Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-02-08T03:07:20.351Z Has data issue: false hasContentIssue false

1 - Non-eutherian mammals summary

from Part I - Non-eutherian mammals

Published online by Cambridge University Press:  07 September 2010

Christine M. Janis
Affiliation:
Brown University, Rhode Island
Gregg F. Gunnell
Affiliation:
University of Michigan, Ann Arbor
Mark D. Uhen
Affiliation:
University of Alabama, Birmingham
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Baker, M. L., Wares, J. P., Harrison, G. A., and Miller, R. D. (2004). Relationships among the families and orders of marsupials and the major mammalian lineages based on recombination activating gene-1. Journal of Mammalian Evolution, 11, 1–16.CrossRefGoogle Scholar
Belov, K., Hellman, L., and Cooper, D. W. (2002). Characterization of echidna IgM provides insights into the divergence of extant mammals. Developmental and Comparative Immunology, 26, 831–9.CrossRefGoogle Scholar
Butler, P. M. and Hooker, J. J. (2005). New teeth of allotherian mammals from the English Bathonian, including the earliest multituberculates. Acta Palaeontologica Polonica, 50, 185–207.Google Scholar
Case, J. A. and Woodburne, M. O. (1986). South American marsupials: a successful crossing of the Cretaceous–Tertiary boundary. Palaios, 1, 413–16.CrossRefGoogle Scholar
Case, J. A., Goin, F. J., and Woodburne, M. O. (2005). “South American” marsupials from the Late Cretaceous of North America, and the origin of marsupial cohorts. Journal of Mammalian Evolution, 12, 461–94.CrossRefGoogle Scholar
Cifelli, R. L. (1993). Theria of metatherian–eutherian grade and the origin of marsupials. In Mammal Phylogeny: Mesozoic Differentiation, Multituberculates, Monotremes, Early Therians and Marsupials, ed. Szalay, F. S., Novacek, M. J., and McKenna, M. C., pp. 205–15. New York: Springer-Verlag.Google Scholar
(1999). Tribosphenic mammal from the North American early Cretaceous. Nature, 401, 363–6.CrossRef
Cifelli, R. L. and Muizon, C. (1997). Dentition and jaw of Kokopellia juddi, a primitive marsupial or near-marsupial from the medial Cretaceous of Utah. Journal of Mammalian Evolution, 4, 241–58.CrossRefGoogle Scholar
Cope, E. D. (1884). Second addition to the knowledge of the Puerco fauna. Proceedings of the American Philosophical Society, 21, 309–24.Google Scholar
Crochet, J.-Y. (1979). Les Marsupiaux du Tertiare d'Europe. Paris: Éditions de la Foundation Singer-Polignac.Google Scholar
Eizirik, E., Murphy, W. J., and O'Brien, S. J. (2001). Molecular dating and biogeography of the early placental mammal radiation. Journal of Heredity, 92, 212–19.CrossRefGoogle ScholarPubMed
Gilbert, N. and Labuda, D. (2000). Evolutionary inventions and continuity of CORE-SINES in mammals. Journal of Molecular Biology, 298, 365–77.CrossRefGoogle ScholarPubMed
Gill, T. (1872). Arrangement of the families of mammals with analytical tables. Smithsonian Miscellaneous Collections, 11, 1–98.Google Scholar
Goin, F. J. (2003). Early marsupial radiations in South America. In Predators with Pouches: The Biology of Carnivorous Marsupials, ed. Jones, M., Dickman, C., and Archer, M., pp. 30--42. Collingwood, Australia: CSIRO.Google Scholar
Gregory, W. K. (1947). The monotremes and the palimpsest theory. Bulletin of the American Museum of Natural History, 88, 1–52.Google Scholar
Haeckel, E. (1898). Ueber unsere gegenwärtige Kenntniss vom Ursprung des Menschen. Bonn: Vortrag gehalten auf dem 4en Internationalen Zoologen-Congress, Cambridge.
Hedges, S. B., Parker, P., Sibley, G., and Kumar, S. (1996). Continental breakup and ordinal diversification of birds and mammals. Nature, 381, 226–8.CrossRefGoogle ScholarPubMed
Hunter, J. P. and Janis, C. M. (2006). Spiny Norman in the “Garden of Eden”? Ausktribosphenos and the geography of placental mammalian origins. Journal of Mammalian Evolution, 8, 107–24.Google Scholar
Hurum, J. H., Luo, Z.-X., and Kielan-Jaworowska, Z. (2006). Were mammals originally venomous?Acta Palaeontologica Polonica, 51, 1–11.Google Scholar
Huxley, T. H. (1880). On the application of the laws of evolution to the arrangement of Vertebrata, and more particularly of the Mammalia. Proceedings of the Zoological Society of London, 1880, 649– 62.Google Scholar
Janke, A., Xu, X., and Arnason, U. (1997). The complete mitochondrial genome of the wallaroo (Macropus robustus) and the phylogenetic relationship among Monotremata, Marsupialia and Eutheria. Proceedings of the National Academy of Sciences, USA, 94, 1276–81.CrossRefGoogle ScholarPubMed
Janke, A., Magnell, O., Wieczorek, G., Westerman, M., and Arnason, U. (2002). Phylogenetic analysis of 18S RNA and the mitochondrial genomes of the wombat, Vombatus ursinus, and the spiny anteater, Tachyglossus aculeatus: increased support for the Marsupionta hypothesis. Journal of Molecular Evolution, 54, 71– 80.CrossRefGoogle ScholarPubMed
Jenkins, F. A., Gatesy, S. M., Shubin, N. H., and Amaral, W. W. (1997). Haramiyids and Triassic mammalian evolution. Nature, 385, 715–18.CrossRefGoogle ScholarPubMed
Ji, Q., Luo, Z.-X., Yuan, C.-X., et al. (2002). The earliest known eutherian mammal. Nature, 416, 816–22.CrossRefGoogle ScholarPubMed
Kielan-Jaworowska, Z. (1971). Skull structure and affinities of the Multituberculata. Acta Paleontologia Polonica, 25, 5–41.Google Scholar
Kielan-Jaworowska, Z., Cifelli, R. L., and Luo, Z.-X. (2004). Mammals from the Age of Dinosaurs: Origins, Evolution, and Structure. New York: Columbia University Press.CrossRefGoogle Scholar
Killian, J. K., Buckley, T. R., Stewart, N., Munday, B. L., and Jirtle, R. L. (2001). Marsupials and eutherians reunited: genetic evidence for the Theria hypothesis of mammalian evolution. Mammalian Genome, 12, 513–17.CrossRefGoogle ScholarPubMed
Kirsch, J. A. W. (1977). The six percent solution: second thoughts about the adaptiveness of marsupials. American Scientist, 65, 276–88.Google Scholar
Kirsch, J. A. W. and Mayer, G. C. (1998). The platypus is not a rodent: DNA hybridization, amniote phylogeny and the palimpsest theory. Philosophical Transactions of the Royal Society London, B, 353, 1221–37.CrossRefGoogle Scholar
Kirsch, J. A. W., Dickerman, A. A., Reig, O. A., and Springer, M. S. (1991). DNA hybridization evidence for the Australasian affinity of Dromiciops australis. Proceedings of the National Academy of Sciences, USA, 88, 10465–9.CrossRefGoogle ScholarPubMed
Kirsch, J. A. W., Lapointe, F.-J., and Springer, M. S. (1997). DNA-hybridisation studies of marsupials and their implications for metatherian classification. Australian Journal of Zoology, 45, 211–80.CrossRefGoogle Scholar
Kitazoe,, Y., Hirohisa,, H., Waddell,, P. J., et al. (2007). Robust time estimate reconciles views of the antiquity of placental mammals. PLoS Online, 2, e384. doi: 10.1371/journal.pone.0000384.
Krause, D. W. (1982). Jaw movement, dental function, and diet in the Paleocene multituberculate Ptilodus. Paleobiology, 8, 265–81.CrossRefGoogle Scholar
Krause, D. W., Rogers, R. R., Forster, C. A., et al. (1999). The Late Cretaceous vertebrate fauna of Madagascar: implications for Gondwanan paleobiogeography. GSA Today, 9, 1–7.Google Scholar
Kullander, K., Carlson, B., and Hallbrook, F. (1997). Molecular phylogeny and evolution of the neurotropins from monotremes and marsupials. Journal of Molecular Evolution, 45, 311–21.CrossRefGoogle Scholar
Kumar, S. and Hedges, S. B. (1998). A molecular timescale for vertebrate evolution. Nature, 392, 917–20.CrossRefGoogle ScholarPubMed
Lee, M.-H., Schroff, R., Cooper, S. J. B., and Hope, R. (1999). Evolution and molecular characterization of a β-globin gene from the Australian echidna Tachyglossus aculeatus (Monotremata). Molecular Phylogenetics and Evolution, 12, 205–14.CrossRefGoogle Scholar
Lillegraven, J. A. (1975). Biological considerations of the marsupial–placental dichotomy. Evolution, 29, 707–22.CrossRefGoogle ScholarPubMed
(1984). Why was there a “marsupial-placental dichotomy.” [In Mammals: Notes for a Short Course, ed. P. D. Gingerich and C. Badgley.] University of Tennessee, Studies in Geology, 8, 72--86.
Luo, Z.-X., Cifelli, R. L., and Kielan-Jaworowska, Z. (2001). Dual origin of tribosphenic mammals. Nature, 409, 53–7.CrossRefGoogle ScholarPubMed
Luo, Z.-X., Kielan-Jaworowska, Z., and Cifelli, R. L. (2002). In quest for a phylogeny of Mesozoic mammals. Acta Paleontologica Polonica, 47, 1–78.Google Scholar
Luo, Z.-X., Ji, Q., Wible, J. R., and Yuan, C.-X. (2003). An Early Cretaceous tribosphenic mammal and metatherian evolution. Science, 302, 1934–40.CrossRefGoogle ScholarPubMed
Maddison, W. P. (1993). Missing data versus missing characters in phylogenetic analysis. Systematic Biology, 42, 576–81.CrossRefGoogle Scholar
Madsen, O., Scally, M., Douady, C. J., et al. (2001). Parallel adaptive radiations in two major clades of placental mammals. Nature, 409, 610–14.CrossRefGoogle ScholarPubMed
Marsh, O. C. (1880). Notice of Jurassic mammals representing two new orders. American Journal of Science, Series 3, 20, 235–9.CrossRefGoogle Scholar
Marshall,, L. G., Case,, J. A., and Woodburne,, M. O. (1990). Phylogenetic relationships of the families of marsupials. In Current Mammalogy, Vol. 2, ed. Genoways, H., pp. 33–405. New York: Plenum Press.Google Scholar
McKenna, M. C. and Bell, S. K. (1997). Classification of Mammals Above the Species Level. New York: Columbia University Press.Google Scholar
Meng, J. and Wyss, A. R. (1995). Monotreme affinities and low-frequency hearing suggested by multituberculate ear. Nature, 377, 141–4.CrossRefGoogle Scholar
Messer, M., Weiss, A. S., Shaw, D. C., and Westerman, M. (1998). Evolution of the monotremes: phylogenetic relationship to marsupials and eutherians, and estimation of divergence time based on α-lactalbumin amino acid sequences. Journal of Mammalian Evolution, 5, 95–105.CrossRefGoogle Scholar
Miao,, D. (1993). Cranial morphology and multituberculate relationships. In Mammal Phylogeny: Mesozoic Differentiation, Multituberculates, Monotremes, Early Therians and Marsupials, ed. Szalay, F. S., Novacek, M. J., and McKenna, M. C., pp. 63–74. New York: Springer-Verlag.Google Scholar
Murphy, W. J., Eizirik, E., Johnson, W. E., et al. (2001a). Molecular phylogenetics and the origins of placental mammals. Nature, 409, 614–18.CrossRefGoogle Scholar
Murphy, W. J., Eizirik, E., O'Brien, S. J., et al. (2001b). Resolution of the early placental mammal radiation using Bayesian phylogenetics. Science, 294, 2348–51.CrossRefGoogle Scholar
Novacek, M. J., Rougier, G. W., Wible, J. R., et al. (1997). Epipubic bones in eutherian mammals from the Late Cretaceous of Mongolia. Nature, 389, 483–6.CrossRefGoogle ScholarPubMed
Nowak, R. M., and Paradiso, J. L. (1983). Walker's Mammals of the World. Baltimore, MD: Johns Hopkins University Press.Google Scholar
Parker, T. J. and Haswell, W. A. (1897). A Text-book of Zoology. London: Macmillan.CrossRefGoogle Scholar
Penny, D. and Hasegawa, M. (1997). The platypus put in its place. Nature, 387, 549–50.CrossRefGoogle ScholarPubMed
Renfree,, M. R. (1993). Ontogeny, genetic control, and phylogeny of female reproduction in monotreme and marsupial mammals. In Mammal Phylogeny: Mesozoic Differentiation, Multituberculates, Monotremes, Early Therians and Marsupials, ed. Szalay, F. S., Novacek, M. J., and McKenna, M. C., pp. 4–20. New York: Springer-Verlag.Google Scholar
Retief, J. D., Winkfein, R. J., and Dixon, G. H. (1993). Evolution of the monotremes: the sequences of the protamine P1 genes in the platypus and echidna. European Journal of Biochemistry, 218, 457–61.CrossRefGoogle ScholarPubMed
Rich, T. H., Vickers-Rich, P., Constantine, A., et al. (1997). A tribosphenic mammal from the Mesozoic of Australia. Science, 278, 1438–42.CrossRefGoogle Scholar
Rich, T. H., Flannery, T. F., Trusler, P., et al. (2002). Evidence that monotremes and ausktribosphenids are not sister groups. Journal of Vertebrate Paleontology, 22, 466–9.CrossRefGoogle Scholar
Rich, T. H., Hopson, J. A., Musser, A. M., Flannery, T. F., and Vickers-Rich, P. (2005). Independent origins of middle ear bones in monotremes and therians. Science, 307, 910–14.CrossRefGoogle ScholarPubMed
Ride, W. D. L. (1964). A review of Australian fossil marsupials. Journal of the Proceedings of the Royal Society of Western Australia, 46, 97–131.Google Scholar
Ride, W. D. L. (1970). A Guide to the Native Mammals of Australia. Oxford: Oxford University Press.Google Scholar
Rougier, G. W., Wible, J. R., and Novacek, M. J. (1996). Multituberculate phylogeny. Nature, 379, 406–67.CrossRefGoogle Scholar
Rowe, T. (1988). Definition, diagnosis, and origin of Mammalia. Journal of Vertebrate Paleontology, 8, 241–64.CrossRefGoogle Scholar
Sánchez-Villagra, M. R., and Maier, W. (2003). Ontogenesis of the scapula in marsupial mammals, with special emphasis on perinatal stages of Didelphis and remarks on the origin of the therian scapula. Journal of Morphology, 258, 115–29.CrossRefGoogle Scholar
Sears, K. E. (2004). Constraints on the morphological evolution of marsupial shoulder girdles. Evolution, 58, 2535–70.Google ScholarPubMed
Sigogneau-Russell, D. (1991). First evidence of Multituberculata (Mammalia) in the Mesozoic of Africa. Neues Jahrbuch fur Palaontologie, Monatshefte, 1991, 119–25.Google Scholar
Simpson, G. G. (1945). The principles of classification and a classification of mammals. Bulletin of the American Museum of Natural History, 85, 1–350.Google Scholar
Smith, K. K. (1997). Comparative patterns of craniofacial development in eutherian and metatherian mammals. Evolution, 51, 1663–78.CrossRefGoogle ScholarPubMed
Smith, K. K. (2001). The evolution of mammalian development. Bulletin of the Museum of Comparative Zoology, 156, 119–35.Google Scholar
Springer, M. S., Westerman, M., Kavanagh, J. R., et al. (1998). The origin of the Australasian marsupial fauna and the phylogenetic affinities of the enigmatic Monito de Monte and the marsupial mole. Proceedings of the Royal Society of London, B, 265, 2381–6.CrossRefGoogle Scholar
Springer, M. S., DeBry, R. W., Douady, G., et al. (2001). Mitochondrial versus nuclear gene sequences in deep-level mammalian phylogeny reconstruction. Molecular Biology and Evolution, 18, 132–43.CrossRefGoogle ScholarPubMed
Szalay, F. S. (1994). Evolutionary History of the Marsupials and an Analysis of Osteological Characters. Cambridge, UK: Cambridge University Press.Google Scholar
Szalay, F. S. and Sargis, E. J. (2001). Model-based analysis of postcranial osteology of marsupials from the Palaeocene of Itaboraí (Brazil) and the phylogenetics and biogeography of the Metatheria. Geodiversitas, 23, 139–302.Google Scholar
Wible, J. R. (1991). Origin of Mammalia: the craniodental evidence re-examined. Journal of Vertebrate Paleontology, 11, 1–18.CrossRefGoogle Scholar
Wible,, J. R. and Hopson,, J. A. (1993). Basicranial evidence for early mammal phylogeny. In Mammal Phylogeny: Mesozoic Differentiation, Multituberculates, Monotremes, Early Therians, and Marsupials, ed. Szalay, F. S., Novacek, M. J., and McKenna, M. C., pp. 45–62. New York: Springer-Verlag.Google Scholar
Wible,, J. R., Rougier,, G. W., Novacek,, U. J., and Asher,, R. J. (2007). Cretaceous eutherians and Laurasian origin for placental mammals near the K/T boundary. Nature, 447, 1003–6.CrossRefGoogle Scholar
Woodburne, M. O. (2003). Monotremes as pretribosphenic mammals. Journal of Mammalian Evolution, 10, 195–248.CrossRefGoogle Scholar
Woodburne, M. O., Rich, T. H., and Springer, M. S. (2003). The evolution of tribospheny and the antiquity of mammalian clades. Molecular Phylogeny and Evolution, 28, 360–85.CrossRefGoogle ScholarPubMed
Zeller, U. (1999). Phylogeny and systematic relations of the Monotremata: why we need an integrative approach. Courier Forschungsinstitut Senckenberg, 215, 227–32.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×