Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2025-01-04T16:22:35.718Z Has data issue: false hasContentIssue false

9 - Why are floral signals complex? An outline of functional hypotheses

Published online by Cambridge University Press:  05 January 2012

Sébastien Patiny
Affiliation:
Université de Mons-Hainaut, Belgium
Get access

Summary

Introduction

Plants produce a remarkable variety of displays to attract animals that transfer pollen. These floral displays are usually complex, broadcasting various combinations of visual, olfactory, gustatory, tactile, and thermal stimuli (Raguso 2004a). Even acoustic stimuli may be involved, as in the case of structural nectar guides used by echolocating flower-feeding bats (von Helversen and von Helversen 1999). Yet these sensorially complex advertisements likely evolved from an ancestor that primarily transmitted only chemicals, serving a defensive function (Pellmyr and Thein 1986). The subsequent amplification and elaboration of floral stimuli therefore offers an intriguing opportunity to study signal evolution. However, at present, we know surprisingly little about why floral displays consist of so many elements. This contrasts with progress in other areas: recently, researchers studying topics as diverse as sexual selection, warning displays, animal learning, and parent–offspring communication have explored the function of signal complexity (Rowe 1999; Candolin 2003; Hebets and Papaj 2005; Partan and Marler 2005).

Researchers studying plant–pollinator interactions, however, have not to date shown a comparable degree of interest in the topic of complex signals, as judged by an analysis of the research literature. An August 2010 search on the ISI Web of Science® database on journal articles published since 1995 returned only two on plant–pollinator topics containing the words “multimodal” and “signal-” in their titles, abstracts, or keywords (those articles being Raguso and Willis 2002; Kulahci et al. 2008). In comparison, the same search returned 59 articles on sexual selection topics.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ay, N.Flack, J.Krakauer, D. C. 2007 Robustness and complexity coconstructed in multimodal signaling networksPhilosophical Transactions of the Royal Society of London, Series B, Biological Sciences 362 441CrossRefGoogle Scholar
Balkenius, A.Rosen, W.Kelber, A. 2006 The relative importance of olfaction and vision in a diurnal and nocturnal hawkmothJournal of Comparative Physiology, A 192 431CrossRefGoogle Scholar
Bergström, G.Dobson, H. E. M.Groth, I. 1995 Spatial fragrance patterns within the flowers of (Ranunculaceae)Plant Systematics and Evolution 195 221CrossRefGoogle Scholar
Biesmeijer, J. C.Giurfa, M.Koedam, D.Potts, S. G.Joel, D. M.Dafni, A. 2005 Convergent evolution: floral guides, stingless bee nest entrances, and insectivorous pitchersNaturwissenschaften 92 444CrossRefGoogle ScholarPubMed
Bouton, M. E.Nelson, J. B.Rosas, J. M. 1999 Stimulus generalization, context change, and forgettingPsychological Bulletin 125 171CrossRefGoogle ScholarPubMed
Bradbury, J. W.Vehrencamp, S. L. 1998 Principles of Animal CommunicationSunderland, MASinauer Associates.Google Scholar
Bronstein, J. L. 1994 Conditional outcomes in mutualistic interactionsTrends in Ecology and Evolution 9 214CrossRefGoogle ScholarPubMed
Burns, J. G. 2005 Impulsive bees forage better: the advantage of quick, sometimes inaccurate foraging decisionsAnimal Behaviour 70 e1CrossRefGoogle Scholar
Candolin, U. 2003 The use of multiple cues in mate choiceBiological Reviews of the Cambridge Philosophical Society 78 575CrossRefGoogle ScholarPubMed
Cheroske, A. G.Cronin, T. W.Durham, M. F.Caldwell, R. L. 2009 Adaptive signaling behavior in stomatopods under varying light conditionsMarine and Freshwater Behaviour and Physiology 42 21932CrossRefGoogle Scholar
Chittka, L.Spaethe, J. 2007 Visual search and the importance of time in complex decision making by beesArthropod–Plant Interactions 1 7CrossRefGoogle Scholar
Chittka, L.Thomson, J. D. 2001 Cognitive Ecology of PollinationCambridge, UKCambridge University PressCrossRef
Chittka, L.Gumbert, A.Kunze, J. 1997 Foraging dynamics of bumble bees: correlates of movements within and between plant speciesBehavioral Ecology 8 239CrossRefGoogle Scholar
Chittka, L.Skorupski, P.Raine, N. E. 2009 Speed–accuracy tradeoffs in animal decision-makingTrends in Ecology and Evolution 24 400CrossRefGoogle ScholarPubMed
Chittka, L.Thomson, J. D.Waser, N. M. 1999 Flower constancy, insect psychology, and plant evolutionNaturwissenschaften 86 361CrossRefGoogle Scholar
Dobson, H. E. M.Bergström, G. 1999 The ecology and evolution of pollen odorsPlant Systematics and Evolution 222 63CrossRefGoogle Scholar
Dötterl, S.Jürgens, A. 2005 Spatial fragrance patterns in flowers of : Lilac compounds as olfactory nectar guides?Plant Systematics and Evolution 255 99CrossRefGoogle Scholar
Dudareva, N.Pichersky, E. 2006 Biology of Floral ScentBoca RatonCRC Press
Dukas, R. D. 2002 Behavioural and ecological consequences of limited attentionPhilosophical Transactions of the Royal Society of London, Series B 357 1539CrossRefGoogle ScholarPubMed
Fauria, K.Dale, K.Colborn, M.Collett, T. S. 2002 Learning speed and contextual isolation in bumblebeesJournal of Experimental Biology 205 1009Google ScholarPubMed
von Frisch, K. 1914 Der Farben und Formensinn der BieneZoologische Jarbücher (Physiologie) 35 1Google Scholar
von Frisch, K. 1919 Über den Geruchssinn der Bienen und seine blütenbiologische BedeutungZoologische Jahrbücher (Physiologie) 37 2Google Scholar
Galen, C. 1999 Why do flowers vary?Bioscience 49 631CrossRefGoogle Scholar
Galizia, C. G.Rossler, W. 2010 Parallel olfactory systems in insects: anatomy and functionAnnual Review of Entomology 55 399CrossRefGoogle ScholarPubMed
Gegear, R. J. 2005 Multicomponent floral signals elicit selective foraging in bumblebeesNaturwissenschaften 92 269CrossRefGoogle ScholarPubMed
Gegear, R. J.Laverty, T. M. 2005 Flower constancy in bumblebees: a test of the trait variability hypothesisAnimal Behaviour 69 939CrossRefGoogle Scholar
Giurfa, M. 2007 Behavioral and neural analysis of associative learning in the honeybee: a taste from the magic wellJournal of Comparative Physiology, A 193 801CrossRefGoogle ScholarPubMed
Giurfa, M.Lehrer, M. 2001 Cognitive Ecology of PollinationChittka, L.Thomson, J. D.Cambridge, UKCambridge University PressGoogle Scholar
Giurfa, M.Nunez, J.Chittka, L.Menzel, R. 1995 Color preferences of flower-naive honeybeesJournal of Comparative Physiology, A 177 247CrossRefGoogle Scholar
Giurfa, M.Vorobyev, M.Kevan, P.Menzel, R. 1996 Detection of coloured stimuli by honeybees: minimum visual angles and receptor specific contrastsJournal of Comparative Physiology, A 178 699CrossRefGoogle Scholar
Glover, B. J.Whitney, H. M. 2010 Structural colour and iridescence in plants: the poorly studied relations of pigment colourAnnals of Botany 105 505CrossRefGoogle ScholarPubMed
Goulson, D. 2000 Are insects flower constant because they use search images to find flowers?Oikos 88 547CrossRefGoogle Scholar
Goyret, J.Markwell, P. M.Raguso, R. A. 2007 The effect of decoupling olfactory and visual stimuli on the foraging behavior of Journal of Experimental Biology 210 1398CrossRefGoogle Scholar
Goyret, J.Markwell, P. M.Raguso, R. A. 2008 Context- and scale-dependent effects of floral CO2 on nectar foraging by Proceedings of the National Academy of Sciences USA 105 4565CrossRefGoogle Scholar
Goyret, J.Kelber, A.Pfaff, M.Raguso, R. A. 2009 Flexible responses to visual and olfactory stimuli by foraging : larval nutrition affects adult behaviourProceedings of the Royal Society of London, Series B, Biological Sciences 276 2739CrossRefGoogle ScholarPubMed
Green, D. M.Swets, J. A. 1966 Signal Detection Theory and PsychophysicsNew York, NYWiley & SonsGoogle Scholar
Grison-Pigé, L.Salager, J.Hossaert-McKey, M. M.Roy, J. 2001 Carbon allocation to volatiles and other reproductive components in male (Moraceae)American Journal of Botany 88 2214CrossRefGoogle Scholar
Grotewold, E. 2006 The genetics and biochemistry of floral pigmentsAnnual Review of Plant Biology 57 761CrossRefGoogle ScholarPubMed
Guilford, T.Dawkins, M. S. 1991 Receiver psychology and the evolution of animal signalsAnimal Behaviour 42 1CrossRefGoogle Scholar
Hammer, T. J.Hata, C.Nieh, J. C. 2009 Thermal learning in the honeybee, Journal of Experimental Biology 212 3928CrossRefGoogle Scholar
Hanson, H. M. 1959 Effects of discrimination training on stimulus generalizationJournal of Experimental Psychology 58 321CrossRefGoogle ScholarPubMed
Hebets, E. A.Papaj, D. R. 2005 Complex signal function: developing a framework of testable hypothesesBehavioral Ecology and Sociobiology 57 197CrossRefGoogle Scholar
Heinrich, B. 1979 Bumblebee EconomicsCambridge, MAHarvard University PressGoogle Scholar
Helsper, J. P. F. G.Davies, J. A.Bouwmeester, H. J.Krol, A. F.van Kampen, M. H. 1998 Circadian rhythmicity in emission of volatile compounds by flowers of L. cv. HonestyPlanta 207 88CrossRefGoogle Scholar
von Helversen, D.von Helverson, O. 1999 Acoustic guide in a bat-pollinated flowerNature 398 759CrossRefGoogle Scholar
Hoballah, T. M.Gübitz, T.Stuurman, J.Broger, L.Barone, M.Mandel, T.Dell, Olivo, A.Arnold, M.Kulemeier, C. 2007 Single gene-mediated shift in pollinator attraction in The Plant Cell 19 779CrossRefGoogle Scholar
Howell, A. D.Alarcon, R. 2007 bees (Hymenoptera:Megachilidae) can detect nectar-rewarding flowers using olfactory cuesAnimal Behaviour 74 199CrossRefGoogle Scholar
Hurley, T. A.Franz, S.Healy, S. D. 2009 Do rufous hummingbirds () use visual beacons?Animal Cognition 13 377CrossRefGoogle Scholar
Jakobsen, H. B.Olsen, C. E. 1994 Influence of climatic factors on emission of flower volatilesPlanta 192 365CrossRefGoogle Scholar
Johnstone, R. A. 1996 Multiple displays in animal communication: “backup signals” and “multiple messages”Philosophical Transactions of the Royal Society of London, Series B, Biological Sciences 351 329CrossRefGoogle Scholar
Kessler, D.Diezel, C.Baldwin, I. T. 2010 Changing pollinators as a means of escaping herbivoresCurrent Biology 20 1CrossRefGoogle ScholarPubMed
Kessler, D.Gase, K.Baldwin, I. T. 2008 Field experiments with transformed plants reveal the sense of floral scentsScience 321 1200CrossRefGoogle ScholarPubMed
Kevan, P. G.Lane, M. A. 1985 Flower petal microtexture is a tactile cue for beesProceedings of the National Academy of Sciences USA 82 4750CrossRefGoogle ScholarPubMed
Knudsen, J. T.Ericksson, R.Gershenzon, J.Ståhl, B. 2006 Diversity and distribution of floral scentBotanical Review 72 1CrossRefGoogle Scholar
Kulahci, I. G.Dornhaus, A.Papaj, D. R. 2008 Multimodal signals enhance decision making in foraging bumble-beesProceedings of the Royal Society of London, Series B, Biological Sciences 275 797CrossRefGoogle ScholarPubMed
Kullenberg, B.Bergström, G. 1976 males as pollinators of orchidsZoologica Scripta 5 13CrossRefGoogle Scholar
Kunze, J.Gumbert, A. 2001 The combined effect of color and odor on flower choice behavior of bumble bees in flower mimicry systemsBehavioral Ecology 12 447CrossRefGoogle Scholar
Leonard, A. S.Dornhaus, A.Papaj, D. R. 2011 Flowers help bees cope with uncertainty: signal detection and the function of floral complexityJournal of Experimental Biology 214, 113CrossRefGoogle Scholar
Livingstone, M.Hubel, D. 1988 Segregation of form, color, movement, and depth: anatomy, physiology, and perceptionScience 240 740CrossRefGoogle ScholarPubMed
Lynn, S. K.Cnaai, J.Papaj, D. R. 2005 Peak shift discrimination learning as a mechanism of signal evolutionEvolution 59 1300CrossRefGoogle ScholarPubMed
Makino, T. T.Sakai, S. 2007 Experience changes pollinator responses to floral display size: from size-based to reward-based foragingFunctional Ecology 21 854CrossRefGoogle Scholar
Markl, H. 1983 Neuroethology and Behavioral PhysiologyHuber, R.Markl, H.New York, NYSpringerGoogle Scholar
Møller, A. P.Pomiankowski, A. 1993 Why have birds got multiple sexual ornaments?Behavioral Ecology and Sociobiology 32 167CrossRefGoogle Scholar
Muchhala, N.Caiza, A.Vizuete, J. C.Thomson, J. D. 2008 A generalized pollination system in the tropics: bats, birds and Annals of Botany 103 1481CrossRefGoogle Scholar
Odell, E.Raguso, R. A.Jones, K. N. 1999 Bumblebee foraging responses to variation in floral scent and color in snapdragonsAmerican Midland Naturalist 142 257CrossRefGoogle Scholar
Partan, S.Marler, P. 2005 Issues in the classification of multimodal communication signalsAmerican Naturalist 166 231CrossRefGoogle ScholarPubMed
Pelletier, L.McNeil, J. N. 2003 The effect of food supplementation on reproductive success in bumblebee field coloniesOikos 103 688CrossRefGoogle Scholar
Pellmyr, O.Thien, L. B. 1986 Insect reproduction and floral fragrances: keys to the evolution of the angiosperms?Taxon 35 76CrossRefGoogle Scholar
Raguso, R. A. 2004 Flowers as sensory billboards: progress towards an integrated understanding of floral advertisementCurrent Opinion in Plant Biology 7 434CrossRefGoogle ScholarPubMed
Raguso, R. A. 2004 Why are some floral nectars scented?Ecology 85 1486CrossRefGoogle Scholar
Raguso, R. A. 2008 Wake up and smell the roses: the ecology and evolution of floral scentAnnual Review of Ecology, Evolution and Systematics 39 549CrossRefGoogle Scholar
Raguso, R. A.Willis, M. A. 2002 Synergy between visual and olfactory cues in nectar feeding by naive hawkmoths, Animal Behaviour 64 685CrossRefGoogle Scholar
Raine, N. E.Chittka, L. 2007 The adaptive significance of sensory bias in a foraging context: floral colour preferences in the bumblebee PLoS ONE 2 e556CrossRefGoogle Scholar
Raine, N. E.Chittka, L. 2007 Nectar production rates of 75 bumblebee-visited flower species in a German flora (Hymenoptera:Apidae:)Entomologia Generalis 30 191CrossRefGoogle Scholar
Renner, S. S. 2006 Plant–Pollinator InteractionsWaser, N. M.Ollerton, J.Chicago MIUniversity of Chicago PressGoogle Scholar
Rowe, C. 1999 Receiver psychology and the evolution of multicomponent signalsAnimal Behaviour 58 921CrossRefGoogle ScholarPubMed
Schaefer, H. M.Ruxton, G. D. 2010 Deception in plants: mimicry or perceptual exploitation?Trends in Ecology & Evolution 24 676CrossRefGoogle Scholar
Schiestl, F. P. 2005 On the success of a swindle, pollination by deception in orchidsNaturwissenschaften 92 255CrossRefGoogle ScholarPubMed
Schiestl, F. P. 2010 The evolution of floral scent and insect chemical communicationEcology Letters 13 643CrossRefGoogle ScholarPubMed
Schiestl, F. P.Johnson, S. D.Raguso, R. A. 2010 Floral evolution as a figment of the imagination of pollinatorsTrends in Ecology & Evolution 25 382CrossRefGoogle ScholarPubMed
Shettleworth, S. J. 1998 Cognition, Evolution and BehaviorNew York, NYOxford University PressGoogle Scholar
Skals, N.Plepys, D.Löfstedt, C. 2003 Foraging and mate-finding in the silver Y moth, (Lepidoptera:Noctuidae) under risk of predationOikos 102 351CrossRefGoogle Scholar
Skow, C. D.Jakob, E. J. 2005 Jumping spiders attend to context during learned avoidance of aposematic preyBehavioral Ecology 17 34CrossRefGoogle Scholar
Smith, B. H. 1996 The role of attention in learning about odorantsBiological Bulletin, Marine Biological Laboratory, Woods Hole 191 76CrossRefGoogle ScholarPubMed
Spaethe, J.Chittka, L. 2003 Interindividual variation of eye optics and single object resolution in bumblebeesJournal of Experimental Biology 206 3447CrossRefGoogle ScholarPubMed
Spaethe, J.Tautz, J.Chittka, L. 2001 Visual constraints in foraging bumblebees, Flower size and color affect search time and flight behaviorProceedings of the National Academy of Sciences USA 98 3898CrossRefGoogle ScholarPubMed
Spaethe, J.Brockmann, A.Halbig, C.Tautz, J. 2007 Size determines antennal sensitivity and behavioral threshold to odors in bumblebee workersNaturwissenschaften 94 733CrossRefGoogle ScholarPubMed
Stein, B. E.Meredith, M. A. 1993 The Merging of the SensesCambridgeThe MIT PressGoogle Scholar
Streinzer, M.Paulus, H. G.Spaethe, J. 2009 Floral colour signal increases short-range detectability of a sexually deceptive orchid to its bee pollinatorJournal of Experimental Biology 212 1365CrossRefGoogle ScholarPubMed
Taylor, R. C.Klein, B. A.Stein, J.Ryan, M. 2008 Faux frogs: multimodal signalling and the value of robotics in animal behaviourAnimal Behaviour 76 1089CrossRefGoogle Scholar
Theis, N. 2006 Fragrance of Canada thistle () attracts both floral herbivores and pollinatorsJournal of Chemical Ecology 32 1573CrossRefGoogle ScholarPubMed
Thomas, R. D. 1996 Separability and independence of dimensions within the same-different judgment taskJournal of Mathematical Psychology 40 318CrossRefGoogle Scholar
Thorp, R. W.Briggs, D. L.Estes, J. R.Erickson, E. H. 1975 Nectar fluorescence under ultraviolet irradiationScience 189 476CrossRefGoogle ScholarPubMed
Waser, N. M.Price, M. V. 1985 The effect of nectar guides on pollinator preference: experimental studies with a montane herbOecologia 67 121CrossRefGoogle ScholarPubMed
Weiss, M. R. 1991 Floral color changes as cues for pollinatorsNature 354 227CrossRefGoogle Scholar
Weiss, M. R.Papaj, D. R. 2003 Colour learning in two behavioural contexts: how much can a butterfly keep in mind?Animal Behaviour 65 425CrossRefGoogle Scholar
Whitney, H. M.Dyer, A. G.Chittka, L.Rands, S. A.Glover, B. J. 2008 The interaction of temperature and sucrose concentration on foraging preferences in bumblebeesNaturwissenschaften 95 845CrossRefGoogle ScholarPubMed
Williams, N. H.Dodson, C. H. 1972 Selective attraction of male Euglossine bees to orchid floral fragrances and its importance in long distance pollen flowEvolution 26 84CrossRefGoogle ScholarPubMed
Wiley, R. H. 2006 Signal detection and animal communicationAdvances in the Study of Behaviour 36 217CrossRefGoogle Scholar
Worden, B. D.Skemp, A. K.Papaj, D. R. 2005 Learning in two contexts: the effects of interference and body size in bumblebeesJournal of Experimental Biology 208 2045CrossRefGoogle ScholarPubMed
Wright, G. A.Schiestl, F. P. 2009 The evolution of floral scent: the influence of olfactory learning by insect pollinators on the honest signaling of floral rewardsFunctional Ecology 23 841CrossRefGoogle Scholar
Wright, G. A.Choudhary, A. F.Bentley, M. A. 2009 Reward quality influences the development of learned olfactory biases in honeybeesProceedings of the Royal Society Series B 276 25972604CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×