 11661194. https://doi.org/10.3758/s13423-020-01749-0Google Scholar
Gleitman, H. (1971). Forgetting of long-term memories in animals. In Honig, W. K. & James, P. H. R. (Eds.), Animal memory (pp. 144). Academic Press.Google Scholar
Gould, J. L., & Marler, P. (1984). Ethology and the natural history of learning. In Marler, P. & Terrrace, H. S. (Eds.), The biology of learning (pp. 4774). Springer. https://doi.org/10.1007/978-3-642-70094-1_3Google Scholar
Griffiths, D., Dickinson, A., & Clayton, N. (1999). Episodic memory: What can animals remember about their past? Trends in Cognitive Sciences, 3(2), 7480. https://doi.org/10.1016/S1364-6613(98)01272-8CrossRefGoogle ScholarPubMed
Gross, C. T., & Canteras, N. S. (2012). The many paths to fear. Nature Reviews Neuroscience, 13(9), 651. https://doi.org/10.1038/nrn3301Google Scholar
Guthrie, E. R. (1935). The psychology of learning. Harper.Google Scholar
Hall, G. (2002). Associative structures in Pavlovian and instrumental conditioning. In Gallistel, R. (Ed.), Stevens’ handbook of experimental psychology (3rd ed., pp. 145). Wiley Online Library. https://doi.org/10.1002/0471214426.pas0301Google Scholar
Hanggi, E. B., & Ingersoll, J. F. (2009). Long-term memory for categories and concepts in horses (Equus caballus). Animal Cognition, 12(3), 451462. https://doi.org/10.1007/s10071-008-0205-9CrossRefGoogle ScholarPubMed
Healy, S. D., & Hurly, T. A. (2003). Cognitive ecology: Foraging in hummingbirds as a model system. Advances in the Study of Behavior, 32, 325359. https://doi.org/10.1016/S0065-3454(03)01007-6Google Scholar
Helfman, G. S., & Schultz, E. T. (1984). Social transmission of behavioural traditions in a coral reef fish. Animal Behaviour, 32, 379384. https://doi.org/10.1016/S0003-3472(84)80272-9Google Scholar
Herbranson, W. T., & Shimp, C. P. (2008). Artificial grammar learning in pigeons. Learning & Behavior, 36(2), 116137. https://doi.org/10.3758/LB.36.2.116CrossRefGoogle ScholarPubMed
Hogan, J. A. (1997). Energy models of motivation: A reconsideration. Applied Animal Behaviour Science, 53, 89105. https://doi.org/10.1016/S0168-1591(96)01153-7Google Scholar
Hogan, J. A. (2017). The study of behavior: Organization, methods, and principles. Cambridge University Press. https://doi.org/10.1017/9781108123792CrossRefGoogle Scholar
Holland, P. C. (2008). Cognitive versus stimulus-response theories of learning. Learning & Behavior, 36(3), 227241. https://doi.org/10.3758/LB.36.3.227CrossRefGoogle ScholarPubMed
Holmes, P. A., & Bitterman, M. (1966). Spatial and visual habit reversal in the turtle. Journal of Comparative and Physiological Psychology, 62(2), 328331. https://doi.org/10.1037/h0023675Google Scholar
Hull, C. L. (1943). Principles of behaviour. Appleton-Century-Crofts.Google Scholar
Hultsch, H., & Todt, D. (1989). Memorization and reproduction of songs in nightingales (Luscinia megarhynchos): Evidence for package formation. Journal of Comparative Physiology A, 165(2), 197203. https://doi.org/10.1007/BF00619194Google Scholar
Immelmann, K. (1972). The influence of early experience upon the development of social behaviour in estrildine finches. Proceedings XVth Ornithological Congress, Den Haag 1970, pp. 316–338.Google Scholar
Janik, V. M., & Slater, P. J. (1997). Vocal learning in mammals. Advances in the Study of Behaviour, 26, 59100. https://doi.org/10.1016/S0065-3454(08)60377-0Google Scholar
Jensen, R. (2006). Behaviorism, latent learning, and cognitive maps: Needed revisions in introductory psychology textbooks. The Behavior Analyst, 29(2), 187209. https://doi.org/10.1007/BF03392130Google Scholar
Johnson, C. K., & Davis, R. T. (1973). Seven-year retention of oddity learning set in monkeys. Perceptual and Motor Skills, 37(3), 920922. https://doi.org/10.2466/pms.1973.37.3.920Google Scholar
Jozet-Alves, C., Bertin, M., & Clayton, N. S. (2013). Evidence of episodic-like memory in cuttlefish. Current Biology, 23(23), R1033R1035. https://doi.org/10.1016/j.cub.2013.10.021Google Scholar
van Kampen, H. S., & de Vos, G. J. (1995). A study of blocking and overshadowing in filial imprinting. Quarterly Journal of Experimental Psychology, 49B, 346356. https://doi.org/10.1080/14640749508401457Google Scholar
Kastak, C. R., & Schusterman, R. J. (2002). Long-term memory for concepts in a California sea lion (Zalophus californianus). Animal Cognition, 5(4), 225232. https://doi.org/10.1007/s10071-002-0153-8Google Scholar
Kristo, G., Janssen, S. M., & Murre, J. M. (2009). Retention of autobiographical memories: An internet-based diary study. Memory, 17(8), 816829. https://doi.org/10.1080/09658210903143841Google Scholar
Kullberg, C., & Lind, J. (2002). An experimental study of predator recognition in great tit fledglings. Ethology, 108, 429441. https://doi.org/10.1046/j.1439-0310.2002.00786.xGoogle Scholar
Lieberman, D. A. (2011). Human learning and memory. Cambridge University Press.Google Scholar
Lind, J. (2018). What can associative learning do for planning? Royal Society Open Science, 5(11), 180778. https://doi.org/10.1098/rsos.180778Google Scholar
Lind, J., Enquist, M., & Ghirlanda, S. (2015). Animal memory: A review of delayed matching-to-sample data. Behavioural Processes, 117, 5258. https://doi.org/10.1016/j.beproc.2014.11.019Google Scholar
Lind, J., Ghirlanda, S., & Enquist, M. (2019). Social learning through associative processes: A computational theory. Royal Society Open Science, 6, 181777. https://doi.org/10.1098/rsos.181777Google Scholar
Lorenz, K. (1935). Der Kumpan in der Umwelt des Vogel. Journal of Ornithology, 83, 137413. https://doi.org/10.1007/BF01905355Google Scholar
MacDonald, S. E. (1993). Delayed matching-to-successive-samples in pigeons: Short-term memory for item and order information. Animal Learning & Behavior, 21(1), 5967. https://doi.org/10.3758/BF03197977Google Scholar
Mackintosh, N. J. (1983). Conditioning and associative learning. Oxford University Press. https://doi.org/10.2307/1422540Google Scholar
Macphail, E. M., & Bolhuis, J. J. (2001). The evolution of intelligence: Adaptive specializations versus general process. Biological Reviews, 76(3), 341364. https://doi.org/10.1017/s146479310100570xGoogle Scholar
McFarland, D. (1985). Animal behaviour, vol. 1. Pitman.Google Scholar
McFarland, D. J. (1971). Feedback mechanisms in animal behaviour. Academic Press.Google Scholar
McLaren, I. P. L., & Mackintosh, N. J. (2000). An elemental model of associative learning: I. Latent inhibition and perceptual learning. Animal Learning & Behavior, 28(3), 211246. https://doi.org/10.3758/BF03200258Google Scholar
McLaren, I. P. L., & Mackintosh, N. J. (2002). Associative learning and elemental representation: II. Generalization and discrimination. Animal Learning & Behavior, 30, 177200. https://doi.org/10.3758/BF03192828Google Scholar
Mets, D. G., & Brainard, M. S. (2019). Learning is enhanced by tailoring instruction to individual genetic differences. eLife, 8, e47216 https://doi.org/10.7554/eLife.47216Google Scholar
Murphy, R. A., Mondragón, E., & Murphy, V. A. (2008). Rule learning by rats. Science, 319(5871), 18491851. https://doi.org/10.1126/science.1151564Google Scholar
Ormerod, B. K., & Beninger, R. J. (2002). Water maze versus radial maze: Differential performance of rats in a spatial delayed match-to-position task and response to scopolamine. Behavioural Brain Research, 128(2), 139152. https://doi.org/10.1016/S0166-4328(01)00316-3Google Scholar
Overman, W. Jr., & Doty, R. (1980). Prolonged visual memory in macaques and man. Neuroscience, 5(11), 18251831. https://doi.org/10.1016/0306-4522(80)90032-9Google Scholar
Pahl, M., Zhu, H., Pix, W., Tautz, J., & Zhang, S. (2007). Circadian timed episodic-like memory – A bee knows what to do when, and also where. The Journal of Experimental Biology, 210(20), 35593567. https://doi.org/10.1242/jeb.005488Google Scholar
Patterson, T. L., & Tzeng, O. J. (1979). Long-term memory for abstract concepts in the lowland gorilla (Gorilla g. gorilla). Bulletin of the Psychonomic Society, 13(5), 279282. https://doi.org/10.3758/BF03336870Google Scholar
Pavlov, I. P. (1927). Conditioned reflexes. Oxford University Press.Google Scholar
Pearce, J. M. (2008). Animal learning and cognition, 3rd ed. Psychology Press. https://doi.org/10.4324/9781315782911Google Scholar
Perry, S. E., & Manson, J. H. (2003). Traditions in monkeys. Evolutionary Anthropology, 12, 7181. https://doi.org/10.1002/evan.10105Google Scholar
Pierce, W. D., & Cheney, Carl D. (2008). Behavior analysis and learning. Psychology Press. https://doi.org/10.4324/9780203441817Google Scholar
Pilley, J. W., & Reid, A. K. (2011). Border collie comprehends object names as verbal referents. Behavioural Processes, 86(2), 184195. https://doi.org/10.1016/j.beproc.2010.11.007Google Scholar
Pinel, J. P., & Treit, D. (1978). Burying as a defensive response in rats. Journal of Comparative and Physiological Psychology, 92(4), 708712. https://doi.org/10.1037/h0077494Google Scholar
Roberts, W. A., Feeney, M. C., MacPherson, K., Petter, M., McMillan, N., & Musolino, E. (2008). Episodic-like memory in rats: Is it based on when or how long ago? Science, 320(5872), 113115. https://doi.org/10.1126/science.1152709Google Scholar
Simons, D. J., & Chabris, C. F. (1999). Gorillas in our midst: Sustained inattentional blindness for dynamic events. Perception, 28(9), 10591074. https://doi.org/10.1068/p281059CrossRefGoogle ScholarPubMed
Skinner, B. (1936). Conditioning and extinction and their relation to drive. The Journal of General Psychology, 14(2), 296317. https://doi.org/10.1080/00221309.1936.9713156Google Scholar
Soha, J. (2016). The auditory template hypothesis: A review and comparative perspective. Animal Behaviour, 124, 247254. https://doi.org/10.1016/j.anbehav.2016.09.016Google Scholar
Staddon, J. E. R. (2001). The new behaviorism: Mind, mechanism and society. Taylor & Francis.Google Scholar
Stephens, D. W. (1987). On economically tracking a variable environment. Theoretical Population Biology, 32(1), 1525. https://doi.org/10.1016/0040-5809(87)90036-0Google Scholar
Suzuki, T. N., Wheatcroft, D., & Griesser, M. (2016). Experimental evidence for compositional syntax in bird calls. Nature Communications, 7, 10986. https://doi.org/10.1038/ncomms10986Google Scholar
Tennie, C., Völter, C. J., Vonau, V., Hanus, D., Call, J., & Tomasello, M. (2019). Chimpanzees use observed temporal directionality to learn novel causal relations. Primates, 60(6), 517524. https://doi.org/10.1007/s10329-019-00754-9Google Scholar
Thistlethwaite, D. (1951). A critical review of latent learning and related experiments. Psychological Bulletin, 48(2), 97129. https://doi.org/10.1037/h0055171Google Scholar
Thorndike, E. L. (1898). Animal intelligence, an experimental study of the associative processes in animals. Macmillan. https://doi.org/10.1037/h0092987Google Scholar
Thorndike, E. L. (1911). Animal intelligence. Experimental studies. Macmillan. https://doi.org/10.5962/bhl.title.55072Google Scholar
Tolman, E. C. (1932). Purposive behavior in animals and men. University of California Press.Google Scholar
Tolman, E. C., & Honzik, C. H. (1930). Introduction and removal of reward, and maze performance in rats. University of California Publications in Psychology, 4, 257275.Google Scholar
Vaughan, W., & Greene, S. L. (1984). Pigeon visual memory capacity. Journal of Experimental Psychology: Animal Behavior Processes, 10(2), 256271. https://doi.org/10.1037/0097-7403.10.2.256Google Scholar
Völter, C. J., & Call, J. (2014). Great apes (Pan paniscus, Pan troglodytes, Gorilla gorilla, Pongo abelii) follow visual trails to locate hidden food. Journal of Comparative Psychology, 128(2), 199208. https://doi.org/10.1037/a0035434Google Scholar
van de Waal, E., Borgeaud, C., & Whiten, A. (2013). Potent social learning and conformity shape a wild primate’s foraging decisions. Science, 340(6131), 483485. https://doi.org/10.1126/science.1232769Google Scholar
Wehner, R. (2003). Desert ant navigation: How miniature brains solve complex tasks. Journal of Comparative Physiology A, 189(8), 579588. https://doi.org/10.1007/s00359-003-0431-1Google Scholar
Weisman, R. G., Duder, C., & von Konigslow, R. (1985). Representation and retention of three-event sequences in pigeons. Learning and Motivation, 16(3), 239258. https://doi.org/10.1016/0023-9690(85)90014-1Google Scholar
Weisman, R. G., Wasserman, E., Dodd, P., & Larew, M. B. (1980). Representation and retention of two-event sequences in pigeons. Journal of Experimental Psychology: Animal Behavior Processes, 6(4), 312325. https://doi.org/10.1037/0097-7403.6.4.312Google Scholar
Yerkes, R. M., & Yerkes, D. N. (1928). Concerning memory in the chimpanzee. Journal of Comparative Psychology, 8(3), 237271. https://doi.org/10.1037/h0073804Google Scholar
Zeldin, R. K., & Olton, D. S. (1986). Rats acquire spatial learning sets. Journal of Experimental Psychology: Animal Behavior Processes, 12(4), 412419. https://doi.org/10.1037/0097-7403.12.4.412Google ScholarPubMed
Zentall, T. R., Clement, T. S., Bhatt, R. S., & Allen, J. (2001). Episodic-like memory in pigeons. Psychonomic Bulletin & Review, 8(4), 685690. https://doi.org/10.3758/BF03196204Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×