Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-26T13:18:33.110Z Has data issue: false hasContentIssue false

Chapter 56 - Nageia

Podocarpales: Podocarpaceae S.S.

from Part III - Living Arborescent Gymnosperm Genetic Presentations

Published online by Cambridge University Press:  11 November 2024

Christopher N. Page
Affiliation:
University of Exeter
Get access

Summary

Medium-sized to slender and tall tropical evergreen trees, especially characterised by being one of a few resiniferous genera whose leaves are wide and ovate, with multiple sub-parallel and fine longitudinal veins. Each leaf terminates in a distinctive drip-tip.

Type
Chapter
Information
Evolution of the Arborescent Gymnosperms
Pattern, Process and Diversity
, pp. 370 - 384
Publisher: Cambridge University Press
Print publication year: 2024

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Audley-Charles, M. 1983. Reconstruction of Gondwanaland. Nature 306: 4850.CrossRefGoogle Scholar
Axsmith, B.J., Taylor, T.N. & Taylor, E.L. 1998. Anatomically preserved leaves of the conifer Notophyllum brausecii (Podocarpaceae) from the Triassic of Antarctica. American Journal of Botany 85: 704713.CrossRefGoogle ScholarPubMed
Barker, N.P., Muller, E.M. & Mill, R.R. 2004. A yellowwood by any other name: molecular systematics and the taxonomy of Podocarpus and the Podocarpaceae in southern Africa. South African Journal of Science 100(11): 629632.Google Scholar
Bond, W.J. 1989. The tortoise and the hare: ecology of angiosperm dominance and gymnosperm persistence. Biological Journal of the Linnean Society 36: 227249.CrossRefGoogle Scholar
Brodribb, T. & Hill, R.S. 1997. Light response characteristics of a morphologically diverse group of Southern Hemisphere conifers as measured by chlorophyll fluorescence. Oecologia 110: 1017.CrossRefGoogle Scholar
Buchholz, J.T. 1941. Embryogeny of the Podocarpaceae. Botanical Gazette 103: 137.CrossRefGoogle Scholar
Cantrill, D.J. & Falcon-Lang, H.J. 2001. Cretaceous (Late Albian) Coniferales of Alexander Island, Antarctica. Part 2. Foliage, reproductive structures and roots. Review of Palaeobotany and Palynology 115: 119145.CrossRefGoogle Scholar
Carter, G.A. & Smith, W.K. 1985. Influence of shoot structure on light interception and photosynthesis in conifers. Plant Physiology 79(4): 10381043.CrossRefGoogle ScholarPubMed
Champion, H.G. & Seth, S.K. 1968. A Revised Survey of the Forest Types of India. Delhi: Government of India.Google Scholar
Chaw, S.M., Long, H., Wang, B.-S., Zharkikh, A. & Li, W.-H. 1993. The phylogenetic position of Taxaceae based on 18S rRNA sequences. Journal of Molecular Evolution 37: 624630.CrossRefGoogle ScholarPubMed
Chowdhury, C.R. 1962. The embryology of conifers: a review. Phytomorphology 12: 313338.Google Scholar
Conran, J.G., Wood, G.A., Martin, P.G., et al. 2000. Generic relationships within and between the gymnosperm families Podocarpaceae and Phyllocladaceae based on an analysis of the chloroplast gene rbcL. Australian Journal of Botany 48: 715724.CrossRefGoogle Scholar
De Laubenfels, D.J. 1987. Revision of the genus Nageia (Podocarpaceae). Blumea: Biodiversity, Evolution and Biogeography of Plants 32(1): 209211.Google Scholar
Farjon, A. 2010. A Handbook of the World’s Conifers. Leiden: Konninklijke Brill NV.CrossRefGoogle Scholar
FIVI (Forest Inventory and Planning Institute, Vietnam) 1996. Vietnam Forest Trees. Hanoi: Agricultural Publishing House.Google Scholar
Fu, D. 1992. Nageiaceae: a new gymnosperm family. Acta Phytotaxonomica Sinica 30: 515528.Google Scholar
Ganesh, T., Ganesan, R., Soubadra, D.M., Davidar, P. & Bawa, K.S. 1996. Assessment of plant biodiversity at a mid-elevation evergreen forest of Kalakad-Mundanthurai Tiger Reserve, Western Ghats, India. Current Science 71: 379392.Google Scholar
Greenwood, D.R. 1987. Early Tertiary Podocarpaceae megafossils from the Eocene Anglesea locality, Victoria, Australia. Australian Journal of Botany 35: 111133.CrossRefGoogle Scholar
Hair, J.B. 1963. Cytogeographical relationships of the southern podocarps. Pp 401414 in Gressitt, J.L. (ed.), Pacific Basin Biogeography. Honolulu: Bishop Museum Press.Google Scholar
Hair, J.B. & Beuzenberg, E.J. 1958. Chromosomal evolution in the Podocarpaceae. Nature 181: 15841586.CrossRefGoogle Scholar
Herbert, J., Hollingsworth, P.M., Gardner, M.F., et al. 2002. Conservation genetics and phylogenetics of New Caledonian Retrophyllum (Podocarpaceae) species. New Zealand Journal of Botany 40: 175188.CrossRefGoogle Scholar
Hill, R.S. & Pole, M.S. 1992. Leaf and shoot morphology of extant Afrocarpus, Nageia and Retrophyllum (Podocarpaceae) species, and species with similar leaf arrangement, from Tertiary sediments in Australasia. Australian Systematic Botany 5: 337358.CrossRefGoogle Scholar
Hill, R.S. & Scriven, L.J. 1995. The angiosperm-dominated woody vegetation of Antarctica: a review. Review of Palaeobotany and Palynology 86: 175198.CrossRefGoogle Scholar
Jin, J., Qui, J., Zhu, Y. & Kodrul, T.M. 2010. First fossil record of the genus Nageia (Podocarpaceae) in south China and its phytogeographic implications. Plant Systematics and Evolution 285: 159163.CrossRefGoogle Scholar
Kelch, D.G. 1997. The phylogeny of the Podocarpaceae based on morphological evidence. Systematic Botany 22: 113131.CrossRefGoogle Scholar
Kelch, D.G. 1998. Phylogeny of Podocarpaceae: a comparison of evidence from morphology and 18S rDNA. American Journal of Botany 85: 986996.CrossRefGoogle ScholarPubMed
Kimura, T., Ohana, T. & Mimoto, K. 1988. Discovery of a podocarpaceous plant from the Lower Cretaceous of Kochi Prefecture, in the outer zone of southwest Japan. Proceedings of the Japan Academy B 64: 213216.CrossRefGoogle Scholar
Knopf, P., Schulz, C., Little, D.P., Stützel, T. & Stevenson, D.W. 2012. Relationships within Podocarpaceae based on DNA sequence, anatomical, morphological, and biogeographical data. Cladistics 28: 271299.CrossRefGoogle ScholarPubMed
Krassilov, V.A. 1965. New coniferales from Lower Cretaceous of Primorye. Botanical Journal 50: 14501455.Google Scholar
Krassilov, V.A. 1974. Podocarpus from the Upper Cretaceous of eastern Asia and its bearing on the theory of conifer evolution. Palaeontology 17: 365370.Google Scholar
Krishnan, R.M. 2002. Phenology of a wet forest understorey in the Western Ghats, South India. Global Ecology and Biogeography 11: 179182.CrossRefGoogle Scholar
Kryshtofovich, A.N. & Prynada, V.D. 1932. Contribution to the Mesozoic flora of the Ussuriland. Bulletin of the Geological Prospecting Service USSR 51: 363373.Google Scholar
Kumar, P., Yuan, X., Kumar, M.R., et al. 2007. The rapid drift of the Indian tectonic plate. Nature 449(7164): 894897.CrossRefGoogle ScholarPubMed
Kurata, S. 1966. Notes on Japanese ferns. Journal of Geobotany 14: 8286.Google Scholar
Little, D.P., Knopf, P. & Schulz, C. 2013. DNA barcode identification of Podocarpaceae: the second largest conifer family. PLoS One 8: e81008.CrossRefGoogle ScholarPubMed
Mehra, P.N. & Khoshoo, T.N. 1956. Cytology of conifers I, II. Journal of Genetics 54: 165180, 181–185.CrossRefGoogle Scholar
Mehrotra, R.C. 2011. Living gymnosperms of India: past and recent. Phytotaxonomy 11: 8085.Google Scholar
Mehrotra, R.C., Liu, X.-Q. & Li, C.-S. 2005. Comparison of the Tertiary flora of southwest China and northeast India and its significance in the antiquity of the modern Himalayan flora. Review of Palaeobotany and Palynology 135: 146163.CrossRefGoogle Scholar
Mill, R.R. 1999. A new combination in Nageia (Podocarpaceae). Novon 9: 7778.CrossRefGoogle Scholar
Mill, R.R. 2001. A new sectional combination in Nageia Gaertn. (Podocarpaceae). Edinburgh Journal of Botany 58: 499501.CrossRefGoogle Scholar
Nanami, S., Kawaguchi, H. & Yakamura, T. 2011. Spatial pattern formation and relative importance of intra- and inter-specific competition in codominant tree species, Podocarpus nagi and Neolitsea aciculata. Ecological Research 26: 3746.CrossRefGoogle Scholar
Nguyễn Duc To Luu, & Thomas, P. 2004. Cay La Kim Viet Nam (Conifers of Vietnam: An Illustrated Field Guide). Hanoi: World Publishing House.Google Scholar
Noothemstra, H., Wijninga, V.M. & Cleef, A.M. 2006. The paleobotanic record of Columbia: implications for biogeography and biosciences. Annals of the Missouri Botanical Garden 93: 297324.Google Scholar
Page, C.N. 1990a. Taxaceae. Pp 348353 in Kubitsky, K. & Green, P.S. (eds.), The Families and Genera of Vascular Plants. I. Pteridophytes and Gymnosperms. Berlin: Springer.Google Scholar
Page, C.N. 1990b. Podocarpaceae. Pp 332346 in Kubitsky, K. & Green, P.S. (eds.), The Families and Genera of Vascular Plants. I. Pteridophytes and Gymnosperms. Berlin: Springer.Google Scholar
Pascal, J.P. 1991. Floristic composition and distribution of evergreen forests in the Western Ghats, India. Palaeobotanist 39: 110126.Google Scholar
Quinn, C.J. 1970. Generic boundaries in the Podocarpaceae. Proceedings of the Linnean Society NSW 94: 166172.Google Scholar
Quinn, C.J., Price, R.A. & Gadek, P.A. 2002. Familial concepts and relationships in the conifer based on rbcL and matK sequence comparisons. Kew Bulletin 57: 513531.CrossRefGoogle Scholar
Raizada, M.B. & Sahni, K.C. 1960. Living Indian gymnosperms. Part 1. (Cycadales, Ginkgoales and Coniferales). Indian Forest Records (Botany) 5(2): 73150.Google Scholar
Ramesh, B.R., Menon, S. & Bawa, K.S. 1997. A vegetation based approach to biodiversity gap analysis in the Agastyamalai Region, Western Ghats, India. Ambio 26: 529536.Google Scholar
Scotese, C.R. 2013. PALEOMAP Paleo Atlas for ArcGIS, Volume 1: Cenozoic. PALEOMAP Project.Google Scholar
Silba, J. 1990. A supplement to the International Census of the Coniferae, II. Phytologia 68: 778.Google Scholar
Sinclair, W.T., Mill, R.R., Gardner, M.F., et al. 2002. Evolutionary relationships of the New Caledonian heterotrophic conifer, Parasitaxus usta (Podocarpaceae), inferred from chloroplast trn LF intron/spacer and nuclear rDNA ITS2 sequences. Plant Systematics and Evolution 233: 79104.CrossRefGoogle Scholar
Stewart, W.N. & Rothwell, G.A. 1993. Palaeobotany and the Evolution of Plants, 2nd edn. Cambridge: Cambridge University Press.Google Scholar
Stockey, R.A. 1994. Mesozoic Araucariaceae: morphology and systematic relationships. Journal of Plant Research 107: 493502.CrossRefGoogle Scholar
Sun, T.X. & Wang, X.Y. 2005. The identification and geographic distribution of Nageia and its pharmaceutical effect. Subtropical Plant Science 34: 5355.Google Scholar
Tahara, M. 1941. Embryogeny of Podocarpus macrophyllus and Podocarpus nagi. Science Reports Tohoku University (Biology) 16: 9198.Google Scholar
Townrow, J.A. 1967. On Rissikia and Mataia podocarpaceaous conifers from the lower Mesozoic of southern lands. Papers and Proceedings of the Royal Society of Tasmania 101: 103106.CrossRefGoogle Scholar
Wang, F.H. 1950. Observations of the embryogeny of Podocarpus nagi. Botanical Bulletin Academica Sinica 3: 141145.Google Scholar
White, M.E. 1993. The Greening of Gondwana. Chatswood, NSW: A. H. & A.W. Reed.Google Scholar
Yang, J.-J., Guo-Fan, Q. & Rui-Hu, X. 1990. Studies on fossil woods excavated from the Dabie Mountains. Scientia Silvae Sinicae 26(4): 379383 (in Chinese with English abstract).Google Scholar
Zhou, Q.-X. & Gu, Z.-J. 2001. Kryomorphology of Podocarpus s.l. in China and its systematic significance. Caryologia 54: 121127.Google Scholar
Zhou, Z. 1983. Stalagma samara, a new podocarpaceaous conifer with monicolpate pollen from the Upper Triassic of Hunan, China. Palaeontographica B 185: 5672.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Nageia
  • Christopher N. Page, University of Exeter
  • Book: Evolution of the Arborescent Gymnosperms
  • Online publication: 11 November 2024
  • Chapter DOI: https://doi.org/10.1017/9781009263108.020
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Nageia
  • Christopher N. Page, University of Exeter
  • Book: Evolution of the Arborescent Gymnosperms
  • Online publication: 11 November 2024
  • Chapter DOI: https://doi.org/10.1017/9781009263108.020
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Nageia
  • Christopher N. Page, University of Exeter
  • Book: Evolution of the Arborescent Gymnosperms
  • Online publication: 11 November 2024
  • Chapter DOI: https://doi.org/10.1017/9781009263108.020
Available formats
×