Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-10T18:15:25.911Z Has data issue: false hasContentIssue false

18 - Developmental mechanisms in the evolution of phenotypic traits in rodent teeth

Published online by Cambridge University Press:  05 August 2015

Elodie Renvoisé
Affiliation:
University of Helsinki
Sophie Montuire
Affiliation:
Université de Bourgogne
Philip G. Cox
Affiliation:
University of York
Lionel Hautier
Affiliation:
Université de Montpellier II
Get access

Summary

Introduction

Evo-Devo does not limit itself to the analysis of phenotypic variation and adaptation, but explicitly addresses the generative mechanisms underlying the evolution of organismal form

(Müller, 2007b: p. 502).

Evo-Devo, or Evolutionary Developmental Biology, combines the two independent research disciplines of Evolutionary Biology and Developmental Biology, that re-joined in the late 1970s and early 1980s, after a break of about 100 years after the ‘biogenetic law’ mostly introduced by Haeckel in the 1860s (Arthur, 2002; Churchill, 2007; Gerson, 2007). Evolutionary Biology explores the evolution of forms that have been realised and their variability, and Developmental Biology proposes morphogenetic mechanisms that could have been explored. Müller (2007b) insisted on the emergence of Evo-Devo from the limitations of these two disciplines to explain the form and the structure of the organisms. Since then, the field of Evo-Devo has become one of the most vigorous parts of biology (Gerson, 2007). In recent years, considerable progress has been made in understanding the developmental basis of morphological evolution (Wagner, 2007). However, to become an independent scientific field, Evo-Devo must prove its potential to induce new scientific questions (Müller, 2007a).

Among the new questions that can be assessed by Evo-Devo, is how development contributes to phenotypic novelty (Müller, 2007a). This question raises the problem of homoplasy, i.e. convergence, parallelism and reversals, in evolution. Are the phenotypic novelties generated by developmental mechanisms homologous or homoplastic? Phenotypic novelties are considered homologous if their similarities between taxa are inherited from a common ancestor, whereas homoplastic traits do not share phylogenetic inheritance (Hall, 2003; Wake et al., 2011). Homoplastic traits that share similar developmental, genetic and/or cell-type mechanisms are considered parallel during evolution, corresponding to the concept of deep-homology (Hall, 2003; Shubin et al., 2009). Homoplastic traits that are defined as convergent are usually observed at greater phylogenetic distances than parallel traits, and may not share similar morphogenetic mechanisms.

Type
Chapter
Information
Evolution of the Rodents
Advances in Phylogeny, Functional Morphology and Development
, pp. 478 - 509
Publisher: Cambridge University Press
Print publication year: 2015

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahn, Y., Sanderson, B. W., Klein, O. D. and Krumlauf, R. (2010). Inhibition of Wnt signaling by Wise (Sostdc1) and negative feedback from Shh controls tooth number and patterning. Development, 137, 3221–3231.CrossRefGoogle ScholarPubMed
Arthur, W. (2002). The emerging conceptual framework of evolutionary developmental biology. Nature, 415, 757–764.CrossRefGoogle ScholarPubMed
Biehs, B., Hu, J. K.-H., Strauli, N. B., et al. (2013). BMI1 represses Ink4a/Arf and Hox genes to regulate stem cells in the rodent incisor. Nature Cell Biology, 15, 846–852.CrossRefGoogle ScholarPubMed
Butler, P. M. (1956). The ontogeny of molar pattern. Biological Review, 31, 31–70.CrossRefGoogle Scholar
Butler, P. M. (1978). Molar cusp nomenclature and homology. In Development, Function and Evolution of Teeth, eds. Butler, P. M. and Joysey, K. A., London: Academic Press, pp. 439–453.Google Scholar
Cai, J., Cho, S. W., Kim, J. Y., et al. (2007). Patterning the size and number of tooth and its cusps. Developmental Biology, 304, 499–507.CrossRefGoogle ScholarPubMed
Chaline, J. (1987). Paléontologie des Vertébrés, Paris: Dunod.Google Scholar
Chaline, J. and Laurin, B. (1986). Phyletic gradualism in the European Plio-Pleistocene Mimomys lineage. Paleobiology, 12, 203–216.CrossRefGoogle Scholar
Chaline, J., Brunet-lecomte, P., Montuire, S. and Viriot, L. (1999). Anatomy of the arvicoline radiation (Rodentia): palaeogeographical, palaeoecological history and evolutionary data. Annales Zoologici Fennici, 36, 239–267.Google Scholar
Chang, J. Y., Wang, C., Jin, C., et al. (2013). Self-renewal and multilineage differentiation of mouse dental epithelial stem cells. Stem Cell Research, 11, 990–1002.CrossRefGoogle ScholarPubMed
Charles, C., Hovorakova, M., Ahn, Y., et al. (2011). Regulation of tooth number by fine-tuning levels of receptor-tyrosine kinase signaling. Development (Cambridge, England), 138, 4063–4073.CrossRefGoogle ScholarPubMed
Churchill, F. B. (2007). Living with the biogenetic law. In From Embryology to Evo-Devo: a History of Developmental Evolution, eds. Laubichler, M. D. and Maienschein, J., Cambridge, USA: MIT Press, pp. 37–82.Google Scholar
Cohen, K. M., Finney, S. M., Gibbard, P. L. and Fan, J.-X. (2013). The ICS International Chronostratigraphic Cart. Episodes, 36, 199–204.Google Scholar
Eronen, J. T., Puolamäki, K., Liu, L., et al. (2010a). Precipitation and large herbivorous mammals I: estimates from present-day communities. Evolutionary Ecology Research, 10, 217–233.Google Scholar
Eronen, J. T., Puolamäki, K., Liu, L., et al. (2010b). Precipitation and large herbivorous mammals II–application to fossil data. Evolutionary Ecology Research, 12, 235–248.Google Scholar
Evans, A. R., Wilson, G. P., Fortelius, M. and Jernvall, J. (2007). High-level similarity of dentitions in carnivorans and rodents. Nature, 445, 78–81.CrossRefGoogle ScholarPubMed
Fabre, P.-H., Hautier, L., Dimitrov, D. and Douzery, E. J. P. (2012). A glimpse on the pattern of rodent diversification: a phylogenetic approach. BMC Evolutionary Biology, 12, 88.CrossRefGoogle ScholarPubMed
Felszeghy, S., Suomalainen, M. and Thesleff, I. (2010). Notch signalling is required for the survival of epithelial stem cells in the continuously growing mouse incisor. Differentiation, 80, 241–248.CrossRefGoogle ScholarPubMed
Feranec, R. S. (2003). Stable isotopes, hypsodonty, and the paleodiet of Hemiauchenia (Mammalia: Camelidae): a morphological specialization creating ecological generalization. Paleobiology, 29, 230–242.CrossRefGoogle Scholar
Fortelius, M., Eronen, J. T., Jernvall, J., et al. (2002). Fossil mammals resolve regional patterns of Eurasian climate change over 20 million years. Evolutionary Ecology Research, 4, 1005–1016.Google Scholar
Fortelius, M., Eronen, J. T., Kaya, F., et al. (2014). Evolution of Neogene mammals in Eurasia: environmental forcing and biotic interactions. Annual Review of Earth and Planetary Sciences, 42, 579–603.CrossRefGoogle Scholar
Foster, B. L., Nociti, F. H. and Somerman, M. J. (2013). Tooth root development. In Stem Cells in Craniofacial Development and Regeneration, eds. Huang, G. T.-J. and Thesleff, I., New Jersey: Wiley-Blackwell, pp. 153–177.Google Scholar
Fraser, G. J., Hulsey, C. D., Bloomquist, R. F., et al. (2009). An ancient gene network is co-opted for teeth on old and new jaws. PLoS Biology, 7, e1000031.CrossRefGoogle ScholarPubMed
Gaunt, W. A. (1955). The development of the molar pattern of the house mouse (Mus musculus). Acta Anatomica, 21, 219–263.Google Scholar
Gaunt, W. A. (1961). The development of the molar pattern of the golden hamster (Mesocricetus auratus w.), together with a re-assessment of the molar pattern of the mouse (Mus musculus). Acta Anatomica, 45, 219–251.Google Scholar
Gerson, E. M. (2007). The juncture of evolutionary and developmental biology. In From Embryology to Evo-Devo: a History of Developmental Evolution, eds. Laubichler, M. D. and Maienschein, J., Cambridge, USA: MIT Press, pp. 435–463.Google Scholar
Goin, F. J., Tejedor, M. F., Chornogubsky, L., et al. (2012). Persistence of a Mesozoic, non-therian mammalian lineage (Gondwanatheria) in the mid-Paleogene of Patagonia. Naturwissenschaften, 99, 449–463.CrossRefGoogle ScholarPubMed
Gomes Rodrigues, H., Charles, C., Marivaux, L., Vianey-Liaud, M. and Viriot, L. (2011). Evolutionary and developmental dynamics of the dentition in Muroidea and Dipodoidea (Rodentia, Mammalia). Evolution and Development, 13, 361–369.Google Scholar
Gomes Rodrigues, H., Renaud, S., Charles, C., et al. (2013). Roles of dental development and adaptation in rodent evolution. Nature Communications, 4, 2504.CrossRefGoogle Scholar
Gould, S. J. (1977). Ontogeny and Phylogeny, United State of America: President and Fellows of Harvard College.Google Scholar
Gould, S. J. (2002). The Structure of the Evolutionary Theory, Cambridge, USA: The Belknap Press of Harvard University Press.Google Scholar
Guthrie, W. F. (1965). Variability in characters undergoing rapid evolution, an analysis of Microtus molars. Evolution: International Journal of Organic Evolution, 19, 214–233.CrossRefGoogle Scholar
Hall, B. K. (2003). Descent with modification: the unity underlying homology and homoplasy as seen through an analysis of development and evolution. Biological Reviews, 78, 409–433.CrossRefGoogle ScholarPubMed
Handrigan, G. R. and Richman, J. M. (2010). A network of Wnt, hedgehog and BMP signaling pathways regulates tooth replacement in snakes. Developmental Biology, 348, 130–141.CrossRefGoogle ScholarPubMed
Handrigan, G. R. and Richman, J. M. (2011). Unicuspid and bicuspid tooth crown formation in squamates. Journal of Experimental Zoology B (Molecular and Developmental Evolution), 316, 598–608.Google ScholarPubMed
Harada, H., Kettuner, P., Jung, H.-S., et al. (1999). Localization of putative stem cells in dental epithelium and their association with Notch and FGF signaling. The Journal of Cell Biology, 147, 105–120.CrossRefGoogle ScholarPubMed
Harada, H., Toyono, T., Toyoshima, K., et al. (2002). FGF10 maintains stem cell compartment in developing mouse incisor. Development, 129, 1533–1541.Google Scholar
Harjunmaa, E., Kallonen, A., Voutilainen, M., et al. (2012). On the difficulty of increasing dental complexity. Nature, 483, 324–327.CrossRefGoogle ScholarPubMed
Hartenberger, J.-L. (1998). Desription de la radiation des Rodentia (Mammalia) du Paléocène supérieur au Miocène; incidences phylogénétiques. Comptes Rendus de l'Académie des Sciences, IIa, Sciences de la Terre et des Planètes, 326, 439–444.Google Scholar
Hartenberger, J.-L. (2001). Une brève histoire des mammifères, Paris: Belin.Google Scholar
Hashimoto, E., Nakakura-Ohshima, K., Kenmotsu, S.-I., et al. (2008). The relationship between cusp pattern and plural stem cell compartments in guinea pig cheek teeth by chasing BrdU-labeling. Archives of Histology and Cytology, 71, 317–332.CrossRefGoogle ScholarPubMed
Hillson, S. (2005). Teeth, Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Hinton, M. A. C. (1926). Monograph of the Voles and Lemmings (Microtinae) Living and Extinct, vol. 1, London: British Natural History Museum.Google Scholar
Hu, B., Nadiri, A., Kuchler-Bopp, S., et al. (2006). Tissue engineering of tooth crown, root, and periodontum. Tissue Engineering, 12, 2069–2075.CrossRefGoogle Scholar
Hunt, A. M. (1958). A description of the molar teeth and investigating tissues of normal guinea pigs. Journal of Dental Research, 38, 216–231.Google Scholar
Hunter, J. P. and Jernvall, J. (1995). The hypocone as a key innovation in mammalian evolution. Proceedings of the National Academy of Sciences of the United States of America, 92, 10 718–10 722.CrossRefGoogle ScholarPubMed
Hunter, J. P., Guatelli-Steinberg, D., Weston, T. C., Durner, R. and Betsinger, T. K. (2010). Model of tooth morphogenesis predicts carabelli cusp expression, size, and symmetry in humans. PLoS ONE, 5, e11844.CrossRefGoogle ScholarPubMed
Ishida, K., Murofushi, M., Nakao, K., et al. (2011). The regulation of tooth morphogenesis is associated with epithelial cell proliferation and the expression of Sonic hedgehog through epithelial-mesenchymal interactions. Biochemical Biophysical Research Communications, 405, 455–461.CrossRefGoogle ScholarPubMed
Janis, C. M. (1988). An estimation of tooth volume and hypsodonty indices in ungulate mammals, and the correlation of these factors with dietary preferences. Mémoires du Muséum National d'Histoire Naturelle, 53, 367–387.Google Scholar
Janis, C. M. and Fortelius, M. (1988). On the means whereby mammals achieve increased functional durability of their dentitions, with special reference to limiting factors. Biological Reviews, 63, 197–230.CrossRefGoogle ScholarPubMed
Jardine, P. E., Janis, C. M., Sahney, S. and Benton, M. J. (2012). Grit not grass: Concordant patterns of early origin of hypsodonty in Great Plains ungulates and Glires. Palaeogeography, Palaeoclimatology, Palaeoecology, 365–366, 1–10.Google Scholar
Jernvall, J. (1995). Mammalian molar cusp patterns: developmental mechanisms of diversity. Acta Zoologica Fennica, 198, 1–61.Google Scholar
Jernvall, J. and Thesleff, I. (2000). Reiterative signaling and patterning during mammalian tooth morphogenesis. Mechanisms of Development, 92, 19–29.CrossRefGoogle ScholarPubMed
Jernvall, J. and Thesleff, I. (2012). Tooth shape formation and tooth renewal: evolving with the same signals. Development, 139, 3487–3497.CrossRefGoogle ScholarPubMed
Jernvall, J., Kettunen, P., Karanova, I., Martin, L. B. and Thesleff, I. (1994). Evidence for the role of the EK as a control center in mammalian tooth cusp formation: non dividing cells express growth stimulating Fgf-4 gene. International Journal of Developmental Biology, 38, 463–469.Google Scholar
Jowett, A., Vainio, S., Ferguson, M., Sharpe, J. and Thesleff, I. (1993). Epithelial-mesenchymal interactions are required for Msx 1 and Msx 2 gene expression in the developing murine molar toothDevelopment, 117, 461–470.Google ScholarPubMed
Juuri, E., Saito, K., Ahtiainen, L., et al. (2012). Sox2+ stem cells contribute to all epithelial lineages of the tooth via Sfrp5+ progenitors. Developmental Cell, 23, 317–328.CrossRefGoogle ScholarPubMed
Kaiser, T. M. (2003). The dietary regimes of two contemporaneous populations of Hippotherium primigenium (Perissodactyla, Equidae) from the Vallesian (Upper Miocene) of Southern Germany. Palaeogeography, Palaeoclimatology, Palaeoecology, 198, 381–402.CrossRefGoogle Scholar
Kaiser, T. M., Müller, D. W. H., Fortelius, M., et al. (2013). Hypsodonty and tooth facet development in relation to diet and habitat in herbivorous ungulates: implications for understanding tooth wear. Mammal Review, 43, 34–46.CrossRefGoogle Scholar
Kavanagh, K. D., Evans, A. R. and Jernvall, J. (2007). Predicting evolutionary patterns of mammalian teeth from development. Nature, 449, 427–432.CrossRefGoogle ScholarPubMed
Keränen, S. V., Åberg, T., Kettunen, P., Thesleff, I. and Jernvall, J. (1998). Association of developmental regulatory genes with the development of different molar tooth shapes in two species of rodents. Development Genes and Evolution, 208, 477–486.CrossRefGoogle ScholarPubMed
Keyes, P. H. and Dale, P. P. (1944). A preliminary survey of the pouches and dentition of Syrian hamster. Journal of Dental Research, 23, 427–438.CrossRefGoogle Scholar
Klein, O. D., Lyons, D. B., Balooch, G., et al. (2008). An FGF signaling loop sustains the generation of differentiated progeny from stem cells in mouse incisors. Development, 135, 377–385.Google ScholarPubMed
Koenigswald, v. W. (2011). Diversity of hypsodont teeth in mammalian dentitions: construction and classification. Palaeontographica, Abt. A: Palaezoology-Stratigraphy, 294, 63–94.Google Scholar
Labonne, G., Laffont, R., Renvoisé, E., et al. (2012). When less means more: evolutionary and developmental hypotheses in rodent molars. Journal of Evolutionary Biology, 25, 2102–2111.CrossRefGoogle ScholarPubMed
Laubichler, M. D. and Maienschein, J. (2007). From Embryology to Evo-Devo: a History of Developmental Evolution, Cambridge, Massachusetts: MIT Press.Google Scholar
Line, S. R. P. (2003). Variation of tooth number in mammalian dentition: connecting genetics, development, and evolution. Evolution and Development, 5, 295–304.CrossRefGoogle Scholar
Lowe, V. P. W. (1971). Root development of molar teeth in the bank vole (Clethrionomys glareolus). Journal of Animal Ecology, 40, 49–61.CrossRefGoogle Scholar
Luan, X., Ito, Y. and Diekwisch, T. G. (2006). Evolution and development of Hertwig's epithelial root sheath. Developmental Dynamics, 235, 1167–1180.CrossRefGoogle ScholarPubMed
Luckett, W. P. (1985). Superordinal and intraordinal affinities of rodents: developmental evidence from the dentition and placentation. In Evolutionary Relationships Among Rodents, eds. Luckett, W. P. and Hartenberger, J.-L., New York: Plenum Publishing Corporation, pp. 227–275.CrossRefGoogle Scholar
Luckett, W. P. (1993a). An ontogenetic assessment of dental homologies in Therian mammals. In Mammal Phylogeny, eds. Szalay, F., Novacek, M. and McKenna, M., New York: Springer, pp. 182–204.Google Scholar
Luckett, W. P. (1993b). Ontogenetic staging of the mammalian dentition, and its value for assessment of homology and heterochrony. Journal of Mammalian Evolution, 1, 269–281.CrossRefGoogle Scholar
Luckett, W. P. and Hartenberger, J.-L. (1993). Monophyly or polyphyly of the order Rodentia: possible conflict between morphological and molecular interpretations. Journal of Mammalian Evolution, 1, 127–147.CrossRefGoogle Scholar
Mahn, R. (1890). Bau und entwicklung der molaren bei Mus und Arvicola. Morphologisches Jahrbuch, 16, 652–683.Google Scholar
Mammoto, T., Mammoto, A., Torisawa, Y.-S., et al. (2011). Mechanochemical control of mesenchymal condensation and embryonic tooth organ formation. Developmental Cell, 21, 758–769.CrossRefGoogle ScholarPubMed
Maul, L. C., Masini, F., Parfitt, S. A., Rekovets, L. and Savorelli, A. (2014). Evolutionary trends in arvicolids and the endemic murid Mikrotia – New data and a critical overview. Quaternary Science Reviews, 96, 240–258.CrossRefGoogle Scholar
Michaux, J. R., Aguilar, J.-P., Montuire, S., Wolff, A. and Legendre, S. (1997). Les Murinae (Rodentia, Mammalia) néogènes du Sud de la France: évolution et paléoenvironnements. Geobios, 20, 379–385.Google Scholar
Michon, F., Jheon, A., Seidel, K. and Klein, O. D. (2013). An incisive look at stem cells: the mouse incisor as an emerging model for tooth renewal. In Stem Cells in Craniofacial Development and Regeneration, eds. Huang, G. T.-J. and Thesleff, I.. New Jersey: Wiley-Blackwell, pp. 315–327.Google Scholar
Misonne, X. (1969). African and Indo-Australian Muridae. Evolutionary Trends, Belgium: Musée Royal de l'Afrique centrale (Tervuren).Google Scholar
Mitsiadis, T. A., Barrandon, O., Rochat, A., Barrandon, Y. and De Bari, C. (2007). Stem cell niches in mammals. Experiment in Cell Research, 313, 3377–3385.CrossRefGoogle ScholarPubMed
Mones, A. (1968). Proposición de una nueva terminología relacionada con el crecimiento de los molars. Zoología Platense, 1, 13–14.Google Scholar
Mones, A. (1982). An equivocal nomenclature: what means hypsodonty?Paläontologische Zeitschrift, 56, 107–111.CrossRefGoogle Scholar
Müller, G. B. (2007a). Evo-Devo: extending the evolutionary synthesis. Nature Review Genetics, 8, 943–949.CrossRefGoogle ScholarPubMed
Müller, G. B. (2007b). Six memos for Evo-Devo. In From Embryology to Evo-Devo: a History of Developmental Evolution, eds. Laubichler, M. D. and Maienschein, J., Cambridge, USA: MIT Press, pp. 499–524.Google Scholar
Munne, P. M., Felszeghy, S., Jussila, M., et al. (2010). Splitting placodes: effects of Bone Morphogenetic Protein and Activin on the patterning and identity of mouse incisors. Evolution and Development, 12, 383–392.CrossRefGoogle ScholarPubMed
Ohshima, H., Nakasone, N., Hashimoto, E., et al. (2005). The eternal tooth germ is formed at the apical end of continuously growing teeth. Archives of Oral Biology, 50, 153–157.CrossRefGoogle ScholarPubMed
Perez, M. E. and Vucetich, M. G. (2011). A new extinct genus of Cavioidea (Rodentia, Hystricognathi) from the Miocene of Patagonia (Argentina) and the evolution of cavioid mandiular morphology. Journal of Mammalian Evolution, 18, 163–183.CrossRefGoogle Scholar
Peterková, R., Lesot, H., Viriot, L. and Peterka, M. (2005). The supernumerary cheek tooth in tabby/EDA mice-a reminiscence of the premolar in mouse ancestors. Archives of Oral Biology, 50, 219–225.CrossRefGoogle ScholarPubMed
Peterková, R., Lesot, H. and Peterka, M. (2006). Phylogenetic memory of developing mammalian dentition. Journal of Experimental Zoology B (Molecular and Developmental Evolution), 306, 234–250.Google ScholarPubMed
Pispa, J., Jung, H.-S., Jernvall, J., et al. (1999). Cusp patterning defect in tabby mouse teeth and its partial rescue by FGF. Developmental Biology, 216, 521–534.CrossRefGoogle ScholarPubMed
Polly, P. D. (2007). Development with a bite. Nature, 449, 413–415.CrossRefGoogle ScholarPubMed
Prochazka, J., Pantalacci, S., Churava, S., et al. (2010). Patterning by heritage in mouse molar row development. Proceedings of the National Academy of Sciences of the United States of America, 107, 15 497–15 502.CrossRefGoogle ScholarPubMed
Pummila, M., Fliniaux, I., Jaatinen, R., et al. (2007). Ectodysplasin has a dual role in ectodermal organogenesis: inhibition of Bmp activity and induction of Shh expression. Development, 134, 117–125.CrossRefGoogle Scholar
Raff, M. C. (1996). Size control: the regulation of cell numbers in animal development. Cell, 86, 173–175.CrossRefGoogle ScholarPubMed
Reisz, R. R. (2006). Origin of dental occlusion in tetrapods: signal for terrestrial vertebrate evolution?Journal of Experimental Zoology B (Molecular and Developmental Evolution), 306B, 261–277.Google Scholar
Renaud, S., Michaux, J., Schmidt, D. N., et al. (2005). Morphological evolution, ecological diversification and climate change in rodents. Proceedings of the Royal Society B: Biological Sciences, 2005, 609–617.Google Scholar
Renaud, S., Pantalacci, S. and Auffray, J.-C. (2011). Differential evolvability along lines of least resistance of upper and lower molars in island house mice. PLoS ONE, 6, e18951.CrossRefGoogle ScholarPubMed
Rensberger, J. M. (1975). Cheek tooth evolution of hypsodont geomyoid rodents. Journal of Paleontology, 49, 10–22.Google Scholar
Renvoisé, E., Evans, A. R., Jebrane, A., et al. (2009). Evolution of mammal tooth patterns: new insights from a developmental prediction model. Evolution, 63, 1327–1340.CrossRefGoogle ScholarPubMed
Rinke, T. (1991). Percentage of volume versus number of species: availability and intake of grasses and forbs in Microtus arvalis. Folia Zoologica, 40, 143–151.Google Scholar
Rompolas, P., Mesa, K. R. and Greco, V. (2013). Spatial organization within a niche as a determinant of stem-cell fate. Nature, 502, 513–518.CrossRefGoogle ScholarPubMed
Salazar-Ciudad, I. and Jernvall, J. (2002). A gene network model accounting for development. Proceedings of the National Academy of Sciences of the United States of America, 99, 8116–8120.CrossRefGoogle Scholar
Salazar-Ciudad, I. and Jernvall, J. (2010). A computational model of teeth and the developmental origins of morphological variations. Nature, 464, 583–586.CrossRefGoogle Scholar
Schaub, S. (1938). Tertiäre und Quartäre Murinae. Abhandlungen des Schweizerischen Paläontologischen Gesellschaft, 61, 1–39.Google Scholar
Schour, I. and Massler, M. (1942). The teeth. In The Rat in Laboratory Investigation, eds. Griffith, J. Q. and Farris, E. J., Philadelphia: J. B. Lippencott Company.Google Scholar
Seidel, K., Ahn, C. P., Lyons, D., et al. (2010). Hedgehog signaling regulates the generation of ameloblast progenitors in the continuously growing mouse incisor. Development, 137, 3753–3761.CrossRefGoogle ScholarPubMed
Shubin, N., Tabin, C. and Carroll, S. (2009). Deep homology and the origins of evolutionary novelty. Nature, 457, 818–823.CrossRefGoogle ScholarPubMed
Soukup, V., Epperlin, H.-H., Horácek, I. and Czerny, R. (2008). Dual epithelial origin of vertebrate oral teeth. Nature, 455, 795–798.CrossRefGoogle ScholarPubMed
Stehlin, H. G. and Schaub, S. (1951). Die Trigonodontie des simplicidentated Nager. Schweizerische Paläontologischen Abhandlungen, 67, 1–385.Google Scholar
Stenseth, N. C., Hansson, L. and Myllymäki, A. (1977). Food selection of the field vole Microtus agrestis. Oikos, 29, 511–524.CrossRefGoogle Scholar
Thesleff, I. and Tummers, M. (2009). Tooth organogenesis and regeneration. In Stem Book, eds. Watt, F. and Gage, F., The Stem Cell Research Community, pp. 1–12.Google Scholar
Tummers, M. and Thesleff, I. (2003). Root or crown: a developmental choice orchestrated by the differential regulation of the epithelial stem cell niche in the tooth of two rodent species. Development, 130, 1049–1057.CrossRefGoogle ScholarPubMed
Tummers, M. and Thesleff, I. (2009). The importance of signal pathway modulation in all aspects of tooth development. Journal of Experimental Zoology B (Molecular and Developmental Evolution), 312B, 309–319.Google ScholarPubMed
Tummers, M., Yamashiro, T. and Thesleff, I. (2007). Modulation of epithelial cell fate of the root in vitro. Journal of Dental Research, 86, 1063–1067.CrossRefGoogle ScholarPubMed
Ungar, P. S. (2010). Mammal Teeth: Origin, Evolution, and Diversity, United States of America: The John Hopkins University Press.Google Scholar
Van der Meulen, A. J. (1973). Middle Pleistocene smaller mammals from the Monte Peglia (Orvieto, Italia) with special reference to the phylogeny of Microtus (Arvicolidae, Rodentia). Quaternaria, XVII, 1–128.Google Scholar
Van Valen, L. M. (1960). A functional index of hypsodonty. Evolution, 14, 531–532.Google Scholar
Van Valen, L. M. (1982). Homology and causes. Journal of Morphology, 173, 305–312.CrossRefGoogle ScholarPubMed
Vianey-Liaud, M. and Michaux, J. R. (2003). Evolution “graduelle” à l’échelle géologique chez les rongeurs fossiles du Cénozoïque européen. Comptes Rendus Palevol, 2, 455–472.CrossRefGoogle Scholar
Viriot, L. (1994). Tendences évolutives des molaires chez les arvicolidés (Rodentia, Mammalia). PhD, unpublished, Université de Bourgogne, Dijon, France.
Viriot, L., Peterková, R., Peterka, M. and Lesot, H. (2002). Evolutionary implications of the occurrence of two vestigial tooth germs during early odontogenesis in the mouse lower jaw. Connective Tissue Research, 43, 129–133.CrossRefGoogle ScholarPubMed
Vucetich, M. G., Deschamps, C. M., Olivares, A. I. and Dozo, M. T. (2005). Capybaras, size, shape, and time: a model kit. Acta Palaeontologica Polonica, 50, 259–272.Google Scholar
Wagner, G. (2007). The current state and the future of developmental evolution. In From Embryology to Evo-Devo: a History of Developmental Evolution, eds. Laubichler, M. D. and Maienschein, J., Cambridge, USA: MIT Press, pp. 525–545.Google Scholar
Wake, D. B., Wake, M. H. and Specht, C. D. (2011). Homoplasy: from detecting pattern to determining process and mechanism of evolution. Science, 331, 1032–1035.CrossRefGoogle Scholar
Wang, X.-P., Suomalainen, M., Jorgez, C. J., et al. (2004). Follistatin regulates enamel patterning in mouse incisors by asymmetrically inhibiting BMP signaling and ameloblast differentiation. Developmental Cell, 7, 719–730.CrossRefGoogle ScholarPubMed
Wang, X.-P., Suomalainen, M., Felszeghy, S., et al. (2007). An integrated gene regulatory network controls stem cell proliferation in teeth. PLoS Biology, 5, e159.CrossRefGoogle ScholarPubMed
White, T. E. (1959). The endocrine gland and evolution, no. 3: os cementum, hypsodonty and diet. Contributions from the Museum of Paleontology: The University of Michigan, 13, 211–265.Google Scholar
Witter, K., Pavlikova, H., Matulova, P. and Misek, I. (2005). Relationship between vestibular lamina, dental lamina, and the developing oral vestibule in the upper jaw of the field vole (Microtus agrestis, Rodentia). Journal of Morphology, 265, 264–270.CrossRefGoogle Scholar
Yokohama-Tamaki, T., Ohshima, H., Fujiwara, N., et al. (2006). Cessation of Fgf10 signaling, resulting in a defective dental epithelial stem cell compartment, leads to the transition from crown to root formation. Development, 133, 1359–1366.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×